一元二次不等式的解集与一元二次方程的根以及
- 格式:ppt
- 大小:446.50 KB
- 文档页数:22
初中数学知识归纳一元二次不等式与解法初中数学知识归纳:一元二次不等式与解法一、引言初中数学学科中,一元二次不等式是一个重要的内容。
在解决实际问题和数学推理中,一元二次不等式经常被应用。
本文将对一元二次不等式的定义、性质以及解法进行详细的归纳与总结。
二、一元二次不等式的定义与性质一元二次不等式指的是包含未知数的平方项的不等式,其一般形式为:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0其中,a、b、c为已知实数,且a ≠ 0。
1. 定义一元二次不等式是基于一元二次方程和不等式的概念而产生的。
不等式中的未知数仍然是x,与一元二次方程相同。
2. 性质(1)二次函数性质:一元二次不等式与一元二次方程在性质上有很多相似之处,其中关键是利用二次函数的凹凸性质进行分析。
(2)符号问题:处理不等式时需要确定不等号的方向,区别于一元二次方程需要使用等号。
三、解一元二次不等式的常用方法一元二次不等式的解法有两种常用的方法:图像法和区间法。
1. 图像法图像法基于二次函数的图像和不等式的定义,通过对二次函数图像的观察,从几何直觉的角度得出不等式的解集。
2. 区间法区间法利用了二次函数在不等式中的凹凸性质。
通过求解一元二次不等式的判别式和二次函数的极值点,将定义域划分成若干个区间,进而判定不等式的解集。
四、具体解题步骤与示例以下是一元二次不等式解题的一般步骤:1. 对齐系数,将不等式变形成标准形式(ax^2 + bx + c >0 或 ax^2 + bx + c <0)。
2. 利用图像法或区间法进行解题。
3. 在解集中找出满足题意的解。
解题示例:例题1:解不等式 x^2 + 6x > 0解答过程如下:1. 对齐系数,得到: x^2 + 6x > 02. 根据二次函数的性质,当 a > 0 时,二次函数开口向上,函数图像位于x轴上方。
因此,解集是实数集 R。
3. 综上所述,不等式 x^2 + 6x > 0 的解集为实数集 R。
1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。
1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。
当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。
2.1.2 一元二次方程的解集及其根与系数的关系考点 学习目标核心素养一元二次方 程根的判断 理解判别式Δ的值与一元二次方程根的个数之间的关系,并会应用数学运算一元二次方程根 与系数的关系会利用一元二次方程根与系数的关系进行计算求值及求参数的取值范围数学运算问题导学预习教材P47-P50的内容,思考以下问题:1.如何通过判别式Δ判定一元二次方程ax 2+bx +c =0(a ≠0)解的情况?2.一元二次方程的根与系数有什么关系? 1.一元二次方程的解集一般地,Δ=b 2-4ac 称为一元二次方程ax 2+bx +c =0(a ≠0)的判别式.(1)当Δ>0时,方程的解集为{-b +b 2-4ac 2a ,-b -b 2-4ac2a};(2)当Δ=0时,方程的解集为⎩⎨⎧⎭⎬-b 2a ;(3)当Δ<0时,方程的解集为∅. 2.一元二次方程根与系数的关系若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两个根,则x 1+x 2=-b a ,x 1x 2=ca.■名师点拨 应用一元二次方程的根与系数的关系时,常有以下变形: ①(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1;②x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2; ③|x 1-x 2|=(x 1+x 2)2-4x 1x 2.判断正误(正确的打“√”,错误的打“×”)(1)若一元二次方程ax 2+bx +c =0(a ≠0)有两个不等实数根,则b 2-4ac >0.( )(2)一元二次方程x 2+ax +a -1=0有实数根.( ) 答案:(1)√ (2)√下列一元二次方程中,有两个不相等的实数根的方程是( )A .x 2+1=0 B .x 2-2x +1=0 C .x 2+2x +4=0 D .x 2-x -3=0答案:D若关于x 的一元二次方程x 2+4x +k =0有实数根,则k 的取值范围是________.解析:因为一元二次方程x 2+4x +k =0有实数根, 所以Δ=16-4k ≥0,即k ≤4. 