2014人教A版高中数学必修三 2.2.1《用样本的频率分布估计总体分布》导学案
- 格式:doc
- 大小:248.01 KB
- 文档页数:10
2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布[读教材·填要点]1.用样本估计总体的两种情况 (1)用样本的频率分布估计总体的分布. (2)用样本的数字特征估计总体的数字特征. 2.绘制频率分布直方图的步骤3.频率分布折线图和总体密度曲线频率分布直方图――――――――→连接各小长方形上端的中点频率分布折线图 ――――――――――――→样本容量不断增大,频率折线图接近于一条光滑曲线总体密度曲线 4.茎叶图的制作步骤 (1)将数据分为茎和叶两部分;(2)将最大茎和最小茎之间数据按大小次序排成一列; (3)将各个数据的“叶”按大小次序写在茎右(左)侧.[小问题·大思维]1.频率分布直方图直观形象地表示了频率分布表,在频率分布直方图中是用哪些量来表示各组频率的?提示:在频率分布直方图中用每个矩形的面积表示相应组的频率,即频率组距×组距=频率,各组频率的和等于1,因此各小矩形的面积的和等于1.2.从甲、乙两个班级中各随机选出15名同学进行测试,成绩的茎叶图如图,你能说出甲、乙两班的最高成绩,以及哪个班的平均成绩较高吗?甲 乙6 4 8 57 9 4 16 2 5 9 87 5 4 2 17 2 5 7 8 9 7 4 48 1 4 4 7 9 692提示:甲、乙两班的最高成绩各是96,92,从图中看,乙班的平均成绩较高.列频率分布表、画频率分布直方图、折线图[例42岁;就任时年纪最大的是里根,他于1981年就任,当时69岁.下面按时间顺序(从1789年的华盛顿到2009年的奥巴马,共44任)给出了历届美国总统就任时的年龄:57,61,57,57,58,57,61,54,68,51,49,64,50,48,65,52,56,46,54,49,51,47,55,55,54,42,51,56,55,51,54,51,60,62,43,55,56,61,52,69,64,46,54,48(1)将数据进行适当的分组,并画出相应的频率分布直方图和频率分布折线图. (2)用自己的语言描述一下历届美国总统就任时年龄的分布情况. [自主解答] (1)以4为组距,列表如下:分组 频数 频率 [41.5,45.5) 2 0.045 5 [45.5,49.5) 7 0.159 1 [49.5,53.5) 8 0.181 8 [53.5,57.5) 16 0.363 6 [57.5,61.5) 5 0.113 6 [61.5,65.5) 4 0.090 9 [65.5,69.5]20.045 5合计44 1.00(2)从频率分布表中可以看出60%左右的美国总统就任时的年龄在50岁至60岁之间,45岁以下以及65岁以上就任的总统所占的比例相对较小.根据频率分布表,求美国总统就任时年龄落在区间[61.5,69.5)人数占总人数的比例.解:区间[61.5,69.5)包含了[61.5,65.5),[65.5,69.5),两个组,两小组的频率和为0.090 9+0.045 5=0.136 4,故而所占比例为13.64%.——————————————————1.在列频率分布表时,极差、组距、组数有如下关系:(1)若极差组距为整数,则极差组距=组数.(2)若极差组距不为整数,则极差组距的整数部分+1=组数.2.组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少都会影响了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为5~12组,一般样本容量越大,所分组数越多.——————————————————————————————————————1.一个农技站为了考察某种麦穗长的分布情况,在一块试验地里抽取了100个麦穗,量得长度如下(单位:cm):6.5 6.4 6.7 5.8 5.9 5.9 5.2 4.05.4 4.6 5.8 5.5 6.0 6.5 5.1 6.55.3 5.9 5.5 5.8 6.2 5.4 5.0 5.06.8 6.0 5.0 5.7 6.0 5.5 6.8 6.06.3 5.5 5.0 6.3 5.2 6.07.0 6.46.4 5.8 5.9 5.7 6.8 6.6 6.0 6.45.77.4 6.0 5.4 6.5 6.0 6.8 5.86.3 6.0 6.3 5.6 5.3 6.4 5.7 6.76.2 5.6 6.0 6.7 6.7 6.0 5.6 6.2 6.1 5.3 6.2 6.8 6.6 4.7 5.7 5.7 5.8 5.3 7.0 6.0 6.0 5.9 5.4 6.0 5.2 6.0 6.3 5.7 6.8 6.1 4.5 5.6 6.3 6.0 5.8 6.3根据上面的数据列出频率分布表、绘出频率分布直方图,并估计长度在5.75~6.05 cm 之间的麦穗在这批麦穗中所占的百分比.解:步骤是:(1)计算极差:7.4-4.0=3.4(cm). (2)决定组距与组数若取组距为0.3 cm ,由于3.40.3=1113,需分成12组,组数合适.于是取定组距为0.3 cm ,组数为12.(3)将数据分组使分点比数据多一位小数,并且把第1小组的起点稍微减小一点,那么所分的12个小组可以是:3.95~4.25,4.25~4.55,4.55~4.85,…,7.25~7.55.