2011年高考数学广东卷(文科)(word版含答案)
- 格式:doc
- 大小:1017.50 KB
- 文档页数:12
2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题共 12 题, 共计 60 分)1、设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则(M∩N)=() A.{1,2} B.{2,3} C.{2,4} D.{1,4}2、函数y=2(x≥0)的反函数为()A.(x∈R) B.(x≥0)C.y=4x2(x∈R) D.y=4x2(x≥0)3、设向量a,b满足|a|=|b|=1,,则|a+2b|=()A.B.C.D.4、若变量x,y满足约束条件则z=2x+3y的最小值为() A.17 B.14 C.5 D.35、下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1 B.a>b-1 C.a2>b2 D.a3>b36、设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k =()A.8 B.7 C.6 D.57、设函数f(x)=cosωx(ω>0),将y=f(x)的图像向右平移个单位长度后,所得的图像与原图像重合,则ω的最小值等于()A. B.3 C.6 D.98、已知直二面角α-l-β,点A∈α,AC⊥l,C为垂足,点B∈β,BD⊥l,D为垂足.若AB=2,AC=BD=1,则CD=…()A.2 B.C.D.19、4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()A.12种B.24种C.30种D.36种10、(5分)设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(-5/2)=()A.B.C.D.11、设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.12、已知平面α截一球面得圆M,过圆心M且与α成60°二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4π,则圆N的面积为() A.7πB.9πC.11πD.13π二、填空题( 本大题共 4 题, 共计20 分)13、(1-x)10的二项展开式中,x的系数与x9的系数之差为______.14、已知,tanα=2,则cosα=______.15、已知正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与BC 所成角的余弦值为______.16、已知F1、F2分别为双曲线C:的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线,则|AF2|=______.三、解答题( 本大题共 6 题, 共计70 分)17、设等比数列{a n}的前n项和为S n.已知a2=6,6a1+a3=30,求a n和S n.18、△ABC的内角A、B、C的对边分别为a、b、c,.(1)求B;(2)若A=75°,b=2,求a,c.19、根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.20、如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB =BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成的角的大小.21、已知函数f(x)=x3+3ax2+(3-6a)x+12a-4(a∈R).(1)证明:曲线y=f(x)在x=0处的切线过点(2,2);(2)若f(x)在x=x0处取得极小值,x0∈(1,3),求a的取值范围.22、已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F 且斜率为的直线l与C交于A,B两点,点P满足. (1)证明:点P在C上;(2)设点P关于点O的对称点为Q,证明:A,P,B,Q四点在同一圆上.—2011年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:一、选择题( 本大题共12 题, 共计60 分)1、(5分) DM∩N={1,2,3}∩{2,3,4}={2,3},又∵U={1,2,3,4},∴(M∩N)={1,4}.2、(5分) B由(x≥0)得(y≥0),∴,∴反函数为(x≥0).3、(5分) B由|a|=|b|=1,,得.4、(5分) C由x,y的约束条件画出可行域如图:设l0:,则过A点时,z的值最小.由得A(1,1),∴z min=2×1+3×1=5.5、(5分) AA项中a>b+1>b,所以充分性成立,但必要性不成立,所以“a>b +1”为“a>b”成立的充分不必要条件.6、(5分) D由S k+2-S k=24,∴a k+1+a k+2=24,∴a1+kd+a1+(k+1)d=24,∴2a1+(2k+1)d=24.又a1=1,d=2,∴k=5.7、(5分) C由题意得:为函数f(x)=cosωx的最小正周期的正整数倍,∴(k∈N*),∴ω=6k(k∈N*),∴ω的最小值为6.8、(5分) C如图,AB=2,AC=BD=1,连结BC,则△ABC为直角三角形,∴.又△BCD为直角三角形,∴.9、(5分) B先从4人中选2人选修甲课程,有种方法,剩余2人再选修剩下的2门课程,有22种方法,∴共有种方法.10、(5分) A∵f(x)是周期为2的奇函数,∴11、(5分) C由题意可设两圆的方程均为:(x-r)2+(y-r)2=r2.将(4,1)代入,可得:(4-r)2+(1-r)2=r2,∴r2-10r+17=0.