一元二次不等式教学设计
- 格式:pptx
- 大小:3.03 MB
- 文档页数:19
数学《一元二次不等式》教学设计(优秀3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!数学《一元二次不等式》教学设计(优秀3篇)作为一名无私奉献的老师,时常会需要准备好教案,教案有利于教学水平的提高,有助于教研活动的开展。
《一元二次不等式》教学设计方案(第一课时)一、教学目标1. 掌握一元二次不等式的解法。
2. 能够运用一元二次不等式解决实际问题。
3. 培养数学思维能力和解决问题的能力。
二、教学重难点1. 教学重点:掌握一元二次不等式的解法。
2. 教学难点:理解一元二次不等式的几何意义及其应用。
三、教学准备1. 准备教学用具:黑板、粉笔、几何图形等。
2. 准备教学资料:准备相关例题和练习题,以便学生巩固所学知识。
3. 制定教学计划:根据教学内容和学生实际情况,制定详细的教学计划,合理安排课时和教学内容。
4. 备课过程中,注重启发式教学,引导学生思考,培养其数学思维能力。
四、教学过程:本节教学内容主要包括讲授一元二次不等式的概念,设计解一元二次不等式的基本步骤,以及对相关知识点进行举例分析。
1. 导入新课(约5分钟)向学生展示一元二次函数图象,并通过具体问题引导学生理解不等式与函数之间的关系。
提出“一元二次不等式”这一概念,让学生对即将学习的内容有初步认识。
2. 讲授新课(约30分钟)(1)概念讲解:引导学生逐步理解一元二次不等式的概念,明确其定义、特点以及适用范围。
通过举例和对比,让学生加深对一元二次不等式的认识。
(2)解一元二次不等式:结合具体实例,向学生介绍解一元二次不等式的步骤,并针对每个步骤进行详细说明。
通过实例演示,帮助学生掌握解一元二次不等式的方法。
(3)知识点举例分析:通过具体案例,引导学生运用所学知识解决实际问题,加深对一元二次不等式应用的理解。
同时,通过分析错误解法,帮助学生纠正错误理解,提高解题能力。
3. 课堂练习(约15分钟)为学生提供适量的一元二次不等式练习题,让学生进行课堂练习。
教师针对学生的解题过程和结果进行点评,帮助学生巩固所学知识。
4. 总结归纳(约5分钟)对本节课的主要内容进行总结,强调一元二次不等式的概念、解法及应用。
引导学生回顾所学知识点,帮助学生形成完整的知识体系。
5. 布置作业(约2分钟)根据本节课的教学目标,为学生布置适量的课后作业,以巩固所学知识,并鼓励学生在日常生活中尝试运用一元二次不等式解决问题。
一元二次不等式教案一元二次不等式教案5篇作为一名优秀的教育工作者,总不可避免地需要编写教案,借助教案可以更好地组织教学活动。
那么教案应该怎么写才合适呢?以下是小编整理的一元二次不等式教案,仅供参考,希望能够帮助到大家。
一元二次不等式教案1教学内容3.2一元二次不等式及其解法三维目标一、知识与技能1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;3.会用列表法,进一步用数轴标根法求解分式及高次不等式;4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.二、过程与方法1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;2.发挥学生的主体作用,作好探究性教学;3.理论联系实际,激发学生的学习积极性.三、情感态度与价值观1.进一步提高学生的运算能力和思维能力;2.培养学生分析问题和解决问题的能力;3.强化学生应用转化的数学思想和分类讨论的数学思想.教学重点1.从实际问题中抽象出一元二次不等式模型.2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.教学难点1.深入理解二次函数、一元二次方程与一元二次不等式的关系.教学方法启发、探究式教学教学过程复习引入师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。
回顾下等比数列的性质。
生:略师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。
数学《一元二次不等式》教学设计(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!数学《一元二次不等式》教学设计(优秀4篇)作为一名教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。
3.2 一元二次不等式及其解法(1)【教学目标】1.知识与技能: 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力;2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.【教学重、难点】重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法.难点:理解二次函数、一元二次方程与一元二次不等式解集的关系.【教学过程】从实际情境中抽象出一元二次不等式模型:课本P76互联网的收费问题教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:(1)一元二次不等式的定义只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.(2)二次函数,一元二次方程,一元二次不等式的关系。