(4)列频率分布表对各个小组作频数累计,然后数频数,算频率,列频率分布表,如下表所示:分组 频数累计频数 频率 3.95~4.25 1 0.01 4.25~4.55 1 0.01 4.55~4.85 2 0.02 4.85~5.15 正 5 0.05 5.15~5.45 正正 11 0.11 5.45~5.75 正正正 15 0.15 5.75~6.05 正正正正正28 0.28 6.05~6.35 正正 13 0.13 6.35~6.65正正110.116.65~6.95正正100.106.95~7.2520.027.25~7.5510.01合计100 1.00(5)画频率分布直方图.如图所示.从表中看到,样本数据落在5.75~6.05之间的频率是0.28,于是可以估计,在这块地里,长度在5.75 ~6.05 cm之间的麦穗约占28%.茎叶图及应用[例2]某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其质量,分别记下抽查记录如下(单位:千克):甲:52514948534849乙:60654035256560画出茎叶图,并说明哪个车间的产品质量比较稳定.[自主解答]茎叶图如图所示(茎为十位上的数字):甲乙2 53 599884032156005 5所以甲车间的产品质量比较稳定.——————————————————画茎叶图时,用中间的数表示数据的十位和百位数,两边的数分别表示两组数据的个位数.要先确定中间的数取数据的哪几位,填写数据时边读边填.比较数据时从数据分布的对称性、中位数、稳定性等几方面来比较.绘制茎叶图的关键是分清茎和叶,一般地说数据是两位数时,十位数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要根据数据的特点合理选择茎和叶.——————————————————————————————————————2.在某电脑杂志的一篇文章中,每个句子中所含字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,21,24,27,17,29.在某报纸的一篇文章中,每个句子中所含字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22,18,32.(1)分别用茎叶图表示上述两组数据;(2)将这两组数据进行比较分析,你能得到什么结论?解:(1)茎叶图如图所示:电脑杂志报纸9 8 7 7 5 5 4 1 01 2 3 8 8 99 8 7 7 7 6 5 4 4 3 2 1 02 2 2 3 4 7 7 7 86 13 2 2 2 3 3 5 6 94 1 1 6(2)从茎叶图可看出:电脑杂志的文章中每个句子所含字数集中在10~30之间;报纸的文章中每个句子所含字数集中在20~40之间,且电脑杂志的文章中每个句子所含字的平均个数比报纸的文章中每个句子所含字的平均个数要少,因此电脑杂志的文章较简明.频率分布直方图的应用[例3]5月1日至31日,评委会把同学们上交作品的件数按5天一组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12.(1)本次活动中一共有多少件作品参评?(2)上交作品数量最多的一组有多少件?(3)经过评比,第四组和第六组分别有10件,2件作品获奖,这两组获奖率较高的是第几组?[自主解答] 在频率分布直方图中各小长方形的面积=组距×频率组距=频率,即各小长方形的面积等于相应各组的频率,且它们的面积和等于1.(1)依题意知第三组的频率为42+3+4+6+4+1=15.又因为第三组的频数为12,所以本次活动的参评作品数为12÷15=60(件).(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有:60×62+3+4+6+4+1=18(件).(3)第四组的获奖率是1018=59;第六组上交的作品数量为60×12+3+4+6+4+1=3(件),所以第六组的获奖率是23=69>59,故第六组的获奖率较高. ——————————————————频率分布直方图的性质 (1)因为小矩形的面积=组距×频率组距=频率,所以各小矩形面积表示相应各组的频率,这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小.(2)在频率分布直方图中,各小矩形的面积之和等于1. (3)频数/相应的频率=样本容量.——————————————————————————————————————3.(2012·济宁高一检测)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少? 解:(1)由于频率分布直方图以面积的形式反映了数据落在各个小组内的频率大小,因此第二小组的频率为42+4+17+15+9+3=0.08.又因为第二小组频率=第二小组频数样本容量,所以样本容量=第二小组频数第二小组频率=120.08=150.故第二小组的频率是0.08,样本容量是150. (2)由图可估计该校高一学生的达标率约为 17+15+9+32+4+17+15+9+3×100%=88%.故高一学生达标率是88%.某校为了了解高三学生的身体状况,抽取了100名女生的体重.将所得的数据整理后,画出了如图的频率分布直方图,则所抽取的女生中体重在40~45 kg 的人数是( )A .10B .2C .5D .15[错解] 0.02×100=2人.选B. [错因] 误认为纵轴表示频率. [正解] 由图可知频率=频率组距×组距,知频率=0.02×5=0.1. ∴0.1×100=10人. [答案] A1.(2012·湖北高考)容量为20的样本数据,分组后的频数如下表:分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数23454 2A.0.35B.0.45C.0.55 D.0.65解析:求出样本数据落在区间[10,40)中的频数,再除以样本容量得频率.