六年级数学应用题学法指导及分类练习
- 格式:doc
- 大小:69.00 KB
- 文档页数:15
数学六年级下人教版各类应用题类型及解题方法练习(含答案)数学六年级下人教版各类应用题类型及解题方法练习(含答案)差倍问题:已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。
基本关系式是:两数差÷倍数差=较小数。
例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。
原来两堆煤各有多少吨?分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是:(40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量答:第一堆煤有10吨,第二堆煤有50吨和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。
一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?(24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数答:甲数是10,乙数是14还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
还原问题是逆解应用题。
一般根据加、减法,乘、除法的互逆运算的关系。
由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。
例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。
第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?分析:如果第二天刚好售出剩下的一半,就应是19+12吨。
第一天售出以后,剩下的吨数是(19+12)×2吨。
以下类推。
列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(吨)答:这个仓库原来有大米100吨。
小学数学应用题学法指导及分类练习集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]小学数学应用题知识概要与学法指导简单应用题一、知识概要简单应用题就是用一步计算的应用题。
它包括整数、小数应用题,还有分数、百分数应用题。
所有的简单应用题都有两个已知条件和一个问题,解答时无非是求题中两个已知条件的和、差、积、商。
简单应用题是一切应用题的基础,无论多么复杂的应用题都要通过一步一步的计算来解答,也就是都可以看作是若干个简单应用题组成的。
只有掌握了解答简单应用题的方法,才能更好地学习以后遇到的各类应用题。
解答简单应用题的关键是要根据题意,分析已知条件和所求问题之间、已知条件和已知条件之间的关系,然后根据四则运算的意义具体分析应用题的事理,确定解答方法。
二、学法指导(一)掌握知识的重点和难点简单应用题复习的重点是让学生熟悉地掌握应用题的结构,即:具有两个已知条件和一个问题。
培养学生解决简单应用题的能力。
简单应用题复习的难点是帮助学生会分析数量关系,会用数学知识即四则运算的意义分析应用题中所反应的生活事理,并能叙述思考过程。
(二)应注意的几个问题。
1、应用题选材要注意联系学生的生活实际,呈现形式多样化,培养学生用数学知识和方法解决问题的意识。
2、题型设计要形式多样,注意对学生解题能力的培养和训练。
3、突出应用题的基本结构和“补条件”训练。
强化对应用题结构特征的认识和数量关系的理解,培养学生的定向思维能力。
(三)掌握各种数量关系。
简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:收入-支出=结余单价×数量=总价速度×时间=路程单产量×数量=总产量工效×时间=工作总量本金×利率×时间=利息三、基本训练A组1、填空。
