2011年高考数学广东卷(理科)2套-带答案
- 格式:pdf
- 大小:1.05 MB
- 文档页数:21
2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。
绝密★启用前 试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足(1)2i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 1.(B ).22(1)11(1)(1)i z i i i i -===-++- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则A B ⋂的元素个数为A .0B .1C .2D .32.(C ).A B ⋂的元素个数等价于圆221x y +=与直线y x =的交点个数,显然有2个交点 3.若向量,,a b c 满足a ∥b 且⊥a c ,则(2)⋅+=c a bA .4B .3C .2D .0正视图 图1侧视图 图2俯视图 图34.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是 A .()()f x g x +是偶函数 B .()()f x g x -是奇函数 C .()()f x g x +是偶函数 D .()()f x g x -是奇函数4.(A ).由()f x 是偶函数、()g x 是奇函数,得()f x 和()g x 都是偶函数,所以()()f x g x +与()()f x g x -都是偶函数,()()f x g x +与()()fx g x -的奇偶性不能确定5.已知平面直角坐标系xOy 上的区域D 由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.若(,)M x y 为D 上的动点,点A的坐标为,则z OM OA =⋅的最大值为A. B . C .4D .3 5.(C ).zy =+,即y z=+,画出不等式组表示的平面区域,易知当直线yz =+经过点2)时,z 取得最大值,max 24z ==6.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军. 若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .346.(D ).乙获得冠军的概率为111224⨯=,则甲队获得冠军的概率为13144-=7.如图1 ~ 3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .B .C .D .7.(B ).该几何体是一个底面为平行四边形,高为3则33V Sh ===8.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有ab S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集,T V Z ⋃=,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B .,T V 中至多有一个关于乘法是封闭的C .,T V 中有且只有一个关于乘法是封闭的D .,T V 中每一个关于乘法都是封闭的 8.(A ).若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9 ~ 13题)9.不等式13x x +--≥0的解集是 . 9.[1,)+∞.13x x +--≥0 ⇒1x +≥3x -⇒2(1)x +≥2(3)x -⇒x ≥110.72()x x x-的展开式中,4x 的系数是 (用数字作答) 10.84.72()x x x -的通项7821772()(2)r r r rr r r T xC x C x x--+=-=-,由824r -=得2r =,则227(2)84C -=11.等差数列{}n a 前9项的和等于前4项的和.若11a =,40k a a +=,则k = . 11.10.方法1:由94S S =得93646d d +=+,求得16d =-,则4111(1)()13()066k a a k +=+-⨯-++⨯-=,解得10k =方法2:由94S S =得567890a a a a a ++++=,即750a =,70a =,即104720a a a +==,即10k = 12.函数32()31f x x x =-+在x = 处取得极小值. 12.2.2()363(2)f x x x x x '=-=-,令()0f x '=得0x =或2x =,显然当0x <时()0f x '>;当02x <<时()0f x '<;当2x >时()0f x '>,函数32()31f x x x =-+在2x =处取得极小值13.某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm .因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为 cm . 13.185.设父亲的身高为x cm ,儿子的身高为y cm ,则根据上述数据可得到如下表格:上表中的最后一组(182,?)是预测数据,173,176x y ==12221()()00361033()niii nii x x y y b xx ==--++⨯===++-∑∑,3a y bx =-=线性回归方程3y x =+,所以当182x =时,185y =,即他孙子的预测身高为185 cm .(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x yθθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t ⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14.(1,)5. sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y <≤≤≤,254x t y t ⎧=⎪⎨⎪=⎩表示抛物线245y x = 22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为图4COPBA15.(几何证明选讲选做题)如图4,过圆O 外一点P 分别作 圆的切线和割线交圆于,A B ,且7PB =,C 是圆上一点使得5BC =,BAC APB ∠=∠,则AB =___________.15由弦切角定理得PAB ACB ∠=∠,又BAC APB ∠=∠, 则△PAB ∽△ACB ,则PB AB AB BC=,235AB PB BC =⋅=,即AB =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x ∈R .