求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.答案:B2.100辆汽车通过某一段公路时的时速的频率分布直方图如图所示,则时速在[60,70)的汽车大约有()A.30辆B.40辆C.60辆D.80辆解析:0.04×10×100=40.答案:B3.从甲、乙两种玉米苗中各抽6株,分别测得它们的株高如图所示(单位:cm),根据数据估计()A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐解析:乙的平均株高为14+27+36+38+44+456=2046=34 cm.甲乙61 45 2 1277 53 6 84 4 5甲的平均株高为16+21+22+25+35+376=1566=26 cm.答案:D4.为了帮助班上的两名贫困生解决经济困难,班上的20名同学捐出了自己的零花钱,他们捐款数如下:(单位:元)19,20,25,30,24,23,25,29,27,27,28,28,26,27,21,30,20,19,22,20.班主任老师准备将这组数据制成频率分布直方图,以表彰他们的爱心.制图时先计算最大值与最小值的差是________,若取组距为2,则应分成________组;若第一组的起点定为18.5,则在[26.5,28.5]范围内的频数为________.解析:30-19=11 112=5.5,∴分6组. 在[26.5,28.5]之间的数有5个. 答案:11 6 55.将一个容量为n 的样本分成若干组,已知某组的频数和频率分别是30和0.25,则n =________.解析:30n =0.25,∴n =30×4=120.答案:1206.为了了解学校高一年级男生的身高情况,选取一个容量为60的样本(60名男生的身高),分组情况如下(单位:cm):(1)求出表中a ,m 的值; (2)画出频率分布直方图.解:(1)由题意得:6+21+27+m =60 ∴m =6. a =2760=0.45 ∴a =0.45. (2)如图所示:一、选择题1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60]元的同学有30人,则n 的值为( )A .90B .100C .900D .1 000解析:n ×0.030×10=30. n =100. 答案:B2.在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a ,b )是其中一组,抽查出的个体数在该组内的频率为m ,该组直方图的高为h ,则|a -b |的值等于( )A .h ·m B.m hC.h mD .与m ,h 无关 解析:小长方形的高=频率组距,∴|a -b |=频率小长方形的高=mh.答案:B3.(2012·陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53解析:从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56.答案:A4.为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间调查了某地10 000位居民,并根据所得数据画出样本的频率分布直方图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000位居民中再用分层抽样抽出100位居民做进一步调查,则在[2.5,3)(小时)时间段内应抽出的人数是()A.25 B.30C.50 D.75解析:0.5×0.5×100=25人答案:A二、填空题5.青年歌手大奖赛共有10名选手参赛,并请了7名评委,如图所示的茎叶图是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,去掉一个最高分和一个最低分后,甲、乙选手剩余数据的平均成绩分别为________.解析:甲=78+84+85+86+885=84.2乙=84+84+84+86+875=85.答案:84.2856.(2011·浙江高考)某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽甲乙8 5798 6 5 48 4 4 4 6 729 3取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是________.解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数是3 000×0.2=600.答案:6007.10个小球分别编号1,2,3,4,其中1号球4个,2号球2个,3号球3个,4号球1个,则0.4是指1号球占总体分布的________.解析:0.4=410为1号球占总体分布的频率.答案:频率8.某校开展“爱我海西,爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是______.作品A88 9 99 2 3 x 2 1 4解析:当x≤4时,89+89+92+93+(90+x)+92+917=91,解之得x=1.当x>4时,易证不合题意.答案:1三、解答题9.某中学高二(2)班甲、乙两名学生自进入高中以来,每次数学考试成绩情况如下:甲:95,81,75,91,86,89,71,65,76,88,94,110,107,;乙:83,86,93,99,88,103,98,114,98,79,78,106,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较.