答案:(-∞,4]已知一元二次方程x 2-2x -1=0的两根分别为x 1,x 2,则1x 1+1x 2=________.解析:因为x 1,x 2是方程x 2-2x -1=0的根, 所以x 1+x 2=2,x 1x 2=-1,所以1x 1+1x 2=x 1+x 2x 1x 2=-2.答案:-2方程根个数的判断及应用已知关于x 的一元二次方程3x 2-2x +k =0,根据下列条件,分别求出k 的范围.(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根; (3)方程有实数根; (4)方程无实数根.【解】 Δ=(-2)2-4×3k =4(1-3k ). (1)因为方程有两个不相等的实数根, 所以Δ>0,即4(1-3k )>0, 所以k <13.(2)因为方程有两个相等的实数根, 所以Δ=0,即4(1-3k )=0,所以k =13.(3)因为方程有实根,所以Δ≥0,即4(1-3k )≥0, 所以k ≤13.(4)因为方程无实根,所以Δ<0,即4(1-3k )<0,所以k >13.对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2=-b ±b 2-4ac2a;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-b2a;(3)当Δ<0时,方程没有实数根.1.不解方程,判断下列方程的实数根的个数. (1)2x 2-3x +1=0; (2)4y 2+9=12y ; (3)5(x 2+3)-6x =0.解:(1)因为Δ=(-3)2-4×2×1=1>0, 所以原方程有两个不相等的实数根. (2)原方程可化为4y 2-12y +9=0,因为Δ=(-12)2-4×4×9=0, 所以原方程有两个相等的实数根. (3)原方程可化为5x 2-6x +15=0, 因为Δ=(-6)2-4×5×15=-264<0, 所以原方程没有实数根.2.已知方程x 2+kx +1=0(k >0)有实数根,求函数y =k 2+2k -1的取值范围.解:Δ=b 2-4ac =k 2-4≥0,k ≥2(因为k >0),y =k 2+2k -1,k ∈[2,+∞),因为对称轴k =-1,又因为a =1>0,所以当k ∈[2,+∞)时且k 越来越大时y 也越来越大, 所以当k =2时,y min =4+4-1=7,所以y ≥7.注:k ∈[2,+∞)就是k 可取得大于等于2的一切实数. 直接应用根与系数的关系进行计算若x 1,x 2是方程x 2+2x -2 007=0的两个根, 试求下列各式的值: (1)x 21+x 22; (2)1x 1+1x 2;(3)(x 1-5)(x 2-5); (4)|x 1-x 2|.【解】 x 1+x 2=-2,x 1x 2=-2 007,(1)x 21+x 22=(x 1+x 2)2-2x 1x 2=(-2)2-2×(-2 007)=4 018.(2)1x 1+1x 2=x 1+x 2x 1x 2=-2-2 007=22 007.(3)(x 1-5)(x 2-5)=x 1x 2-5(x 1+x 2)+25=-2 007-5×(-2)+25=-1 972.(4)|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4+4×2 007=8 032=4502.在求含有一元二次方程两根的代数式的值时,利用根与系数的关系解题可起到化难为易、化繁为简的作用.在计算时,要先根据原方程求出两根之和与两根之积,再将代数式变形为局部含有两根之和与两根之积的形式,然后代入求值.1.已知x 1,x 2是方程x 2+6x +3=0的两个实数根,求x 2x 1+x 1x 2的值.解:由题知,Δ>0,x 1+x 2=-6,x 1x 2=3,所以x 2x 1+x 1x 2=x 21+x 22x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10.2.设a ,b 是方程x 2+x -2 019=0的两个实数根,求a 2+2a +b 的值.解:由题知,Δ>0,a +b =-1,a 2+a -2 019=0, 所以a 2+2a +b =(a 2+a )+(a +b )=2 019-1=2 018. 应用根与系数的关系求字母系数的值或范围已知关于x 的方程x 2-(k +1)x +14k 2+1=0,根据下列条件,求出k 的值.(1)方程两实根的积为5;(2)方程的两实根x 1,x 2,满足|x 1|=x 2. 【解】 Δ=[-(k +1)]2-4×⎝ ⎛⎭⎪⎫14k 2+1=2k -3,Δ≥0,k ≥32.(1)设方程的两个根为x 1,x 2,x 1x 2=14k 2+1=5,k 2=16,k =4或k =-4(舍).