二次函数2=++y ax bx ca>的图象(0)一元二次方程20++=ax bx c20++>ax bx ca>的解集(0)20++<ax bx ca>的解集(0)例1:如何求一元二次不等式x2-7x+6 >0的解集?例2.解不等式4x2-4x+1 > 0例3.求-x2 +2x -3>0的解集变式训练1:求不等式x2-7x+6 <0的解集变式训练2.求4x2-4x+1 <0的解集变式训练3.求-x2 +2x -3<0的解集1.求不等式x2-9 <0的解集2.求不等式x2-2x+3 > 0的解集3.求不等式-x2+4x-3 <0的解集4.求不等式--2x2+12x-18 0的解集≥(1)你学会了什么知识?(2)你收获了哪些学习方法?(3)还有哪些疑问?分层 A.书习题3.2 1,2B.三导 8,9一.定义二.例题。
课题: 2.2.4 一元二次不等式(教学设计)【教学目标】1.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。
2.通过函数图象了解一元二次不等式与相应函数、方程的联系,会解一元二次不等式。
3.通过求解一元二次不等式培养学生的数形结合的数学思想.【教学重点】一元二次不等式的解法【教学难点】理解二次函数、一元二次方程与一元二次不等式解集的关系。
【教学过程】一、复习引入一次函数、一元一次方程、一元一次不等式之间的关系,通过观察一次函数的图像求得一元一次不等式的解集.思考:对一次函数y=2x-6,当x为何值时,y=0,即2x-6=0?当x为何值时,y<0 ,即2x-6<0?当x为何值时,y>0,即2x-6>0?二、形成概念方程的解即函数图象与x轴交点的横坐标,不等式的解集即函数图象在x轴下方或上方图象所对应x 的范围.我们能不能将一元二次不等式的求解与一元二次函数以及一元二次方程联系起来找到其求解方法呢?试一试:解不等式 x2-2x-3>0作出y=x2-2x-3的图像我们通过二次函数y=x2-2x-3的图像不仅求得了的x2-2x-3>0解集,还求得了的x2-2x-3<0解集.可见利用二次函数的图像来解一元二次不等式是个有效的方法.如果相应的一元二次方程分别有两个实根、唯一实根、无实根的话,其相应的二次函数的图像与轴的位置关系如何?请观察表中的二次函数的图像,并写出相应的一元二次不等式的解集.这张表是我们今后求解一元二次不等式的主要工具,必须熟练掌握,其关键是抓住相应的二次函数的图像。
记忆口诀:(a>0且△>0) 大于0取两边,小于0取中间共同总结解一元二次不等式的步骤:①把二次项系数化为正数;②解对应的一元二次方程;③根据方程的根,结合不等号方向及二次函数图象;④得出不等式的解集.三、例题讲解例1:解不等式2x2-3x-2>0例2:解不等式 4x2-4x+1 > 0四、巩固练习解下列不等式:(1)3x2-7x+2<0 (2)-6x2-x+2≤0(3)4x2+4x+1<0 (4)x2-3x+5>0五、小结1.一元二次不等式的解集与一元二次方程的解及其相应的二次函数的图像相对于x轴的位置密切相关.解题时要注意解题格式,头脑中要想象图像或划出草图.2.对于a<0的一元二次不等式可转化为a>0的情形求解.3.一元二次不等式的解法是今后学习其他不等式的基础,要求大家熟练掌握解法,准确运算结果.六、作业书面作业:习题2.2.4。
《2.2.3 一元二次不等式的解法》教学设计2.2.3一元二次不等式的解法教学设计一、教材分析1、地位与作用一元二次不等式的解法在高中数学中具有重要地位。
它是在学习了一元一次不等式、一元二次方程和二次函数的基础上进行的,是对前面知识的深化和综合运用。
同时,一元二次不等式在解决实际生活中的优化问题、函数定义域、值域等问题中有着广泛的应用,是进一步学习数学和其他学科的重要工具。
在高考中,一元二次不等式的解法常常与函数、数列、解析几何等知识相结合进行考查,是考生必须掌握的基础知识。
2、教材内容教材首先通过实例引出一元二次不等式的概念,然后利用二次函数的图象来探究一元二次不等式与二次函数、一元二次方程之间的关系,从而得出一元二次不等式的解法。
二、学情分析1、已有知识基础学生已经学习了一元一次不等式的解法,对于不等式的基本性质和求解不等式的基本步骤有了一定的了解。
学生也已经掌握了一元二次方程的解法,包括求根公式、因式分解法等,并且对二次函数的图象和性质有了初步的认识,如二次函数的开口方向、对称轴、顶点坐标等。
2、学习能力大部分学生具备一定的逻辑推理能力和运算能力,但在将知识进行综合运用方面可能存在不足。
例如,将二次函数的图象特征与一元二次不等式的解集联系起来,对于一些学生来说可能是一个难点。