(1)求5()4f π的值; (2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求cos()αβ+的值.16.解:(1)515()2sin()2sin 43464f ππππ=⨯-==(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴1235416cos()cos cos sin sin 13513565αβαβαβ+=-=⨯-⨯=17.(本小题满分13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素,x y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素,x y 满足175x ≥且75y ≥时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望).17.解:(1)设乙厂生产的产品数量为a 件,则98145a =,解得35a = 所以乙厂生产的产品数量为35件(2)从乙厂抽取的5件产品中,编号为2、5的产品是优等品,即5件产品中有2件是优等品由此可以估算出乙厂生产的优等品的数量为235145⨯=(件) (3)ξ可能的取值为0,1,223253(0),10C P C ξ=== 1123256(1),10C C P C ξ=== 22251(2),10C P C ξ===∴ξ的分布列为:∴3614012.1010105E ξ=⨯+⨯+⨯=图5CDPBAEFCDPAE FH 18.(本小题满分13分)如图5,在锥体P ABCD -中,ABCD 是边长为1的 菱形,且60DAB ∠=,PA PD ==2PB =,,E F分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P AD B --的余弦值.18.(1)证明:取AD 的中点H ,连接,,PH BH BD∵PA PD =,∴AD PH ⊥∵在边长为1的菱形ABCD 中,60DAB ∠= ∴△ABD 是等边三角形∴AD HB ⊥,PH HB H = ∴AD ⊥平面PHB ∴AD PB ⊥∵,E F 分别是BC ,PC 的中点 ∴EF ∥PB ,HB ∥DE∴AD DE ⊥,AD EF ⊥,DEEF E =∴AD ⊥平面DEF(2)解:由(1)知PH AD ⊥,HB AD ⊥ ∴PHB ∠是二面角P AD B --的平面角易求得22PH BH ==∴2227334cos 27PH HB PB PHB PH HB+--+-∠====-⋅ ∴二面角P AD B --的余弦值为7-设圆C与两圆22(4x y +=,22(4x y +=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程; (2)已知点M,F ,且P 为L 上动点,求MP FP - 的最大值及此时点P 的坐标.19.解:(1)设(F F ',圆C 的半径为r ,则(2)(2)4CF CF r r '-=+--=< ∴C 的圆心轨迹L 是以,F F '为焦点的双曲线,2a =,c =1b =∴C 的圆心轨迹L 的方程为2214x y -= (2)2MP FP MF -≤== ∴MP FP - 如图所示,P 必在L 直线MF 的斜率2k =-:2MF y x =-+22142x y y x ⎧-=⎪⎨⎪=-+⎩215280x -+= 6)0--=12155x x == ∵P x ,∴P x =,P y =∴MP FP - 的最大值为2,此时P 为设0b >,数列{}n a 满足1a b =,1122n n n nba a a n --=+-(2)n ≥.(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n b a ++≤+.20.(1)解:∵1122n n n nba a a n --=+-∴1122n n n a ba n a n --=+- ∴1211n n n n a b a b--=⋅+ ① 当2b =时,1112n n n n a a ---=,则{}n n a 是以12为首项,12为公差的等差数列 ∴11(1)22n n n a =+-⨯,即2n a = ② 当0b >且2b ≠时,11211()22n n n n a b b a b--+=+-- 当1n =时,122(2)n n a b b b +=-- ∴1{}2n n a b +-是以2(2)b b -为首项,2b为公比的等比数列 ∴112()22n n n a b b b+=⋅-- ∴212(2)2(2)n n n n nn n b a b b b b b-=-=--- ∴(2)2nn n nn b b a b-=- 综上所述(2),02222nn n n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)方法一:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,12212(2)(222)nnn n n n b b b b b -----=-++++1221222nnnn n n n nnn ba b b b ----⋅=≤=++++111211112222222n n n n n n n n b b b b+++---++=====<=⋅1112n n b +++∴对于一切正整数n ,1112n n n b a ++≤+.方法二:证明:① 当2b =时,11122n n n b a ++=+=;② 当0b >且2b ≠时,要证1112n n n b a ++≤+,只需证11(2)122n n n n n nb b b b ++-≤+-, 即证1(2)122n n n nn b b b b+-≤+- 即证1221112222n n n n n n n b b b b b ----+≤+++++ 即证122111()(222)2n n n n n n b b b b n b----++++++≥即证2112231122221()()2222n n n n n n n n b b b b n b b b b---+-+++++++++≥ ∵2112231122221()()2222n n n n n n n n b b b b b bb b---+-+++++++++2121232111222()()()()2222n n n n n n n n b b b b b b b b----+=++++++++122n nb n -≥+=,∴原不等式成立 ∴对于一切正整数n ,1112n n n b a ++≤+.21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线L :214y x =.实数,p q 满足24p q -≥0,12,x x 是方程20x px q -+=的两根,记12(,)max{,}p q x x ϕ=.