解:甲、乙两人数学成绩的茎叶图如图所示.甲乙5 6615798896183684159398871036 1011 4从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,中位数是98;甲同学的得分情况;也大致对称,中位数是88.乙同学的成绩比较稳定,总体情况比甲同学好.10.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图,解答下列问题:分组频数频率[50,60)40.08[60,70)0.16[70,80)10[80,90)160.32[90,100]合计50(1)填充频率分布表的空格(将答案直接填在表格内);(2)补全频率分布直方图;(3)若成绩在[70,90)分的学生为二等奖,问获得二等奖的学生约为多少人?解:(1)分组频数频率[50,60)40.08[60,70)80.16[70,80)100.20[80,90)160.32[90,100]120.24合计50 1.00 (2)频率分布直方图如图所示:(3)∵成绩在[70,80)间的学生频率为0.20;成绩在[80,90)间的学生频率为0.32.∴在[70,90)之间的频率为0.20+0.32=0.52.又∵900名学生参加竟赛,∴该校获二等奖的学生为900×0.52=468(人).。
第二章统计2.2.1 用样本的频率分布估计总体的分布(第一课时)【学习目标】通过实例体会分布的意义和作用,在表示样本数据的过程屮,学会列频率分布表、画频率分布直方图体会它们各自的特点.在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布.【重点难点】会列频率分布表,画频率分布直方图.[学习備一、学习引导我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。
如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?二、合作交漩(教师可做点拨)(1)频率分布表:当总体很大或不便于获得时,可以用样本的频率分布来估计总体的频率分布。
我们把反映总体频率分布的表格为频率分布表。
(2)编制频率分布表的步骤:①求全距,决定组数和组距,组距二箸;组数②分组,区间一般左闭右开(为了遵循统计分组穷尽和互斥原则,所以统计上规定,凡是总体某一个单位的变量值是相邻两组的界限值,这一个单位归入作为下限值的那一组内,即所谓“上限不在内〃原则);(3)登记频数,计算频率,列出频率分布表。
(3)条形图:条形图是用宽度和同的条形的高度或长度来表示数据变动的图形。
条形图可以横置也可以纵置,纵置时又称为柱形图,也就是说,当各类别放在纵轴时,称为条形图;当各类别放在横轴时,称为柱形图。
(4)频率分布直方图:直方图是用矩形的宽度和高度来表示频率分布的图形(在平面直角坐标中,横轴表示数据分组,即各组组距,纵轴表示频率)。
(5)直方图与条形图的不同点:①条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)是固定的;直方图是用面积表示各组频率的多少,矩形的高度表示每一组的频率除以组距,宽度则表示各组的组距,因此其高度与宽度均有意义。
2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布一、教材分析教科书通过探究栏目引导学生思考居民生活用水定额管理问题,引出总体分布的估计问题,该案例贯穿于本节始终.通过对该问题的探究,使学生学会列频率分布表、画频率分布直方图、频率分布折线图.教科书在这里主要介绍有关频率分布的列表和画图的方法,而关于频率分布的随机性和规律性方面则给教师留下了较大的发挥空间.教师可以通过初中有关随机事件的知识,也可以利用计算机多媒体技术,引导学生进一步体会由样本确定的频率分布表和频率分布直方图的随机性;通过初中有关频率与概率之间的关系,了解频率分布直方图的规律性,即频率分布与总体分布之间的关系,进一步体会用样本估计总体的思想.由于样本频率分布直方图可以估计总体分布,因此可以用样本频率分布特征来估计相应的总体分布特征,这就提供了估计总体特征的另一种途径,其意义在于:在没有原始数据而仅有频率分布的情况下,此方法可以估计总体的分布特征.二、教学目标1、知识与技能(1)通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
2、过程与方法通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观通过对样本分析和总体估计的过程,感受数学对实际生活的需要,认识到数学知识源于生活并指导生活的事实,体会数学知识与现实世界的联系。
三、重点难点教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图.教学难点:能通过样本的频率分布估计总佒的分布.四、课时安排1课时五、教学设计(一)导入新课思路1在NBA的2006赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕甲运动员得分:12,15,20,25,31,31,36,36,37,39,44,49,50乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29,33请问从上面的数据中你能否看出甲、乙两名运动员哪一位发挥比较稳定?如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布(板书课题).