(1)简单应用题必须有两个()和一个(),它们之间的关系可以归纳为()、()、()、()四种。
六年级数学上应用题讲解分数应用题在小学数学中非常重要,它不仅是考试中的重点,也是难点。
我们在解答此类型的难题时,必须先做好以下几个方面的准备。
1.具备整数应用题的解题能力。
2.学会画线段示意图。
3.学会多角度、多侧面思考问题。
一般分数应用题例1:某班女生的6/7,正好是男生的3/4,男生有24人,女生有多少人?分析:女生的6/7,正好是男生的3/4,反过来说,男生的3/4即是女生的6/7。
男生的3/4是24×3/4,即18人,18人是女生的6/7,要求女生的人数,就是已知女生人数的6/7是18人,求女生的人数用除法。
解:24×3/4÷6/7=24×3/4×7/6=21(人)答:女生有21人。
方法点睛:正确地判断“标准量”“比较量”以及比较量的对应分率。
例2:一根铜丝长10米,第一次剪去它的2/5,第二次减去3/10米,还剩下多少米?分析:注意2/5及3/10米的区别,2/5是分率,说明第一次减去全长10米的2/5,而第二次减去的长度是3/10米,也就是30厘米,所以,总长-第一次剪去的长度-第二次剪去的长度=还剩下的长度。
解:10×(1―2/5)-3/10=6-3/10=5(7/10)答:还剩下5(7/10)米。
方法点睛:注意2/5及3/10米的区别。
例3:菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?分析:可以从“收下全部的3/8时”着手,其余部分必然是1-3/8=5/8,总千克数的5/8是6筐,依据这个对应关系,总筐数就是6÷5/8=9(3/5)筐。
收下全部的3/8就是9(3/5)×3/8=3(3/5)筐。
解:其余部分是总千克数的几分之几:1-3/8=5/8。
西红柿总数共装了多少筐:6÷5/8=9(3/5)筐。
收下全部的3/8就是:9(3/5)×3/8=3(3/5)筐。
小学六年数学重点知识点解析与应用训练数学是小学生学习的一门基础学科,对培养逻辑思维能力和解决实际问题的能力非常重要。
小学六年级的数学内容相对较难,需要掌握一些重点知识点才能更好地应用于实际问题中。
本文将对小学六年数学的重点知识点进行解析,并结合实际应用进行训练。
1. 四则运算四则运算是数学的基础,小学六年级的重点是加减乘除的混合运算。
在解题过程中,可以灵活运用运算法则,例如先乘除后加减、先计算括号内的式子等。
下面是一个应用题的例子:例题:一班学生每人有3个糖果,二班学生每人有5个糖果,现在两个班共有多少个糖果?解析:首先计算出一班学生的总糖果数为1班学生数 ×每人糖果数= 1 × 3 = 3。
同理,计算出二班学生的总糖果数为2 × 5 = 10。
最后,将两个班级的总糖果数相加,即可得到答案为3 + 10 = 13。
2. 分数与小数在小学六年级,学生需要了解分数和小数的概念,并能够进行相互转化。
下面是一个题目的例子:例题:把分数改写成小数:3/4解析:将分子除以分母,即可得到小数形式。
计算过程为3 ÷ 4 =0.75,所以3/4的小数形式为0.75。
3. 时、分、秒的换算学生需要学会时、分、秒之间的换算关系。
比如,1小时等于60分钟,1分钟等于60秒。
下面是一个练习题:练习题:把180秒换算成分钟和小时。
解析:首先,把180秒换算成分钟,计算过程为180 ÷60 = 3分钟。
接下来,把3分钟换算成小时,计算过程为3 ÷ 60 = 0.05小时。
4. 面积与周长学生需要了解长方形、正方形和三角形的面积和周长的计算方法。
下面是一个练习题:练习题:计算一个边长为2cm的正方形的面积和周长。
解析:正方形的面积公式为边长 ×边长 = 2 × 2 = 4cm²,周长公式为边长 × 4 = 2 × 4 = 8cm。
类型一 分数乘除应用题【知识讲解】分数乘法解决问题(已知单位1的量,用乘法,即求单位1的几分之几是多少) 1.求一个数的几分之几是多少:用这个数乘几分之几2.求已知一个部分量是总量的几分之几,求另一部分量的方法: (1)单位1的量×(1-分率)=另一个部分量(2)单位1的量-已知占单位1的几分之几的部分量=要求的部分量分数除法解决问题(单位1的量未知,用除法,即已知单位1的几分之几是多少,求单位1的量)1.求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写成分数形式。