(2)①若x 1≥0,则x 1=x 2,Δ=0,k =32.方程为x 2-52x +2516=0,x 1=x 2=54>0满足.②若x 1<0,则x 1+x 2=0,即k +1=0,k =-1. 方程为x 2+54=0,而方程无解,所以k ≠-1,所以k =32.利用一元二次方程根与系数的关系求待定字母的值时,务必注意根与系数的关系的应用前提条件,即Δ≥0.1.已知关于x 的一元二次方程x 2-(2k -1)x +k 2+k -1=0有实数根.(1)求k 的取值范围;(2)若此方程的两个实数根x 1,x 2满足x 21+x 22=11,求k 的值. 解:(1)因为关于x 的一元二次方程x 2-(2k -1)x +k 2+k -1=0有实数根.所以Δ≥0,即[-(2k -1)]2-4×1×(k 2+k -1)=-8k +5≥0, 解得k ≤58.(2)由题知x 1+x 2=2k -1,x 1x 2=k 2+k -1,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(2k -1)2-2(k 2+k -1)=2k 2-6k +3.因为x 21+x 22=11,所以2k 2-6k +3=11, 解得k =4或k =-1, 因为k ≤58,所以k =-1.2.已知关于x 的方程x 2-tx +2-t =0,根据下列条件,求出实数t 的取值范围.(1)两个根都大于1;(2)一个根大于1,另一个根小于1.解:设方程的两个根为x 1,x 2,(1)⎩⎪⎨⎪⎧Δ≥0x 1>1x 2>1⇒⎩⎪⎨⎪⎧Δ≥0(x 1-1)+(x 2-1)>0(x 1-1)(x 2-1)>0⇒⎩⎪⎨⎪⎧t 2+4t -8≥0t >2t <32无解.所以不存在实数t ,使得方程的两个根都大于1.(2)⎩⎪⎨⎪⎧Δ>0x 1>1x 2<1⇒⎩⎪⎨⎪⎧Δ>0(x 1-1)(x 2-1)<0⇒⎩⎪⎨⎪⎧t 2+4t -8>0t >32,t >32.1.方程x 2-23kx +3k 2=0的根的情况是( ) A .有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根解析:选C.Δ=(-23k )2-12k 2=12k 2-12k 2=0.2.若关于x 的方程mx 2+(2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <14B .m >-14C .m <14且m ≠0D .m >-14且m ≠0解析:选D.Δ=(2m +1)2-4m 2=4m 2+4m +1-4m 2=4m +1>0,解得m >-14.当m =0时,方程x =0不符合题意.3.已知x 1,x 2是关于x 的方程x 2+bx -3=0的两根,且满足x 1+x 2-3x 1x 2=5,那么b 的值为( )A .4B .-4C .3D .-3解析:选A.由题知x 1+x 2=-b ,x 1x 2=-3,则x 1+x 2-3x 1x 2=-b -3×(-3)=5,解得b =4.4.已知方程x 2+tx +1=0,根据下列条件,分别求出t 的取值范围.(1)两个根都大于0; (2)两个根都小于0;(3)一个根大于0,另一个根小于0.解:设方程x 2+tx +1=0的两个根为x 1,x 2.(1)⎩⎪⎨⎪⎧Δ≥0x 1>0x 2>0⇒⎩⎪⎨⎪⎧Δ≥0x 1+x 2>0x 1x 2>0⇒⎩⎪⎨⎪⎧t 2-4≥0-t >01>0⇒⎩⎪⎨⎪⎧t ≥2或t ≤-2t <0t ∈R⇒t ≤-2.所以t 的取值范围为(-∞,-2].(2)⎩⎪⎨⎪⎧Δ≥0x 1<0x 2<0⇔⎩⎪⎨⎪⎧Δ≥0x 1+x 2<0x 1x 2>0⇒⎩⎪⎨⎪⎧t 2-4≥0-t <01>0⇒⎩⎪⎨⎪⎧t ≥2或t ≤-2t >0t ∈R⇒t ≥2.所以t 的取值范围为[2,+∞).(3)⎩⎪⎨⎪⎧Δ>0x 1>0x 2<0⇔⎩⎪⎨⎪⎧Δ>0x 1x 2<0⇒⎩⎪⎨⎪⎧t 2-4>01<0⇒⎩⎪⎨⎪⎧t >2或t <-2无解.所以无解,即不存在实数t使得方程的一个根大于0,另一个根小于0.所以t的取值范围为∅.[A 基础达标]1.已知关于x的方程x2+3x+a=0有一个根为-2,则另一个根为( )A.5 B.-1C.2 D.-5解析:选B.设方程的另一个根为x0,则-2+x0=-3,即x0=-1.2.若关于x的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )A.-1 B.1C.-2或2 D.-3或1解析:选A.由x(x+1)+ax=0,得x2+(1+a)x=0.因为方程有两个相等的实数根,所以判别式Δ=0.所以a=-1.3.若α,β是一元二次方程3x2+2x-9=0的两个根,则βα+αβ的值是( )A.427 B .-427C .