∴此方程两根r1,r2分别为两圆半径,∴两圆心的距离12、(5分) D由题意可得截面图形.∵圆M的面积为4π,∴圆M的半径为2.∵α与β所成二面角为60°,∴∠BMC=60°.在△OMB中,∠OMB=90°,MB=2,OB=4,∴∠OBM=60°. ∴OB∥CD,.在△OMN中,∠OMN=30°,,∴.∴.∴圆N的面积为.二、填空题( 本大题共4 题, 共计20 分)13、(5分) 0解析:(1-x)10的通项公式.∴,,∴系数之差为.14、(5分)解析:∵α∈(π,),tanα=2,∴.又sin2α+cos2α=1,∴5cos2α=1,∴.15、(5分)解析:如图,连结DE.∵AD∥BC,∴AE与BC所成的角,即为AE与AD所成的角,即∠EAD. 设正方体棱长为a,∴,∴,∴.16、(5分) 6解析:F1(-6,0),F2(6,0),M(2,0),∴|F1M|=8,|MF2|=4.由内角平分线定理得:,又|AF1|-|AF2|=2a=2×3=6,∴2|AF2|-|AF2|=|AF2|=6.三、解答题( 本大题共6 题, 共计70 分)17、(10分) 解:设{a n}的公比为q,由题设得解得或当a1=3,q=2时,a n=3×2n-1,S n=3×(2n-1);当a1=2,q=3时,a n=2×3n-1,S n=3n-1.18、(12分) 解:(1)由正弦定理得.由余弦定理得b2=a2+c2-2ac cos B.故,因此B=45°.(2)sin A=sin(30°+45°)=sin30°cos45°+cos30°sin45°=. 故,.19、(12分) 解:记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D表示事件:该地的1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2),P(D)=1-P(C)=1-0.8=0.2,P(E)=×0.2×0.82=0.384.20、(12分)解法一:(1)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2.连结SE,则SE⊥AB,.又SD=1,故ED2=SE2+SD2,所以∠DSE为直角.由AB⊥DE,AB⊥SE,DE∩SE=E,得AB⊥平面SDE,所以AB⊥SD. SD与两条相交直线AB、SE都垂直.所以SD⊥平面SAB.(2)由AB⊥平面SDE知,平面ABCD⊥平面SDE.作SF⊥DE,垂足为F,则SF⊥平面ABCD,.作FG⊥BC,垂足为G,则FG=DC=1.连结SG,则SG⊥BC.又BC⊥FG,SG∩FG=G,故BC⊥平面SFG,平面SBC⊥平面SFG. 作FH⊥SG,H为垂足,则FH⊥平面SBC.,即F到平面SBC的距离为.由于ED∥BC,所以ED∥平面SBC,E到平面SBC的距离d也为.设AB与平面SBC所成的角为α,则,.解法二:以C为坐标原点,射线CD 为x轴正半轴,建立如图所示的空间直角坐标系Cxyz.设D(1,0,0),则A(2,2,0),B(0,2,0).又设S(x,y,z),则x>0,y>0,z>0,(1)=(x-2,y-2,z),=(x,y-2,z),=(x-1,y,z),由得,故x=1.由得y2+z2=1,又由得x2+(y-2)2+z2=4,即y2+z2-4y+1=0,故,.于是,,,,,.故DS⊥AS,DS⊥BS,又AS∩BS=S,所以SD⊥平面SAB.(2)设平面SBC的法向量a=(m,n,p),则,,,.又,,故取p=2得.又,.故AB与平面SBC所成的角为.21、(12分) 解:(1)f′(x)=3x2+6ax+3-6a.由f(0)=12a-4,f′(0)=3-6a,得曲线y=f(x)在x=0处的切线方程为y=(3-6a)x+12a-4,由此知曲线y=f(x)在x=0处的切线过点(2,2).(2)由f′(x)=0,得x2+2ax+1-2a=0.①当时,f(x)没有极小值;②当或时,由f′(x)=0,得,,故x0=x2.由题设知1<-a+<3.当时,不等式无解;当时,解不等式,得.综合①②得a的取值范围是(,).22、(12分) 解:(1)F(0,1),l的方程为,代入并化简得.设A(x1,y1),B(x2,y2),P(x3,y3),则,,,,由题意得,y3=-(y1+y2)=-1.所以点P的坐标为.经验证,点P的坐标)满足方程,故点P在椭圆C 上.(2)由P和题设知,Q,PQ的垂直平分线l1的方程为.①设AB的中点为M,则M,AB的垂直平分线l2的方程为.②由①②得l1、l2的交点为N,,,,,,故|NP|=|NA|.又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|NQ|,由此知A,P,B,Q四点在以N为圆心,NA为半径的圆上.—。
2011年普通高等学校招生全国统一考试一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )I ð (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4【答案】D【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥【答案】B【命题意图】本题主要考查反函数的求法. 【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥. (3)设向量,a b 满足||||1a b ==,12a b ⋅=-r r ,则2a b += (A(B(C(D【答案】B 【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5【答案】D【命题意图】本题主要考查等差数列的基本公式的应用.【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂 足,若2,1AB AC BD ===,则CD =(A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =,在Rt OMN ∆中,30OMN ︒∠=, ∴12ON OM ==故圆N 的半径r ==,∴圆N 的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)本试题共4页,21小题,满分150分,考试用时120分钟。