2.求一个数比另一个数多几分之几的方法:用两个数的相差量÷单位1的量=分数【典型例题】【例1】修一条3千米长的公路,第一次修了这条公路的65,第二次修了65千米。
[分析]:第一个65后面没有单位,说明它是表示两个数之间的关系,则根据求一个数的几分之几是多少,用乘法来求出第一天的工作量;第二个65后面有单位,说明这是第二天的工作量,则直接加上即可。
[答案]:3×65+65=313(千米) 答:两次共修313千米。
两次共修了多少千米?【巩固练习】1.一箱香蕉重201吨,15箱这样的香蕉重多少吨?2.一台拖拉机每小时耕地公顷,3台拖拉机14小时耕地多少公顷?3.一块地有公顷,它们各修了多少公顷?我修了这块地的。
我修了这块地的。
4.蜂鸟是目前世界上所发现的最小的鸟,它65分钟可以飞行41km 。
蜂鸟平均每分钟可以飞行多少千米?5.挖一条长千米的水渠,第一天挖了全长的,第一天挖了多少千米?还剩多少千米没挖?6.校园举行“八荣八耻”演讲比赛,获得一等奖人数占参赛总人数的,其中获一等奖的男生占一等奖总人数的,获得一等奖的男生人数占参赛人数的几分之几?7.六年级学生参加植树劳动,男生植了160棵,女生植的树比男生的43多5棵。
如果有352人参赛,那么获得一等奖的男生有多少人?女生植树多少棵?8.打吊针,瓶里有药水500毫升,已经输了100毫升,再输多少毫升正好输完这瓶药水的21?9.一个三角形的面积是1534 平方分米,它的高是517分米,这个三角形的底是多少分米?10.小华每天喝2杯这样的牛奶,他在整个九月份通过喝牛奶可以摄取钙质多少克?11.甲乙两地相距160千米,一辆汽车从甲地去乙地,43小时行了60千米,照这样的速度。
(最新人教版)六年级数学应用题分类训练50题(附答案)一、分数应用题训练1、一堆煤,用去它的12又6吨,还剩20%,这堆煤有多少吨?6÷(12-20%)=6÷0.3=20(吨)2、一本书100 页,第一次看了它的710 ,第二次看了余下的13 ,还剩多少页?100×(1-710 )×(1-13 )=100×310 ×23 =20(页)3、一条公路,修了全长的23 后,离中点16.5千米,这条公路全长多少千米?6.5÷(23 -12)=39(千米)4、师徒两人合做一批零件,徒弟做了总数的27 ,比师傅少做30个,这批零件有多少个?30÷(1-27 -27)=70(个)5、一批化肥,第一次运走总数的25 ,第二次运走总数的13 少12吨,这时仓库里还剩24袋,两次共运走多少吨?解:设两次共运走化肥x 吨 25 x +(13x -12)+24=xx=456、甲乙两地相距384千米,甲乙两车同时从两地相对开出,甲车每小时行36千米,比乙快 27 ,两车经过多少小时相遇?36÷(1+27 )=28(km/h ) 384÷(36+28)=6(时)7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的35 ,一条裤子多少元?解:设一条裤子x 元 (x +160)×35= xx=2408、饲养组有黑兔60只,白兔比黑兔多15,白兔有多少只?60×(1+15)=72(只)9、某队要挖一条长240米的下水道,第一天挖了全长的14 ,第二天挖了全长的13,还剩下多少米?240×(14 +13)=210(米) 240-210=30(米)10、工程队做一条公路,第一周做了全长的20%,第二周做了全长的41,两周共做了1800米。
这条公路全长多少米? 1800÷(20%+41)=2000(米)二、比的应用题训练2、一个是20米圆形空地的直径,中间是一个直径为6米的圆形花坛,其他地方是草坪。