-5827D.5827解析:选C.由题知α+β=-23,αβ=-3,所以βα+αβ=(α+β)2-2αβαβ=-5827.4.已知关于x 的一元二次方程mx 2-(m +2)x +m4=0有两个不相等的实数根x 1,x 2.若1x 1+1x 2=4m ,则m 的值是( )A .2B .-1C .2或-1D .不存在解析:选A.由题知⎩⎪⎨⎪⎧m ≠0,Δ=(m +2)2-4m ·m 4>0, 解得m >-1且m ≠0.因为x 1+x 2=m +2m ,x 1x 2=14,所以1x 1+1x 2=x 1+x 2x 1x 2=m +2m14=4m ,所以m =2或-1.因为m >-1,所以m =2.5.若a ,b ,c 为△ABC 的三边长,且关于x 的一元二次方程(c -b )x 2+22(b -a )x +2(a -b )=0有两个相等的实数根,则这个三角形是( )A .等腰三角形B .直角三角形C .等边三角形D .不等边三角形解析:选A.根据题意,得c -b ≠0,Δ=[22(b -a )]2-4(c -b )·2(a -b )=0,(a -b )(a -b -c +b )=0, 所以a -b =0或a -c =0, 所以a =b 或a =c ,所以这个三角形为等腰三角形.6.已知x 1,x 2是关于x 的一元二次方程x 2-5x +a =0的两个实数根,且x 21-x 22=10,则a =________.解析:由题知x 1+x 2=5,x 1x 2=a . 因为x 21-x 22=(x 1+x 2)(x 1-x 2)=10, 所以x 1-x 2=2,所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=25-4a =4, 所以a =214.答案:2147.设α,β是方程(x +1)(x -4)=-5的两个实数根,则β3α+α3β=________.解析:由题意,得α+β=3,αβ=1, 所以α2+β2=(α+β)2-2αβ=7,α4+β4=(α2+β2)2-2α2·β2=47, 所以β3α+α3β=α4+β4αβ=47.答案:478.已知x 1,x 2是一元二次方程x 2-2x -1=0的两个实数根,则12x 1+1+12x 2+1的值是________. 解析:由题知x 1+x 2=2,x 1x 2=-1,x 21=2x 1+1,x 22=2x 2+1, 故原式=1x 21+1x 22=x 21+x 22(x 1x 2)2=(x 1+x 2)2-2x 1x 2(x 1x 2)2=22-2×(-1)(-1)2=6. 答案:69.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系,求下列各式的值.(1)x 21x 2+x 1x 22;(2)(x 1-x 2)2;(3)⎝⎛⎭⎪⎫x 1+1x 2⎝ ⎛⎭⎪⎫x 2+1x 1;(4)1x 21+1x 22.解:⎩⎪⎨⎪⎧x 1+x 2=3x 1x 2=32,(1)原式=x 1x 2(x 1+x 2)=32×3=92;(2)原式=(x 1+x 2)2-4x 1x 2=9-4×32=3;(3)原式=x 1x 2+1x 1x 2+2=32+23+2=256;(4)原式=(x 1+x 2)2-2x 1x 2(x 1x 2)2=9-394=83. 10.已知关于x 的方程(k -1)x 2+(2k -3)x +k +1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)⎩⎪⎨⎪⎧k -1≠0Δ=(2k -3)2-4(k -1)(k +1)>0⇒⎩⎪⎨⎪⎧k ≠1k <1312,所以k <1312且k ≠1.(2)若x 1+x 2=0,即-2k -3k -1=0,k =32,由(1)可知这样的k 不存在.[B 能力提升]11.已知m 2-2m -1=0,n 2+2n -1=0,且mn ≠1,则mn +n +1n的值为________.解析:由题知n ≠0,则1+2n -1n 2=0,即1n 2-2n-1=0.又m 2-2m -1=0,且mn ≠1,即m ≠1n,故m ,1n 是方程x 2-2x -1=0的两个根,则m +1n=2.故mn +n +1n =m +1+1n=2+1=3.答案:312.已知方程2x 2-(k +1)x +k +3=0的两根之差为1,则k 的值为________.解析:设x 1,x 2为方程的两个根,则⎩⎪⎨⎪⎧x 1+x 2=k +12x 1x 2=k +32,|x 1-x 2|=1,⎝⎛⎭⎪⎫k +122-2(k +3)=1,k =9或k =-3.检验当k =9或k =-3时,Δ>0成立. 答案:-3或913.