3、兴趣爱好和学习风格学生对于与实际生活相关的数学问题比较感兴趣,如在生活中如何通过一元二次不等式来解决利润最大化、资源最优化等问题。
在学习风格上,有些学生更倾向于直观的图象学习,而有些学生则擅长通过公式和计算来理解知识。
三、教学目标1、知识与技能学生能够理解一元二次不等式的概念,会将一元二次不等式转化为标准形式。
掌握一元二次不等式的解法,能够熟练运用二次函数的图象求解一元二次不等式。
能将一元二次不等式的解法应用于解决简单的实际问题。
2、过程与方法通过探究一元二次不等式与二次函数、一元二次方程之间的关系,培养学生的观察能力、分析能力和逻辑思维能力。
教学设计人教版数学八年级下册《一元二次不等式解法》一. 教材分析人教版数学八年级下册《一元二次不等式解法》是本册教材的重要内容,它是在学生学习了多项式、有理数、函数等知识的基础上进行学习的。
本节课的主要内容是一元二次不等式的概念、性质、解法以及应用。
通过本节课的学习,使学生掌握一元二次不等式的解法,提高他们解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一定的数学基础,如代数知识、有理数、函数等。
但部分学生对这些知识的掌握程度不够扎实,对一些概念、性质的理解还不够深入。
此外,学生对于解不等式的方法还不太熟悉,需要在本节课中进行进一步的巩固和提高。
三. 教学目标1.知识与技能目标:使学生掌握一元二次不等式的概念、性质、解法以及应用;2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力;3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:一元二次不等式的概念、性质、解法以及应用;2.难点:一元二次不等式的解法以及如何在实际问题中应用。
五. 教学方法采用自主学习、合作交流、启发引导的教学方法。
在教学过程中,充分发挥学生的主体作用,引导学生积极思考、探索,培养他们的创新精神和实践能力。
六. 教学准备1.准备相关教学PPT、教案、练习题等;2.准备黑板、粉笔等教学工具;3.提前让学生预习相关内容,了解一元二次不等式的基本概念。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾之前学过的一元二次方程、不等式的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示一元二次不等式的定义、性质,让学生初步了解一元二次不等式的基本概念。
3.操练(10分钟)教师给出一些简单的一元二次不等式,让学生在课堂上进行解答,巩固所学知识。
4.巩固(10分钟)教师通过PPT展示一些典型的一元二次不等式题目,引导学生运用所学知识进行解答,提高他们的解题能力。
第一篇:一元二次不等式及其解法_教学设计《一元二次不等式及其解法(第1课时)》教学设计梁晓凤一内容分析本节课内容的地位体现在它的基础性,作用体现在它的工具性。
一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。
许多问题的解决都会借助一元二次不等式的解法。
因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
二学情分析学生已经掌握了高中所学的基本初等函数的图象及其性质, 能利用函数的图象及其性质解决一些问题。
学生知道不等关系, 掌握了不等式的性质, 通过这部分内容的学习, 学生将学会利用二次函数的图象, 通过数形结合的思想, 掌握一元二次不等式的解法。
三教学目标1. 知识与技能目标: (1)熟练应用二次函数图象解一元二次不等式的方法(2)了解一元二次不等式与相应函数, 方程的联系2. 过程与方法: (1)通过学生已学过的一元一次不等式为例引入一元二次不等式的有关概及解法(2)让学生观察二次函数,在此基础上, 找到一元二次不等式的解法并掌握此解法(3)在学生寻找一元二次不等式的过中程中培养学生数形结合的数学思想3. 情感与价值目标: (1)通过新旧知识的联系获取新知,使学生体会温故而知新的道理(2)通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。
(3)在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
四教学重点、难点1. 重点一元二次不等式的解法2. 难点理解二次函数、二次方程与一元二次不等式解集的关系五教学方法启发式教学法,讨论法,讲授法六教学过程1. 创设情景,提出问题(约10分钟)情景一:师:在初中,我们解过一元一次不等式,如解不等式x –1 > 0,现在请同学们先画出函数y = x –1 的图象,并通过观察图象回答以下问题: 1)x 为何值时,y = 0; 2)x 为何值时,y > 0; 3)x 为何值时,y < 0; 4)一元一次方程x –1 = 0的根能从函数y = x –1上看出来吗?5)一元一次不等式x –1 > 0的解集能从函数y = x –1上看出来吗?学生画图,思考。