(1)过点2001(,)4A p p 0(0)p ≠作L 的切线交y 轴于点B .证明:对线段AB 上的任一点(,)Q p q ,有0(,)2p p q ϕ=; (2)设(,)M a b 是定点,其中,a b 满足240a b ->,0a ≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为2111(,)4E p p ,2221(,)4E p p ',12,l l 与y 轴分别交于,F F '.线段EF 上异于两端点的点集记为X .证明:112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=; (3)设{(,)|D x y y =≤1x -,y ≥215(1)}44x +-.当点(,)p q 取遍D 时,求(,)p q ϕ的最小值 (记为min ϕ)和最大值(记为max ϕ)21.解:(1)2001(,)4A p p 是抛物线L 上的点,12y x '=,则切线的斜率012k p = 过点A 的抛物线L 的切线方程为AB :200011()42y p p x p -=-,即2001124y p x p =- ∵(,)Q p q 在线段AB 上,∴2001124q p p p =-, ∴22220001144()()24p q p p p p p p -=--=-≥0不妨设方程20x px q -+=的两根为1x =2x = 则012p p p x --=,022p p p x +-=① 当00p >时,00p p ≤≤,001222p p p x p -==-,022p x = ∵00122p p x -<≤,∴12x x ≤,∴122(,)max{,}p q x x x ϕ==02p = ② 当00p <时,00p p ≤≤,012p x =,002222p p p x p -==- ∵00222p p x ≤<-,∴12x x ≥,∴121(,)max{,}p q x x x ϕ==02p = 综上所述,对线段AB 上的任一点(,)Q p q ,有0(,)2p p q ϕ=(2)由(1)知抛物线L 在2001(,)4p p 处的切线方程为2001124y p x p =-,即200240p p x y -+= ∵切线恒过点(,)M a b ,则200240p ap b -+=,∴21,24p a a b =-① 当0a >时,(,)M a b X ∈⇔10a p <<⇔214p a a b =-,224p a a b =-⇔12p p > ② 当0a <时,(,)M a b X ∈⇔10p a <<⇔214p a a b =-,224p a a b =-⇔12p p > 综合①②可得(,)M a b X ∈⇔12p p >∵由(1)可知,若2111(,)4E p p , 点(,)M a b 在线段EF 上,有1(,)2p a b ϕ=∴(,)M a b X ∈⇒1(,)2p a b ϕ=③ 由(1)可知,方程20x ax b -+=的两根11,22p x =或12p a -,21,22p x =或22p a - 若1(,)2p a b ϕ=,即112max{,}2p x x = 则1122p a p -≥、 2122p p ≥、 2122p a p -≥ ∴12p p > ∴1(,)2p a b ϕ=⇒12||||p p >⇒(,)M a b X ∈ ④ 综合③④可得(,)M a b X ∈⇔1(,)2p a b ϕ= 综上所述112(,)(,)2p M a b X p p a b ϕ∈⇔>⇔=;(3)由2115(1)44y x y x =-⎧⎪⎨=+-⎪⎩,求得两个交点(0,1),(2,1)- 则02p ≤≤,过点(,)G p q 作抛物线L 的切线,设切点为N 2001(,)4x x ,切线与y 轴的交点为H 由(2)知200240x px q -+=,解得204x p p q =-① 若0x p =+(,)G p q 在线段NH 上 由1y x ≤-,得1q p ≤-,∴022x p p p p =+≥=+-=, ∴0m min in )12(x ϕ==. 由215(1)44y x ≥+-,得221511(1)14442q p p p ≥+-=+- ∴2442p q p -≤-,∴0x p p =+≤+t =,则2122p t =-+,02t ≤≤ ∴22011552(1)2222x t t t ≤-++=--+≤ ∴0max max 5)24(x ϕ==② 若0x p =(,)G p q 在线段NH 的延长线上 方程20x px q -+=的两根为012p p x x --=,022p p x x +-= 即01,22x x =或02x p - ∵0x p ≤ ∴00012(,)max{,}max{,}222x x x p q x x p p ϕ==-=-p ==51(,)4p q ϕ≤≤ 综上所述min 1ϕ=,max 54ϕ=。
2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【考点】交集及其运算.【专题】集合.【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C【点评】此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的运算.【专题】平面向量及应用.【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D【点评】本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律.4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g (x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A【点评】本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解答本题的关键.5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z 最大.因为B(,2),故z的最大值为4.故选:C.【点评】本题考查线形规划问题,考查数形结合解题.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为【点评】本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9C.12D.18【考点】由三视图求面积、体积.【专题】立体几何.【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.【点评】本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解答本题的关键.