思路2如下样本是随机抽取近年来北京地区7月25日至8月24日的日最高气温.7月25日至8月10日41.9 37.5 35.7 35.4 37.2 38.1 34.7 33.7 33.3 32.5 34.6 33.0 30.8 31.0 28.6 31.5 28.88月8日至8月24日28.6 31.5 28.8 33.2 32.5 30.3 30.2 29.8 33.1 32.8 29.8 25.6 24.7 30.0 30.1 29.5 30.3怎样通过上表中的数据,分析比较两时间段内的高温(≥33 ℃)状况?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.思路3讨论:我们要了解我校学生每月零花钱的情况,应该怎样进行抽样?提问:学习了哪些抽样方法?一般在什么时候选取什么样的抽样方法呢?讨论:通过抽样方法收集数据的目的是什么?(从中寻找所包含的信息,用样本去估计总体)指出两种估计手段:一是用样本的频率分布估计总体的分布,二是用样本的数字特征(平均数、标准差等)估计总体的数字特征.这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布.(二)推进新课、新知探究、提出问题(1)我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了较合理地确定出这个标准,需要做哪些工作?(让学生展开讨论)(2)什么是频率分布?(3)画频率分布直方图有哪些步骤?(4)频率分布直方图的特征是什么?讨论结果:(1)为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等.因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况.分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息.表格则是通过改变数据的构成形式,为我们提供解释数据的新方式.下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.可以让我们更清楚地看到整个样本数据的频率分布情况.(2)频率分布是指一个样本数据在各个小范围内所占比例的大小;一般用频率分布直方图反映样本的频率分布.(3)其一般步骤为:①计算一组数据中最大值与最小值的差,即求极差;②决定组距与组数;③将数据分组;④列频率分布表;⑤画频率分布直方图.(4)频率分布直方图的特征:①从频率分布直方图可以清楚地看出数据分布的总体趋势.②从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同.不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象.提出问题(1)什么是频率分布折线图?(2)什么是总体密度曲线?(3)对于任何一个总体,它的密度曲线是否一定存在?是否可以被非常准确地画出来?(4)什么叫茎叶图?画茎叶图的步骤有哪些?(5)茎叶图有什么特征?讨论结果:(1)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)在样本频率分布直方图中,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.它能够精确地反映总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(3)实际上,尽管有些总体密度曲线是客观存在的,但一般很难像函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确.(4)当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.画茎叶图的步骤如下:①将每个数据分为茎(高位)和叶(低位)两部分,在此例中,茎为十位上的数字,叶为个位上的数字;②将最小茎和最大茎之间的数按大小次序排成一列,写在左(右)侧;③将各个数据的叶按大小次序写在其茎右(左)侧.(5)①用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.②茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录(这对于教练员发现运动员现场状态特别有用);而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.正确利用三种分布的描述方法,都能得到一些有关分布的主要特点(如分布是否具有单峰性、是否具有对称性、样本点落在各分组中的频率等),这些主要特点受样本的随机性的影响比较小,更接近于总体分布的相应的特点.频率分布表和频率分布直方图之间的密切关系是显然的,它们只不过是相同的数据的两种不同的表达方式,茎叶图和频率分布表极为类似,事实上,茎相当于频率分布表中的分组;茎上叶的数目相当于频率分布表中指定区间组的频数.(三)应用示例思路1例1 有100名学生,每人只能参加一个运动队,其中参加足球队的有30人,参加篮球队的有27人,参加排球队的有23人,参加乒乓球队的有20人. (1)列出学生参加运动队的频率分布表. (2)画出频率分布条形图.