已知关于x 的一元二次方程x 2+(4m +1)x +2m -1=0. (1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1,x 2且满足1x 1+1x 2=-12,求m 的值.解:(1)证明:Δ=(4m +1)2-4(2m -1)=16m 2+5>0, 所以方程总有两个不相等的实数根. (2)因为x 1+x 2=-(4m +1),x 1x 2=2m -1,1x 1+1x 2=x 1+x 2x 1x 2=-12,即-(4m +1)2m -1=-12,所以m =-12. 14.若x 1,x 2是关于x 的方程x 2-(2k +1)x +k 2-1=0的两个实数根,且x 1,x 2都大于1.(1)求实数k 的取值范围;(2)若x 1x 2=12,求k 的值.解:(1)⎩⎪⎨⎪⎧Δ≥0x 1>1x 2>1⇒⎩⎪⎨⎪⎧[-(2k +1)]2-4(k 2-1)≥0x 1+x 2-2>0x 1x 2-(x 1+x 2)+1>0⇒⎩⎪⎨⎪⎧4k +5≥02k +1-2>0k 2-1-(2k +1)+1>0⇒⎩⎪⎨⎪⎧k ≥-54k >12k >1+2或k <1-2,所以k >1+ 2.(2)⎩⎪⎨⎪⎧Δ>0x 1+x 2=2k +1 ①x 1x 2=k 2-1 ②x 2=2x 1 ③由①③得⎩⎪⎨⎪⎧x 1=2k +13x 2=23(2k +1).所以29(2k +1)2=k 2-1,k 2-8k -11=0,k =4+33或k =4-33,满足Δ>0.[C 拓展探究]15.已知x 1,x 2是一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=32成立?若存在,求出k 的值,若不存在,请说明理由.(2)求使x 1x 2+x 2x 1-2的值为整数的实数k 的整数值.解:Δ=(-4k )2-4×4k (k +1)=-16k (k ≠0),Δ≥0,k <0(因为k ≠0),(1)存在,x 1+x 2=1,x 1x 2=k +14k ,由(2x 1-x 2)(x 1-2x 2)=32得:2(x 1+x 2)2-9x 1x 2=32.2-9×k +14k =32,所以k =-97.(2)x 21+x 22x 1x 2-2=(x 1+x 2)2-2x 1x 2x 1x 2-2=1k +14k-4=4k k +1-4=-4k +1.因为-4k +1的值为整数, 所以k +1=±1,k +1=±2,k +1=±4,所以k =0或k =-2或k =1或k =-3或k =3或k =-5, 因为k <0,所以k =-2或k =-3或k =-5.。
【教学设计】2.2.3 一元二次不等式的解法本节课的内容是高中数学B版必修一第二章第二节“2.2.3一元二次不等式的解法”的第1课时。
新课标指出,学生是教学的主体,教师的教要应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。
我将以此为基础从下面这几个方面加以说明。
一、课标要求二、教材分析(包括教材处理、教材的地位和作用、教学的重点和难点)1、教材处理:本节涉及的一元二次不等式概念的引入、解题方法的得出和应用方法三个方面的内容。
把教材中的引例生成情境,这样更能体现一元二次不等式来自实践,容易激发学生的学习兴趣。
2、教材的地位和作用:本节课是学生在已掌握了一元二次方程的解集、不等式的性质和不等式的解集基础上,进一步研究一元二次不等式的解法和应用,它一方面可以进一步对不等式的解法的理解与认识,同时也为今后进一步“3个二次”的关系打下坚实的基础。
因此,本节课的内容十分重要,它对知识起到了承上启下的作用。
此外,《一元二次不等式的解法》是等式与不等式这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,而且方法得出的过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。
3、教学的重点和难点:关键在于重难点如何确定、难点如何突破。
教学重点:1.等比数列前n项和公式的推导;2.等比数列前n项和公式的应用【重点的确定】通过对已学解一元二次方程的回顾,进一步体会一元二次不等式的解法的形式,并把它们用于对问题的发现与解决中去。
因此它是本节课的重点内容。
教学难点:等比数列前n项和公式的推导。
【难点的确定】从学生的思维特点看,很容易把本节内容与一元二次方程的解法进行类比,这是积极因素,应因势利导.不利因素是:本节一元二次不等式的解法与一元二次方程有着本质的不同,这对学生的思维是一个突破,另外,对于二次项系数正负情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.因此它是本节课的难点内容。