小学六年级上册数学应用题分类复习训练1、农贸市场上午运来水果120箱,比下午运来的数量少2/5,下午运来多少箱?2、采取节水措施后,明明家11月份用水12吨,比10月份节约了20%,明明家10月份用水多少吨?3、小红要72张邮票,小华的邮票张数比小红少3/8,小华有多少张邮票?4、小明看一本故事书,第一天看了30页,比第二天少看2/5,第二天看多少页?5、书店卖出科技书150本,比卖出的卡通书多1/4,卖出了多少本卡通书?6、洗衣机厂今年生产洗衣机540台,比去年增产了12.5%,去年生产洗衣机多少台?7、一件商品原价是320元,现在提价了1/4,现在售价是多少?8、停车场停放小汽车80辆,停放的货车比小汽车少20%,停放的货车有多少辆?9、动车组的运行速度是240KM,磁悬浮列车比它快7/8,磁悬浮的速度是多少?10、学校图书室有科技书650本,故事书是它的1/5,故事片有多少本?11、甲厂职工人数是乙厂人数的7/12,乙厂有职工48人,甲厂有职工多少人?12、挖一条水渠,已经挖了2/3,正好是6KM,这科水渠全长多少KM?13、冰融化成水后,水的体积为冰的体积的10/11,现有一块冰,融化成水以后的体积为60立方分米,这块冰的体积是多少立方分米?14、宁波至上海的高速公路走杭州湾跨海大桥约是250KM,其中杭州湾跨海大桥的长度约占1/7,那么大桥的长度约是多少千米?15、希望小学有学生1200人,只有5%的学生没有参加意外事故保险,参加保险的学生多少人?16、一件棉袄原价560元,到了夏季比原价降低了1/5,夏季这种品牌的棉袄的价钱是多少元?17、青年旅行社在元旦期间推出优惠活动,原价2800元的海南游现在打85折,比原价便宜了多少钱?18、一份稿件,小张9小时才能打完,为了提前完成任务,她的工作效率提高了1/3,那么小张现在需多少小时可以完成任务?19、书店有一套科普书,原价96元,现按七折出售,买一套可以便宜多少元?如果买6套,360元够吗?20、一件衬衫原价是120元,现在8折出售,张阿姨带100截取去买它,够吗?21、为庆祝“六一”,新华书店开展图书优惠活动,所有少儿读物八折出售。
小学数学应用题知识概要与学法指导简单应用题一、知识概要简单应用题就是用一步计算的应用题。
它包括整数、小数应用题,还有分数、百分数应用题。
所有的简单应用题都有两个已知条件和一个问题,解答时无非是求题中两个已知条件的和、差、积、商。
简单应用题是一切应用题的基础,无论多么复杂的应用题都要通过一步一步的计算来解答,也就是都可以看作是若干个简单应用题组成的。
只有掌握了解答简单应用题的方法,才能更好地学习以后遇到的各类应用题。
解答简单应用题的关键是要根据题意,分析L2知条件和所求问题之间、L2知条件和L:知条件之间的关系,然后根据四则运算的意义具体分析应用题的事理,确定解答方法。
二、学法指导(一)掌握知识的重点和难点简单应用题复习的重点是让学生熟悉地掌握应用题的结构,即:具有两个已知条件和一个问题。
培养学生解决简单应用题的能力。
简单应用题复习的难点是帮助学生会分析数量关系,会用数学知识即四则运算的意义分析应用题中所反应的生活事理,并能叙述思考过程。
(二)应注意的几个问题。
1、应用题选材要注意联系学生的生活实际,呈现形式多样化,培养学生用数学知识和方法解决问题的意识。
2、题型设计要形式多样,注意对学生解题能力的培养和训练。
3、突出应用题的基本结构和“补条件”训练。
强化对应用题结构特征的认识和数量关系的理解,培养学生的定向思维能力。
(三)掌握各种数量关系。
简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:收入一支出=结余单价X数量=总价速度X时间=路程单产量X数量=总产量工效X时间=工作总量本金X利率X时间=利息三、基本训练A组1、填空。
(1)简单应用题必须有两个()和一个(),它们之间的关系可以归纳为()、()、()、()四种。
(2)已知一辆汽车行驶的速度和时间,可以求出(),要想求这辆汽车行驶的速度必须知道()和()O(3)要计算在银行存款的利息,已知本金是多少,还要知道()和()。
分数应用题归类讲解及练习【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵树是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5-条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