解:(1)参加足球队记为1,参加篮球队记为2,参加排球队记为3,参加乒乓球队记为4,得频率分布表如下:试验结果 频数 频率 参加足球队(记为1) 30 0.30 参加篮球队(记为2) 27 0.27 参加排球队(记为3) 23 0.23 参加乒乓球队(记为4)20 0.20 合 计1001.00(2)由上表可知频率分布条形图如下:例2 为了了解中学生的身体发育情况,对某中学17岁的60名女生的身高进行了测量,结果如下:(单位:cm )154 159 166 169 159 156 166 162 158 156 166 160 164 160 157 151 157 161 158 153 158 164 158 163 158 153 157 162 159 154 165 166 157 151 146 151 160 165 158 163 163 162 161 154 165 162 159 157 159 149 164 168 159 153 列出样本的频率分布表;绘出频率分布直方图.解:第一步,求极差:上述60个数据中最大为169,最小为146. 故极差为:169-146=23 cm.第二步,确定组距和组数,可取组距为3 cm,则组数为327323 ,可将全部数据分为8组. 第三步,确定组限:[145.5,148.5),[148.5,151.5),[151.5,154.5),[154.5,157.5),[157.5,160.5),[160.5,163.5),[163.5,166.5),[166.5,169.5). 第四步,列频率分布表:分组 个数累计频数 频率 [145.5,148.5)1 0.017 [148.5,151.5) 3 0.050 [151.5,154.5) 6 0.100 [154.5,157.5) 8 0.133 [157.5,160.5)180.300[160.5,163.5) 11 0.183[163.5,166.5) 10 0.167[166.5,169.5) 3 0.050 合计60 1.000 第五步,根据上述数据绘制频率分布直方图如下图:以上例1和例2两种情况的不同之处在于,前者的频率分布表列出的是几个不同数值的频率,相应的条形图是用其高度表示取各个值的频率;后者的频率分布表列出的是在不同区间内取值的频率,相应的直方图是用图表面积的大小来表示在各个区间内取值的频率.我们在处理一个数理问题时可以采用样本的频率分布估计总体分布的方法,这是因为,频率分布随着样本容量的增大更加接近于总体分布,当样本容量无限增大且分组的组距无限缩小时,频率分布的直方图就演变成一条光滑的曲线——总体密度曲线.这条曲线是客观存在的,但是我们却很难将它准确地画出,我们只能用样本的频率分布去对它进行估计.基于频率分布与相应的总体分布有这种关系,再加上我们通常并不知道一个总体的分布,我们往往是从一个总体中抽取一个样本,用样本的频率去估计相应的总体分布.一般说来,样本的容量越大,这种估计就越精确.例3 从某校高一年级的1 002名新生中用系统抽样的方法抽取一个容量为100的身高样本,如下(单位:cm).作出该样本的频率分布表,并估计身高不小于170(cm)的同学所占的百分率.168 165 171 167 170 165 170 152 175 174 165 170 168 169 171 166 164 155 164 158 170 155 166 158 155 160 160 164 156 162 160 170 168 164 174 170 165 179 163 172 180 174 173 159 163 172 167 160 164 169 151 168 158 168 176 155 165 165 169 162 177 158 175 165 169 151 163 166 163 167 178 165 158 170 169 159 155 163 153 155 167 163 164 158 168 167 161 162 167 168 161 165 174 156 167 166 162 161 164 166 解:(1)在全部数据中找出最大值180与最小值151,它们相差(极差)29,决定组距为3;(2)将区间[150.5,180.5]分成10组;分别是[150.5,153.5),[153.5,156.5),…,[177.5,180.5);(3)从第一组[150.5,153.5)开始分别统计各组的频数,再计算各组的频率,列频率分布表:分组频数累计频数频率[150.5,153.5) 4 4 0.04[153.5,156.5) 12 8 0.08[156.5,159.5) 20 8 0.08[159.5,162.5) 31 11 0.11 [162.5,165.5) 53 22 0.22 [165.5,168.5) 72 19 0.19 [168.5,171.5) 86 14 0.14 [171.5,174.5) 93 7 0.07 [174.5,177.5) 97 4 0.04 [177.5,180.5)100 3 0.03 合计1001根据频率分布表可以估计,估计身高不小于170的同学所占的百分率为: [0.14×5.1685.1711705.171--+0.07+0.04+0.03]×100%=21%.点评:一般地,编制频率分布表的步骤如下: (1)求极差,决定组数和组距;(2)分组,通常对组内的数值所在的区间取左闭右开区间; (3)登记频数,计算频率,列出频率分布表.思路2例1 下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位:cm). 区间界限 [122,126)[126,130)[130,134)[134,138)[138,142)人数 5 8 10 22 33 区间界限 [142,146)[146,150)[150,154)[154,158)人数116520(1)列出样本频率分布表; (2)画出频率分布直方图;(3)估计身高小于134 cm 的人数占总人数的百分比.分析:根据样本频率分布表、频率分布直方图的一般步骤解题. 