高一数学上学期高频考点专题05 二次函数与一元二次方程、不等式专题05 二次函数与一元二次方程、不等式考点1:二次函数与一元二次方程、不等式知识点一一元二次不等式的概念定义只含有一个未知数,并且未知数的最高次数是2的不等式,叫做一元二次不等式一般形式ax2+bx+c>0,ax2+bx+c<0,ax2+bx+c≥0,ax2+bx+c≤0,其中a≠0,a,b,c均为常数知识点二一元二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.知识点三二次函数与一元二次方程的根、一元二次不等式的解集的对应关系判别式Δ=b2-4acΔ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅题型1:解不含参数的一元二次不等式例1解下列不等式:(1)-x2+5x-6>0;(2)3x 2+5x -2≥0; (3)x 2-4x +5>0.解 (1)不等式可化为x 2-5x +6<0.因为Δ=(-5)2-4×1×6=1>0,所以方程x 2-5x +6=0有两个实数根:x 1=2,x 2=3. 由二次函数y =x 2-5x +6的图象(如图①),得原不等式的解集为{x |2<x <3}.(2)因为Δ=25-4×3×(-2)=49>0,所以方程3x 2+5x -2=0的两实根为x 1=-2,x 2=13.由二次函数y =3x 2+5x -2的图象(图②),得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-2或x ≥13. (3)方程x 2-4x +5=0无实数解,函数y =x 2-4x +5的图象是开口向上的抛物线,与x 轴无交点(如图③).观察图象可得,不等式的解集为R .变式 解下列不等式: (1)4x 2-4x +1>0; (2)-x 2+6x -10>0.解 (1)∵方程4x 2-4x +1=0有两个相等的实根x 1=x 2=12.作出函数y =4x 2-4x +1的图象如图.由图可得原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12.(2)原不等式可化为x 2-6x +10<0, ∵Δ=36-40=-4<0,∴方程x 2-6x +10=0无实根, ∴原不等式的解集为∅.题型2:三个“二次”间的关系及应用例2 已知二次函数y =ax 2+(b -8)x -a -ab ,且y >0的解集为{x |-3<x <2}. (1)求二次函数的解析式;(2)当关于x 的不等式ax 2+bx +c ≤0的解集为R 时,求c 的取值范围. 解 (1)因为y >0的解集为{x |-3<x <2},所以-3,2是方程ax 2+(b -8)x -a -ab =0的两根,所以⎩⎨⎧-3+2=-b -8a,-3×2=-a -aba,解得⎩⎪⎨⎪⎧a =-3,b =5,所以y =-3x 2-3x +18.(2)因为a =-3<0,所以二次函数y =-3x 2+5x +c 的图象开口向下,要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0,所以c ≤-2512. 所以当c ≤-2512时,-3x 2+5x +c ≤0的解集为R .变式 已知关于x 的不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12. (1)求a ,c 的值;(2)解关于x 的不等式ax 2+(ac +2)x +2c ≥0.解 (1)由题意知,不等式对应的方程ax 2+5x +c =0的两个实数根为13和12,由根与系数的关系,得⎩⎨⎧-5a =13+12,c a =12×13,解得a =-6,c =-1.(2)由a =-6,c =-1知不等式ax 2+(ac +2)x +2c ≥0可化为-6x 2+8x -2≥0,即3x 2-4x+1≤0,解得13≤x ≤1,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13≤x ≤1.题型3:含参数的一元二次不等式的解法例3 设a ∈R ,解关于x 的不等式ax 2+(1-2a )x -2>0.解 (1)当a =0时,不等式可化为x -2>0,解得x >2,即原不等式的解集为{x |x >2}. (2)当a ≠0时,方程ax 2+(1-2a )x -2=0的两根分别为2和-1a .①当a <-12时,解不等式得-1a<x <2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1a<x <2; ②当a =-12时,不等式无解,即原不等式的解集为∅;③当-12<a <0时,解不等式得2<x <-1a,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪2<x <-1a ; ④当a >0时,解不等式得x <-1a或x >2,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1a 或x >2.