{1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量!2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
人教版六年级数学小升初应用题分类专题复习及训练小学数学总复习归类讲解及训练(一)主要内容求一个数比另一个数多(少)百分之几、纳税问题考点分析1、一个数比另一个数多(少)百分之几= 一个数比另一个数多(少)的量÷另一个数。
2、应该缴纳的税款叫做应纳税额,应纳税额与各种收入的比率叫做税率,应纳税额= 收入×税率典型例题例1、(解决“求一个数比另一个数多百分之几”的实际问题)向阳客车厂原计划生产客车5000辆,实际生产5500辆。
实际比计划多生产百分之几?分析与解:要求“实际比计划多生产百分之几”,就是求实际比计划多生产的辆数占计划产量的百分之几,把原计划产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量5000辆实际比计划多的实际产量5500辆解答:方法1:5500 –5000 = 500(辆)……实际比计划多生产500辆500 ÷5000 = 0.1 = 10%……实际比计划多生产百分之几方法2:5500 ÷5000 = 110%……实际产量相当于原计划的110%110%- 100%= 10%……实际比计划多生产百分之几答:实际比计划多生产10%。
例2、(解决“求一个数比另一个数少百分之几”的实际问题)分析与解:要求“计划比实际少生产百分之几”,就是求计划比实际少生产的辆数占实际产量的百分之几,把实际产量看作单位“1”。
两者之间的关系可用线段图表示。
计划产量5000辆计划比实际少的实际产量5500辆解答:方法1: 5500 – 5000 = 500(辆) …… 计划比实际少生产500辆500 ÷ 5500 ≈ 9.1% …… 计划比实际少生产百分之几方法2: 5500 ÷ 5500 ≈ 90.9% …… 计划产量相当于实际的90.9%100% - 90.9% ≈ 9.1% …… 计划比实际少生产百分之几答:计划比实际少生产9.1%。
小学数学应用题知识概要与学法指导简单应用题一、知识概要简单应用题就是用一步计算的应用题。
它包括整数、小数应用题,还有分数、百分数应用题。
所有的简单应用题都有两个已知条件和一个问题,解答时无非是求题中两个已知条件的和、差、积、商。
简单应用题是一切应用题的基础,无论多么复杂的应用题都要通过一步一步的计算来解答,也就是都可以看作是若干个简单应用题组成的。
只有掌握了解答简单应用题的方法,才能更好地学习以后遇到的各类应用题。
解答简单应用题的关键是要根据题意,分析已知条件和所求问题之间、已知条件和已知条件之间的关系,然后根据四则运算的意义具体分析应用题的事理,确定解答方法。
二、学法指导(一)掌握知识的重点和难点简单应用题复习的重点是让学生熟悉地掌握应用题的结构,即:具有两个已知条件和一个问题。
培养学生解决简单应用题的能力。
简单应用题复习的难点是帮助学生会分析数量关系,会用数学知识即四则运算的意义分析应用题中所反应的生活事理,并能叙述思考过程。
(二)应注意的几个问题。
1、应用题选材要注意联系学生的生活实际,呈现形式多样化,培养学生用数学知识和方法解决问题的意识。
2、题型设计要形式多样,注意对学生解题能力的培养和训练。
3、突出应用题的基本结构和“补条件”训练。
强化对应用题结构特征的认识和数量关系的理解,培养学生的定向思维能力。
(三)掌握各种数量关系。
简单应用题所涉及的数量关系除了和、差、积、商以外,还包括以下常见的数量关系:收入-支出=结余单价×数量=总价速度×时间=路程单产量×数量=总产量工效×时间=工作总量本金×利率×时间=利息三、基本训练A组1、填空。
(1)简单应用题必须有两个()和一个(),它们之间的关系可以归纳为()、()、()、()四种。