注意事项:1、 答卷前,考生务必用黑色自己的钢笔或签字笔将自己的姓名、和考生号、试室号、座位号,填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”.2、 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3、 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求做大的答案无效。
4、 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答。
漏涂、错涂、多涂的,答案无效。
5、 考生必须保持答题卡得整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式V Sh =,其中S 为柱体的底面积,h 为柱体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- . 其中,x y 表示样本均值.n 是正整数,则()n na b a b -=-12(n n a a b --++ (21)n n ab b --+).一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数z 满足()12i z +=,其中i 为虚数单位,则z =A .1i +B .1i -C .22i +D .22i - 【解析】B ;依题意得211z i i==-+,故选B .2.已知集合{(,)|A x y =,x y 为实数,且}221x y +=,{(,)|B x y =,x y 为实数,且}y x =,则A B 的元素个数为A .0B .1C .2D .3 【解析】C;题意等价于求直线y x =与圆221x y +=的交点个数,画大致图像可得答案为C . 3. 若向量a ,b ,c 满足a ∥b 且a ⊥c ,则⋅(2)=c a +bA .4B .3C .2D .0 【解析】D;因为a ∥b 且a ⊥c ,所以b ⊥c ,从而⋅⋅⋅(2)=20c a +b c a +c b =,故选D . 4. 设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是A .()()f x g x +是偶函数B .()()f x g x -是奇函数C .()()f x g x +是偶函数D .()()f x g x -是奇函数 【解析】A;依题意()(),()()f x f x g x g x -=-=-,故()|()|()|()|f x g x f x g x -+-=+,从而()|()|f x g x + 是偶函数,故选A .5. 在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A 的坐标为,则z OM OA =⋅的最大值为A .B .C .4D .3 【解析】C;目标函数即z y =+,画出可行域如图所示,代入端点比较之,易得当2x y ==时z 取得最大值4,故选C .6. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获 得冠军的概率为A .12B .35C .23D .34【解析】D;设甲队获得冠军为事件A ,则A 包含两种情况:(1)第一局胜;(2)第一局负但第二局胜;故所求概率1113()2224P A =+⨯=,从而选D .7. 如图1-3,某几何体的正视图(主视图)是平行四边形, 侧视图(左视图)和俯视图都是矩形,则该几何体的体积 为A .B .C .D .【解析】B ;该几何体是以正视图所在的平行四边形为底面,高为 3的四棱柱,又平行四边形的底边长为3,,所以面积 S=从而所求几何体的体积V Sh ==故选B . 8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T ,V 是Z 的两个不相交的非空子集,T V Z = 且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A .,T V 中至少有一个关于乘法是封闭的B . ,T V 中至多有一个关于乘法是封闭的C . ,T V 中有且只有一个关于乘法是封闭的D . ,T V 中每一个关于乘法都是封闭的【解析】A;因为T V Z = ,故必.有.1∈T 或1∈V ,不妨设1∈T ,则令1c =,依题意对,a b T ∀∈,有ab T ∈,从而T 关于乘法是封闭的;(其实到此已经可以选A 了,但为了严谨,我们往下证明可以有一个不封闭以及可以两个都封闭),取T N =,则V 为所有负整数组成的集合,显然T 封闭,但V 显然是不封闭的,如(1)(2)2V -⨯-=∉;同理,若{T =奇数},{V =偶数},显然两者都封闭,从而选A .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题...卷上作答无效....... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=(M N )I ð (A ){}12,(B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U M N M N =∴=ðQ I I(2)函数0)y x =≥的反函数为(A )2()4xy x R =∈ (B )2(0)4xy x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24yx =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4xy x =≥.(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A (B (C (D【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=r r r r r u r ,所以2a b +=r r (4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系.【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,A C l ⊥,C 为垂足,B β∈,B D l ⊥,D 为垂 足,若2,1AB AC BD ===,则C D = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, A C l ⊥,∴AC ⊥平面β,A C B C ∴⊥BC ∴=又B D l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -=(A) -12(B)1 4- (C)14(D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值.【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111((2)()()2(12222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离O M =,在R t O M N ∆中,30OMN ︒∠=, ∴12O N O M ==故圆N 的半径r ==,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年普通高等学校招生全国统一考试(广东卷)数学(理科)试卷类型:A 成本文参考公式:柱体的体积公式V =Sh ,其中S 为柱体的底面积,h 为柱体的高; 线性回归方程y bx a =+中系数计算公式为1122211()()()nnii i ii i nniii i xx y y x yxyb xx xnxη====---==--∑∑∑∑,a y bx =-,其中,x y 表示样本均值;若n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+).一、 选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足()12i z +=,其中i 为虚数单位,则z = A .1i + B. 1i -C. 22i +D.22i -2.已知集合(){,A x y =∣,x y 为实数,且}221xy +=,(){,B x y =∣,x y 为实数,且}y x =,则A B 的元素个数为A.0 B.1 C.2 D.3 3.若向量a, b, c 满足a ∥b 且a ⊥c ,则(2)⋅+=c a bA.4 B.3C.2D.04.设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是 A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数5.在平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定。
若(,)M x y 为D 上的动点,点A的坐标为,则=⋅z OM OA 的最大值为 A. B. C .4D .36.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为 A .12 B .35 C .23 D .347.如下图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为A.B.C.D.8.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的,若T ,V 是Z 的两个不相交的非空子集,TV Z =且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是A.,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C.,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分。