变式 (1)当a =12时,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集; (2)若a >0,求关于x 的不等式x 2-⎝⎛⎭⎫a +1a x +1≤0的解集. 解 (1)当a =12时,有x 2-52x +1≤0,即2x 2-5x +2≤0,解得12≤x ≤2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤2. (2)x 2-⎝⎛⎭⎫a +1a x +1≤0⇔⎝⎛⎭⎫x -1a (x -a )≤0, ①当0<a <1时,a <1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; ②当a =1时,a =1a=1,不等式的解集为{1};③当a >1时,a >1a ,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a .综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪a ≤x ≤1a ; 当a =1时,不等式的解集为{1};当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a≤x ≤a .考点1:练习题1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A .{x |-4<x <3} B .{x |-4<x <-2} C .{x |-2<x <2} D .{x |2<x <3}答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C.2.若0<m <1,则不等式(x -m )⎝⎛⎭⎫x -1m <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1m <x <m B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >1m 或x <m C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >m 或x <1m D.⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m 答案 D解析 ∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪m <x <1m ,故选D. 3.二次方程ax 2+bx +c =0的两根为-2,3,如果a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3} D .{x |-3<x <2}答案 C解析 由题意知-2+3=-b a ,-2×3=ca ,∴b =-a ,c =-6a ,∴不等式ax 2+bx +c >0可化为ax 2-ax -6a >0, 又a <0,∴x 2-x -6<0,∴(x -3)(x +2)<0, ∴-2<x <3,故选C.4.若不等式5x 2-bx +c <0的解集为{x |-1<x <3},则b +c 的值是( )A .5B .-5C .-25D .10 答案 B解析 由题意知-1,3为方程5x 2-bx +c =0的两根, ∴-1+3=b 5,-3=c5,∴b =10,c =-15,∴b +c =-5.故选B.5.若关于x 的二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( ) A .{m |m ≤-2或m ≥2} B .{m |-2≤m ≤2} C .{m |m <-2或m >2} D .{m |-2<m <2}答案 B解析 ∵x 2+mx +1≥0的解集为R , ∴Δ=m 2-4≤0,∴-2≤m ≤2,故选B. 6.不等式x 2-4x +4≤0的解集是________. 答案 {2}解析 原不等式可化为(x -2)2≤0,∴x =2. 7.不等式x 2+3x -4<0的解集为________. 答案 {x |-4<x <1}解析 易得方程x 2+3x -4=0的两根为-4,1,所以不等式x 2+3x -4<0的解集为{x |-4<x <1}.8.关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2,则m 的取值范围是________. 答案 {m |m <0}解析 ∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.9.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B . (1)求A ∩B ;(2)若不等式x 2+ax +b <0的解集为A ∩B ,求不等式ax 2+x +b <0的解集. 解 (1)由x 2-2x -3<0,得-1<x <3, ∴A ={x |-1<x <3}. 由x 2+x -6<0,得-3<x <2,∴B ={x |-3<x <2},∴A ∩B ={x |-1<x <2}.。