解:(1)样本频率分布表如下:分组 频数 频率 [122,126) 5 0.04 [126,130) 8 0.07 [130,134) 10 0.08 [134,138) 22 0.18 [138,142) 33 0.28 [142,146) 20 0.17 [146,150) 11 0.09 [150,154) 6 0.05 [154,158) 5 0.04 合计1201(2)其频率分布直方图如下:(3)由样本频率分布表可知身高小于134 cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134 cm 的人数占总人数的19%.例2 为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如下图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1.解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:391517424+++++=0.08;又因为频率=样本容量第二小组频数,所以样本容量=08.012=第二小组频率第二小组频数=150.(2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.例3 甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平. 甲:12,15,24,25,31,31,36,36,37,39,44,49,50;乙:8,13,14,16,23,26,28,33,38,39,51.解:画出两人得分的茎叶图如下:从这个茎叶图可以看出甲运动员的得分大致对称,平均得分及中位数、众数都是30多分;乙运动员的得分除一个51外,也大致对称,平均得分及中位数、众数都是20多分,因此甲运动员发挥比较稳定,总体得分情况比乙好.(四)知能训练1.下面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据下图可知()A.甲运动员的成绩好于乙运动员B.乙运动员的成绩好于甲运动员C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分答案:A2.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5], 8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的()A.91%B.92%C.95%D.30%答案:A3.一个容量为20的样本数据,数据的分组及各组的频数如下:(10,20),2;(20,30),3;(30,40),4;(40,50),5;(50,60),4;(60,70),2.则样本在区间(10,50)上的频率为()A.0.5B.0.7C.0.25D.0.05答案:B4.一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如下图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭____________万盒.快餐公司个数情况图快餐公司盒饭年销售量的平均数情况图答案:85(五)拓展提升为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm).135 98 102 110 99 121 110 96 100 103 125 97 117 113 110 92 102 109 104 112 109 124 87 131 97 102 123 104 104 128 105 123 111 103 105 92 114 108 104 102 129 126 97 100 115 111 106 117 104 109 111 89 110 121 80 120 121 104 108 118 129 99 90 99 121 123 107 111 91 100 99 101 116 97 102 108 101 95 107 101 102 108 117 99 118 106 119 97 126 108 123 119 98 121 101 113 102 103 104 108 (1)编制频率分布表;(2)绘制频率分布直方图;(3)估计该片经济林中底部周长小于100 cm的树木约占多少?周长不小于120 cm的树木约占多少?解:(1)这组数据的最大值为135,最小值为80, 极差为55,可将其分为11组,组距为5.频率分布表如下:分组频数频率频率/组距[80,85) 1 0.01 0.002[85,90) 2 0.02 0.004[90,95) 4 0.04 0.008[95,100) 14 0.14 0.028[100,105) 24 0.24 0.048[105,110) 15 0.15 0.030[110,115) 12 0.12 0.024[115,120) 9 0.09 0.018[120,125) 11 0.11 0.022[125,130) 6 0.06 0.012[130,135] 2 0.02 0.004 合计100 1 0.2(2)直方图如下图:(3)从频率分布表得,样本中小于100的频率为0.01+0.02+0.04+0.14=0.21,样本中不小于120的频率为0.11+0.06+0.02=0.19,估计该片经济林中底部周长小于100 cm的树木约占21%,周长不小于120 cm的树木约占19%.(六)课堂小结总体分布指的是总体取值的频率分布规律,由于总体分布不易知道,因此我们往往用样本的频率分布去估计总体的分布.总体的分布分两种情况:当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图.(七)作业习题2.2A组1、2.。