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【考点】元素与集合关系的判断.【专题】集合.【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.【点评】此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的题型.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)A一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. ==+z i z i z 为虚数单位,则,其中满足设复数2)1(A . i +1B . i -1C . i 22+D . i 22-2.{}{}x y y x y x B y x y x y x A ===+=为实数,且,为实数,且已知集合,),(1,),(22, 的元素个数为则B AA . 0B . 1C . 2D . 3 3.=+⋅⊥)2(//b a c c a b a c b a ,则且满足,,若向量A . 4B . 3C . 2D . 04.则下列结论恒成立的是上的偶函数和奇函数,分别是和设函数R x g x f )()( A . 是偶函数)()(x g x f + B . 是奇函数)()(x g x f - C . 是偶函数)()(x g x f + D . 是奇函数)()(x g x f -5.为给定。
若由不等式组上的区域已知平面直角坐标系),(2220y x M y x y x D xOy ⎪⎩⎪⎨⎧≤≤≤≤ 的最大值为,则的坐标为上的动点,点OA OM z A D ⋅=)1,2(A . 24B . 23C . 4D . 3 6.甲、乙两队进行排球决赛,现在的情形是甲队只要 再赢一局就获冠军,乙队需要再赢两局才能得冠军. 若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为 A .63 B .93 C .123 D .1838.设S 是整数集Z 的非空子集,如果,a b S ∀∈,有ab S ∈,则称S 关于数的乘法是封闭的.若,T V 是Z 的两个不相交的非空子集, T V Z = ,且,,a b c T ∀∈,有abc T ∈;,,x y z V ∀∈,有xyz V ∈,则下列结论恒成立的是A . ,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的 二、填空题:本大题共7小题.考生作答6小题.每小题5分,满分30分. (一)必做题(9~13题)9.不等式130x x +--≥的解集是 .10.7)2(xx x -的展开式中4x 的系数是 .(用数字作答)11.等差数列{}n a 的前9项和等于前4项和,若0,141=+=a a a k ,则=k . 12.函数13)(23+-=x x x f 在=x 处取得极小值.13.某数学老师身高176cm ,他爷爷,父亲,儿子的身高分别是173cm,170cm 和182cm ,因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高是 cm . (二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为⎩⎨⎧==θθsin cos 5y x (0≤θ <π )和⎪⎩⎪⎨⎧==ty t x 245(t ∈R ),它们的交点坐标为.15.(几何证明选讲选做题)如图4,过圆o 外一点P 分别做 圆的切线和割线交圆于A,B 两点,且PB=7,C 是圆上一点使 得BC=5,,B AP BAC ∠=∠则AB= .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数1()2sin(),36f x x x R π=-∈.(1)求5()4f π的值; (2)设,[0,]2παβ∈,10(3)213f πα+=,6(32)5f βπ+=,求cos()αβ+的值.(纯word 版2011年高考数学广东卷首发于数学驿站:www .maths168.com ) 17.(本小题满分13分)为了解甲,乙两厂的产品质量,采取分层抽样的方法从甲,乙两厂的产品中分别抽取14件和5件,测量产品中微量元素y x ,的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x169 178 166 175 180 y7580777081(1) 已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2) 当产品中微量元素y x ,满足175≥x 且75≥y 时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;(3) 从乙厂抽出的上述5件产品中,随即抽取2件,求抽出的2件产品中优等品数ξ的分布列及其均值(即数学期望).18.(本小题满分13分)如图5,在锥体P-ABCD 中,ABCD 是边长为1的菱形,且60DAB ∠= ,2PA PD ==,PB=2,E ,F 分别是BC ,PC 的中点. (1) 证明:AD ⊥平面DEF ; (2) 求二面角P-AD-B 的余弦值.19.(本小题满分14分)设圆C 与两圆22(5)4x y ++=,22(5)4x y -+=中的一个内切,另一个外切.(1) 求C 的圆心轨迹L 的方程; (2) 已知点M (553,554),F (5,0),且P 为L 上的动点,求FP MP -的最大值及此时点P 的坐标.20.(本小题满分14分)设b>0,数列}{n a 满足b a =1,11(2)22n n n nba a n a n --=≥+-.(1)求数列}{n a 的通项公式;(2)证明:对于一切正整数n ,1112n n n ba ++≤+.21.(本小题满分14分)在平面直角坐标系xOy 上,给定抛物线21:4L y x =,实数,p q 满足240p q -≥,12,x x 是方程20x px q -+=的两根,记12(,)max{||,||}p q x x ϕ=.(1) 过点20001(,)(0)4A p p p ≠作L 的切线交y 轴于点B .证明:对线段AB 上的任一点(,)Q p q ,有0||(,)2p p q ϕ=;(2) 设(,)M a b 是定点,其中,a b 满足240,0a b a ->≠.过(,)M a b 作L 的两条切线12,l l ,切点分别为22112211(,),`(,)44E p p E p p ,12,l l 与y 轴分别交于,`F F .线段EF 上异于两端点的点集记为X ,证明:112||(,)||||(,)2p M a b X p p a b ϕ∈⇔>⇔=; (3) 设215{(,)|1,(1)}44D x y y x y x =≤-≥+-,当点(,)p q 取遍D 时,求(,)p q ϕ的最小值(记为min ϕ)和最大值(记为max ϕ).。