(2)已知一辆汽车行驶的速度和时间,可以求出(),要想求这辆汽车行驶的速度必须知道()和()。
(3)要计算在银行存款的利息,已知本金是多少,还要知道()和()。
(4)知道核桃树的棵树和收核桃的千克数,求每棵核桃树的产量,是求()的题目。
(5)已知3只奶羊一年可产奶2340千克,可以求出()。
2、解答下列应用题。
(1)一条绳子长35米,用去 14.75 米,还剩多少米?(2)一辆汽车0.5小时行驶25千米,1小时行驶多少千米?(3)运送一批货物,已运走了2/5 ,还剩几分之几?(4)某班有学生50人,今天的出勤率是96%,今天出勤的有多少人?(5)果园里有桃树85棵,梨树的棵数正好是桃树的4倍。
梨树有多少棵?(6)一条水渠总长1200米,已经修了450米,再修多少米就可以完工了?(7)学校买回18个小足球,共用去1890元,每个小足球多少元?(8)在六一班50个学生中,有48个同学参加了各种“兴趣小组”活动。
参加“兴趣小组”活动的占全班人数的百分之几?(9)工程队修一段公路,已经修了8.4千米,正好占全长的80%,这段公路全长多少千米?B组1、按要求填空。
一种服装,原价每套85元,现价是原价的4/5,现在每套多少元?分析:(1)已知条件是()、(),所求问题是()。
(2)已知这种服装原价85元,现价是原价的 4/5 ,求现价是多少元,就是求()的 4/5 是多少。
(3)求一个数的几分之几是多少用()法计算。
2、要求下列问题需要知道哪两个条件。
(1)六一班一共有学生多少人?(2)六一班男生比女生多多少人?(3)果园里桃树比梨树少多少棵?(4)五年级平均每人为灾区捐款多少元?(5)汽车平均每小时行驶多少千米?(6)合唱队人数是舞蹈队人数的多少倍?(7)五年级捐款数是六年级捐款数的几分之几?(8)剩下的书还需要多少小时能装订完?(9)小明几分可以从家走到学校?(10)这堆煤实际烧了多少天?3、根据下面各题的条件,把有关的数量关系补充完整。
(1)学校舞蹈队人数是合唱队人数的2/5。
()÷()=2/5()○()=舞蹈队人数()○ ()=合唱队人数(2)实际完成了计划的125%。
()÷()=125%()○125%=实际产量()○125%=计划产量4、某小学计划为“希望工程”捐款700元,实际捐款840元。
实际捐款是计划的百分之几?C组1、补充条件再解答。
(1)苹果比梨少15千克,,梨有多少千克?(2)一批货物,用去 4.5 吨,,这批货物原有多少吨?(3)五一班男生人数是女生人数的3/5,,男生有多少人?(4)鸡是鸭的2/3,,鸡有多少只?(5)在“文明礼貌月”活动中,五年级做好事75件,,两个年级一共做好事多少件?2、(1)一台挖土机每小时挖土60吨,8小时可以挖多少吨?(2)把这道题改编成求工作时间的应用题。
复合应用题一、知识概要复合应用题是需要两步或者两步以上计算才能得到答案的应用题。
复合应用题都是由几个简单应用题组合而成的,或者说是在简单应用题的基础上扩展起来的。
这部分内容是学生学习中的重点和难点。
复合应用题要求能在口述解题思路的基础上,掌握解应用题的一般步骤,会列综合算式解答两三步计算的应用题,并培养学生检查解答过程是否正确的良好学习习惯。
二、学法指导(一)掌握知识的重点和难点复合应用题的重点是使学生弄清题目中的数量关系,由于它的已知条件增多,数量关系较复杂,教学中要帮助学生分析已知条件与已知条件之间、已知条件和所求问题之间的关系;难点则是正确分析题中的数量关系,确定解题步骤。
(二)复习中应注意的问题1、训练学生口头分析复合应用题的数量关系,加强分析能力的培养。
2、会分步列式解答两、三步计算的复合应用题。
要着重使学生弄清解答每一个问题必须要具备哪两个条件.3、会列综合算式解答两、三步计算的应用题(四步计算的应用题为选学内容)。
在掌握分步解答的基础上引导学生过渡到用一个综合算式解答(但不必作统一要求)。
4、理清思路,重点指导寻找“中间问题”的思考方法。
5、培养学生自觉检验的习惯。
6、改进复习方法,引导学生主动参与复习过程,注重训练问题解决的策略。
例、习题的设计应具有针对性和典型性,突出基础,突出复习重点,渗透思想方法。
(三)掌握解答应用题的一般步骤。