一元二次方程二次函数一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式知识归纳一元二次方程、二次函数和一元二次不等式是高中数学中的重要内容,掌握了这些知识可以帮助我们解决实际问题和推导数学关系。
本文将对一元二次方程、二次函数和一元二次不等式进行归纳总结,以帮助读者更好地理解和掌握这些知识。
一、一元二次方程一元二次方程是形如ax^2 + bx + c = 0(其中a ≠ 0)的方程,其中x 表示未知数。
解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
1. 因式分解法当一元二次方程可以因式分解为两个一次因子相乘时,我们可以通过将方程两边置零,将每个因子等于零来求解。
例如,对于方程x^2 -5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,从而得到x = 2和x = 3两个解。
2. 配方法当一元二次方程无法直接因式分解时,我们可以通过配方法将方程转化为完全平方式,然后再进行求解。
例如,对于方程x^2 - 5x + 6 = 0,我们可以通过将常数项进行拆分,得到x^2 - 2x - 3x + 6 = 0,进而变为(x(x - 2) - 3(x - 2) = 0,再经过合并同类项和提取公因式的步骤得到(x -2)(x - 3) = 0,进而求得x = 2和x = 3两个解。
3. 求根公式法对于一元二次方程ax^2 + bx + c = 0,我们可以通过求根公式x = (-b ± √(b^2 - 4ac)) / (2a)来求解。
其中,±表示两个相反的解,而√表示平方根。
这种方法适用于所有一元二次方程的求解,包括没有实数解的情况。
二、二次函数二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c是实数且a ≠ 0。
二次函数的图像通常是一个开口朝上或朝下的抛物线。
掌握了二次函数的性质和图像特点可以帮助我们分析函数的变化趋势和解决实际问题。
一元二次不等式的解法解题步骤有哪些一元二次不等式是数学中比较简洁的一个考点,但是同学们在平常也要多加练习,在考试时更要仔细审题,避开丢分。
下面是一元二次不等式的解法及留意事项,一起来看吧!一元二次不等式的解法解一元二次不等式的一般步骤:1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx +c>0(a>0),ax2+bx+c<0(a>0);2、计算相应的判别式;3、当Δ≥0时,求出相应的一元二次方程的根;4、依据对应二次函数的图象,写出不等式的解集。
解一元二次不等式应留意的问题:1、在解一元二次不等式时,要先把二次项系数化为正数。
2、二次项系数中含有参数时,参数的符号会影响不等式的解集,争论时不要遗忘二次项系数为零的状况。
3、解决一元二次不等式恒成立问题要留意二次项系数的符号。
4、一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同。
一元二次不等式的例题及答案已知f(x)=-3x2+a(6-a)x+b.(1)解关于a的不等式f(1)0;(2)若不等式f(x)0的解集为(-1,3),求实数a,b的值. 解:(1)∵f(1)0,∵-3+a(6-a)+b0,即a2-6a+3-b0.Δ=(-6)2-4(3-b)=24+4b.①当Δ≤0,即b≤-6时,原不等式的解集为∵.②当Δ0,即b-6时,方程a2-6a+3-b=0有两根a1=3-6+b,a2=3+6+b,∵不等式的解集为(3-6+b,3+6+b).综上所述:当b≤-6时,原不等式的解集为∵;当b-6时,原不等式的解集为(3-6+b,3+6+b). (2)由f(x)0,得-3x2+a(6-a)x+b0,即3x2-a(6-a)x-b0.∵它的解集为(-1,3),∵-1与3是方程3x2-a(6-a)x-b=0的两根.∵-1+3=a(6-a)3,-1×3=-b3,解得a=3-3,b=9或a=3+3,b=9.。