2011年广东高考理科数学试题及答案(纯word版)试卷类型:A2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式 V=Sh 其中S 为柱体的底面积,h 为柱体的高线性回归方程y bx a =+中系数计算公式 其中,x y 表示样本均值。
N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.3 3. 若向量a,b,c满足a∥b且a⊥b,则(2)c a b •+=A.4 B.3 C.2 D.04. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数B.()()f x g x -是奇函数C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪≤⎨⎪≤⎩给定。
2011年全国高考2卷理科数学试题及答案2011年普通高等学校招生全国统一考试(全国卷II)数学本试卷共4页,共三大题21小题,总分150分,考试时间120分钟。
考生答题前需在试题卷和答题卡上填写姓名和准考证号,并将准考证号条形码粘贴在答题卡上的指定位置。
选择题需用2B铅笔将答案标号涂黑,如需更改,需用橡皮擦干净后重新涂写。
填空题和解答题需使用0.5毫米黑色墨水签字笔在答题卡上的对应区域内回答,试题卷上的回答无效。
考试结束时,请一并上交试题卷和答题卡。
一、选择题本大题共12小题,每小题5分,共60分。
在每小题的四个选项中,只有一项是符合题目要求的。
1.已知复数z=1+i,z为其共轭复数,则zz-z-1=A)-2i(B)-i(C)i(D)2i2.函数y=2x(x≥0)的反函数为A)y=(x∈R)B)y=(x≥0)C)y=4x2(x∈R)D)y=4x2(x≥0)3.以下四个条件中,使a>b成立的充分必要条件是A)a>b+1B)a>b-1C)a>bD)以上条件都是4.设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,且Sk+2-Sk=24,则k=A)8(B)7(C)6(D)55.已知函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移2π/3个单位长度后,所得的图像与原图像重合,则ω的最小值等于A)1/3B)3C)6D)96.已知直二面角α-ℓ-β,点A∈α,AC⊥ℓ,C为垂足,B∈β,BD⊥ℓ,D为垂足,且AB=2,AC=BD=1,则D到平面ABC的距离等于A)2√3/3B)√2C)1D)2√3/37.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有A)4种B)10种C)18种D)20种8.曲线y=e2x+1在点(0,2)处的切线与直线y=-x和y=x围成的三角形的面积为A)1/12B)1/2C)1/3D)1/329.设f(x)是周期为2的奇函数,当-1≤x≤1时,f(x)=2x(1-x),则f(-5/4)=A)-11/16B)-1/4C)1/4D)11/16210.已知抛物线C:y=4x的焦点为F,直线y=2x-4与C交于A、B两点,则cos∠AFB=(A)解析:首先,求出抛物线C的准线方程为y=-4x,焦点为F(0,1)。
试卷类型:A20XX 年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V=Sh 其中S 为柱体的底面积,h 为柱体的高线性回归方程y bx a =+中系数计算公式 其中,x y 表示样本均值。
N 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i - C. 22i + D.22i -2.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =,则A B ⋂的元素个数为A.0 B.1 C.2 D.3 3. 若向量a,b,c满足a∥b且a⊥b,则(2)c a b •+=A.4 B.3 C.2 D.04. 设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5. 在平面直角坐标系xOy 上的区域D 由不等式组0222x y x y ⎧≤≤⎪≤⎨⎪≤⎩给定。
2011年广东省高考数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.(5分)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i2.(5分)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y 为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.33.(5分)若向量,,满足∥且⊥,则•(+2)=()A.4 B.3 C.2 D.04.(5分)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数5.(5分)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()A.4 B.3 C.4 D.36.(5分)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.7.(5分)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9 C.12D.188.(5分)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c ∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的二、填空题(共7小题,每小题5分,其中14、15只能选做一题。