2.2.1 《用样本的频率分布估计总体分布》
【学习目标】
1. 通过实例体会分布的意义和作用;
2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;
3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
【重点难点】
教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图
教学难点:能通过样本的频率分布估计总体的分布
【知识链接】
说一说简单随机抽样、系统抽样、分层抽样各自的特点、操作步骤和适用的范围。
【引入】
在统计中,为了考察一个总体的情况,通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况。
这种估计大体分为两类,一类是用样本频率分布估计总体分布,一类是用样本的某种数字特征(例如平均数、方差等)去估计总体的相应数字特征。
下面我们先通过案例来介绍总体分布的估计。
【学习过程】
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。
如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?
为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。
因此采用抽样调查的方式,通过分析样本
P表2-1)
数据来估计全市居民用水量的分布情况。
(见课本
66
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。
表格则是通过改变数据的构成形式,为我们提供解释数据的新方式
下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。
可以让我们更清楚的看到整个样本数据的频率分布情况。
一、频率分布直方图
频率分布是指一个样本数据在各个小范围内所占比例的大小。
一般用频率分布直方图反映样本的频率分布。
其一般步骤为:
(1)计算一组数据中最大值与最小值的差,即求极差
(2)决定组距与组数,组距
极差
组数= (3)将数据分组 (4)列频率分布表 (5)画频率分布直方图
以课本66P 制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。
频率分布直方图的特征:
(1)从频率分布直方图可以清楚的看出数据分布的总体趋势。
(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
思考探究:
(1)在频率分布直方图中,各小长方形的面积表示什么?它们的总和是多少?
(2)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。
不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?
(3)如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-1和频率分布直方图2.2-1,(见课本67P )你能对制定月用水量标准提出建议吗?
二、频率分布折线图、总体密度曲线 1.频率分布折线图的定义:
连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
2.总体密度曲线的定义:
在样本频率分布直方图中,随着样本容量的增加,所分组数的增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。
它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。
(见课本69P )
思考探究:
(1)对于任何一个总体,它的密度曲线是不是一定存在?为什么?
(2)对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?
答:实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确。
三.茎叶图
1.茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
(见课本70P 例子)
2.茎叶图的特征:
(1)用茎叶图表示数据的优点:一是既可以看出样本的分布情况又能看到原始数据;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
【例题精析】
例1、下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)
(2)画出频率分布直方图;
(3)画出频率分布折线图;
(4)估计身高小于134cm的人数占总人数的百分比.。
分析:根据样本频率分布表、频率分布直方图的一般步骤解题。
解:(1)样本频率分布表如下:
(2、3)其频率分布直方图如下:
(4)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.
变式训练:
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1)第二小组的频率是多少?样本容量是多少?
(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,。