1、弄清题意,并找出已知条件和所求问题;2、分析题里数量间的关系,确定先算什么,再算什么……最后算什么;3、确定每一步该怎样算,列出算式,算出得数;4、进行检验,写出答案。
三、基础训练A组1、按要求填空。
学校买来彩色粉笔35盒,买来的白粉笔比彩色粉笔多45盒,一共买粉笔多少盒?(1)从问题出发进行思考:要求一共买来粉笔多少盒,必须知道()和( ),题中()粉笔的盒数没有直接给出,必须先求来。
第一步:先算第二步:再算(2)从已知条件出发进行思考:已知“买来彩色粉笔35盒,买来的白粉笔比彩色粉笔多45盒”,可以知道(),用()的盒数加上()的盒数,就可以求出一共买粉笔多少盒。
2、解答下列应用题。
(1)昌盛农场要收割小麦16.4公顷,已经收割了3天,每天收割1.8公顷。
如果从第四天起,每天收割2.2公顷,那么剩下的小麦还需多少天收割完?(2)食堂运来120吨煤,已经烧了40天,每天烧1.2吨,余下的要30天烧完,平均每天烧多少吨?(3)某班存放科技书150本,故事书比科技书的2倍少50本,故事书有多少本?(4)5台粉碎机3小时可粉碎饲料37.5吨。
照这样计算,12台同样的粉碎机每小时可粉碎饲料多少吨?(5)甲乙两汽车从相距600千米的两城市相对开出,甲汽车每小时行65千米,乙汽车每小时行55千米,两车开出几小时后相遇?(6)甲、乙两艘军舰,从两个港口对开,甲舰每小时行42千米,乙舰每小时行38千米。
乙舰开出1小时后,甲舰才开出。
再经过4小时两舰相遇。
两个港口相距多少千米?(7)张明家原来每月用水28吨,使用节水龙头后,原来一年用的水,现在可以多用2个月。
现在每个月用水多少吨?(8)有一桶油,已经用去了全部的2/5,桶里还剩48千克。
这桶油重多少千克?(9)某工厂四月份烧煤120吨,比三月份节约了1/9,三月份烧煤多少吨?(10)同学们积极为“希望工程”献爱心,六一班捐款96元,六二班比六一班多捐了4元,多捐了百分之几?(11)建筑工地有水泥45吨,第一次用去总吨数的1/5,第二次用去总数的1/3。
两次共用去多少吨?(12)某园林厂去年载树4500棵,今年计划比去年多载20%,今年计划载树多少棵?(13)一项工程,实际投资510万元,比计划节约15%,计划投资多少万元?(14)实验小学六二中对少先队员植树80棵,死了2棵,求植树的成活率。
(15)张阿姨购买了三年期的国库券5000元,年利率是3.85%,三年后可得利息多少元?(16)李老师今年教师节把2000元存入银行,存定期两年,年利率是2.43%,到期时他应得本金和利息一共多少元?扣除利息税20%,他实得本金和利息一共多少元?B组1、下面的列式哪一个是正确的。
(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?①2100-240×5÷3②(2400-240)÷3③(2100-240×5)÷3(2)一个装订小组要装订2640本书,3小时装订了240本。
照这样计算,剩下的书还需要多少小时能装订完?①(2640-240)÷240②2640÷(240÷3)③(2640-240)÷(240÷3)(3)一个机耕队用拖拉机耕6.8公顷棉田,用了4天。
照这样计算,再耕13.6公顷棉田,一共要用多少天?①13.6÷(6.8÷4)②13.6÷(6.8÷4)+4③(13.6+6.8)÷(6.8÷4)(4)一个筑路队铺一段铁路,原计划每天铺3.2千米,15天铺完。
实际每天比原计划多铺0.8千米,实际多少天就铺完了这段铁路?①3.2×15÷0.8②3.2×15÷(3.2-0.8)③3.2×15÷(3.2+0.8)(5)某化工厂采用新技术后,每天用原料14吨。
这样,原来7天用的原料,现在可以用10天。
这个厂现在比过去每天节约多少吨原料?①14×7÷10-14 ②14×10÷7-14③14-14×10÷7 ④14-14×7÷102、解答下列应用题。
(1)王师傅原计划每天生产28辆玩具车,15天完成。
实际每天比原计划多生产2辆玩具车,实际几天完成任务?(2)黄河号货轮从甲港开往乙港,已经航行了85千米,正好航行了甲乙两港航道的5/7。