满分30分)9.(5分)不等式|x+1|﹣|x﹣3|≥0的解集是.10.(5分)x(x﹣)7的展开式中,x4的系数是.11.(5分)等差数列{a n}前9项的和等于前4项的和.若a1=1,a k+a4=0,则k=.12.(5分)函数f(x)=x3﹣3x2+1在x=处取得极小值.13.(5分)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为cm.14.(5分)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为.15.如图,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=7,C是圆上一点使得BC=5,∠BAC=∠APB,则AB=.三、解答题(共1小题,满分12分)16.(12分)已知函数f(x)=2sin(x﹣),x∈R(1)求f()的值;(2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值.17.(13分)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品总数.(2)当产品中的微量元素x,y满足x≥175,y≥75,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中的优等品数ξ的分布列及其均值(即数学期望).18.(13分)如图,在锥体P﹣ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=,PB=2,E,F分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P﹣AD﹣B的余弦值.19.(14分)设圆C与两圆(x+)2+y2=4,(x﹣)2+y2=4中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程;(2)已知点M(,),F(,0),且P为L上动点,求||MP|﹣|FP||的最大值及此时点P的坐标.20.(14分)设b>0,数列{a n}满足a1=b,a n=(n≥2).(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,a n≤+1.21.(14分)在平面直角坐标系xoy上,给定抛物线L:y=x2.实数p,q满足p2﹣4q≥0,x1,x2是方程x2﹣px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.(1)过点,A(p0,p02)(p0≠0),作L的切线交y轴于点B.证明:对线段AB上的任一点Q(p,q),有φ(p,q)=;(2)设M(a,b)是定点,其中a,b满足a2﹣4b>0,a≠0.过M(a,b)作L的两条切线l1,l2,切点分别为E(p1,),E′(p2,p22),l1,l2与y轴分别交于F,F′.线段EF上异于两端点的点集记为X.证明:M(a,b)∈X⇔|P1|<|P2|⇔φ(a,b)=.(3)设D={(x,y)|y≤x﹣1,y≥(x+1)2﹣}.当点(p,q)取遍D时,求φ(p,q)的最小值(记为φmin)和最大值(记为φmax)2011年广东省高考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=()A.1+i B.1﹣i C.2+2i D.2﹣2i【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi则(1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2即解得x=1,y=﹣1故Z=1﹣i故选B2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3【分析】据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个.【解答】解:联立两集合中的函数解析式得:,把②代入①得:2x2=1,解得x=±,分别把x=±代入②,解得y=±,所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣),则A∩B的元素个数为2个.故选C3.(5分)(2011•广东)若向量,,满足∥且⊥,则•(+2)=()A.4 B.3 C.2 D.0【分析】利用向量共线的充要条件将用表示;垂直的充要条件得到;将的值代入,利用向量的分配律求出值.【解答】解:∵∴存在λ使∵∴=0∴=2=0故选D4.(5分)(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.f(x)+|g(x)|是偶函数B.f(x)﹣|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.|f(x)|﹣g(x)是奇函数【分析】由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案.【解答】解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数,则|g(x)|也为偶函数,则f(x)+|g(x)|是偶函数,故A满足条件;f(x)﹣|g(x)|是偶函数,故B不满足条件;|f(x)|也为偶函数,则|f(x)|+g(x)与|f(x)|﹣g(x)的奇偶性均不能确定故选A5.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为()A.4 B.3 C.4 D.3【分析】首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值.【解答】解:如图所示:z=•=x+y,即y=﹣x+z首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z最大.因为B(,2),故z的最大值为4.故选:C.6.(5分)(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.【分析】根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论.【解答】解:甲要获得冠军共分为两个情况一是第一场就取胜,这种情况的概率为一是第一场失败,第二场取胜,这种情况的概率为×=则甲获得冠军的概率为故选D7.(5分)(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.6 B.9 C.12D.18【分析】由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式即可得到答案.【解答】解:由已知中三视图该几何体为四棱柱,其底面底边长为3,底边上的高为:=,故底面积S=3×=3,又因为棱柱的高为3,故V=3×3=9,故选B.8.(5分)(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是()A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行分析排除即可.【解答】解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C;若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D;从而可得T,V中至少有一个关于乘法是封闭的,A正确.故选A.二、填空题(共7小题,每小题5分,其中14、15只能选做一题。