广 东 省2011年普通高等学校招生全国统一考试密卷数学(文)试题本试卷共4页,21小题, 满分150分. 考试用时120分钟.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合}{10A x ax =+=,且1A ∈,则实数a 的值为A .1-B . 0C .1D .2 2.已知i 为虚数单位, 若复数11z =-i ,22z =+i ,则12z z =A .3-i B. 22-iC. 1+i D .22+i 3. 已知向量p ()2,3=-,q (),6x =,且//p q ,则+p q 的值为 A B.C. 5D .134. 已知椭圆()222109x y a a+=>与双曲线22143x y -=有相同的焦点, 则a 的值为 A B.C. 4D .105. 各项都为正数的等比数列{}n a 中,161232,a a a a a ==,则公比q 的值为 A B.C. 2 D .36. 函数()(xxf x e e e -=+为自然对数的底数)在()0,+∞上 A .有极大值 B. 有极小值C. 是增函数 D .是减函数7. 阅读图1的程序框图. 若输入5n =, 则输出k 的值为 A .2 B .3 C .4 D .58. 已知l 、m 是不同的两条直线,α、β 则下列命题中为真命题的是A .若,⊥⊥l ααβ,则//l βB .若//,⊥l ααβ,则//l βD图2(度)150140110100C .若,//,⊥⊂l m m αββ,则⊥l α 图1D .若,//,⊥⊂l m ααββ,则⊥l m9. 向等腰直角三角形()ABC AC BC =其中内任意投一点M , 则AM 小于AC 的概率为A B. 1 C . 8π D .4π10. 某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,2,6.x y x y x -≥⎧⎪-≤⎨⎪<⎩则该校招聘的教师人数最多是A .6B .8C .10D .12 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.为了了解某地居民每户月均用电的基本情况,抽取出该地区若干户居民的用电数据, 得到频 率分布直方图如图2所示, 若月均用电量在 区间[)110,120上共有150户, 则月均用电量在区间[)120,140上的居民共有 户.12. △ABC 的三个内角A 、B 、C 所对边的 长分别为a 、b 、c ,已知3,,3c C π==2a b =, 则b 的值为 .13. 已知函数()f x 满足()12,f = 且对任意,x y ∈R 都有()()()f x f x y f y -=, 记121nin i aa a a ==∏ ,则()1016i f i =-∏= .(二)选做题(14~15题,考生只能从中选做一题)14. (几何证明选讲选做题) 如图3, CD 是圆O 的切线, 切点为C , 点A 、B 在圆O 上, 1,30BC BCD ︒=∠=, 则圆O 的面积为 .15. (坐标系与参数方程选讲选做题) 在极坐标系中,若过点()1,0且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,12乙图42443115207981011甲DC 1A 1B 1CBA则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16. (本小题满分12分)已知函数()2sin cos cos2f x x x x =+(x ∈R ). (1) 求()f x 的最小正周期和最大值; (2) 若θ为锐角,且83f πθ⎛⎫+= ⎪⎝⎭,求tan 2θ的值.17. (本小题满分12分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据的茎叶图如图4.(1) 根据样品数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对较稳定;(2) 若从乙车间6件样品中随机抽取两件,求所抽取的两件样品的重量之差不超过2克的概率.18. (本小题满分14分) 如图5,在三棱柱111-ABC A B C 中,侧棱1AA ⊥底面ABC ,,⊥AB BC D 为AC 的中点, 12A A A B ==,3BC =. (1)求证:1//AB 平面1BC D ; (2) 求四棱锥11-B AAC D 的体积.图519.(本小题满分14分)动点P 与点(1,0)F 的距离和它到直线:l 1x =-的距离相等,记点P 的轨迹为曲线1C .圆2C的圆心T 是曲线1C 上的动点, 圆2C 与y 轴交于,M N 两点,且||4MN =. (1)求曲线1C 的方程;(2)设点(),0(A a a >2),若点A 到点T 的最短距离为1a -,试判断直线l 与圆2C 的位置关系,并说明理由.20. (本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,已知数列是首项为1,公差为1的等差数列.(1) 求数列{}n a 的通项公式; (2)令n b =,若不等式1ni i b =∑≥对任意n ∈N *都成立,求实数L 的取值范围.21. (本小题满分14分)已知函数()2f x ax bx c =++()0a ≠满足()00f =,对于任意x ∈R 都有()f x x ≥,且1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭,令()()()10g x f x x λλ=-->. (1) 求函数()f x 的表达式;(2) 求函数()g x 的单调区间;(3) 研究函数()g x 在区间()0,1上的零点个数.参考答案说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11. 30012.13. 32 14.π15. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查三角函数性质, 同角三角函数的基本关系、两倍角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1) 解: ()2sin cos cos2f x x x x =+sin 2cos 2x x =+ …… 2分22x x ⎫=+⎪⎪⎭ (3)分24x π⎛⎫=+ ⎪⎝⎭. (4)分∴()f x 的最小正周期为22ππ=, …… 6分(2) 解:∵8f πθ⎛⎫+= ⎪⎝⎭, 22πθ⎛⎫+= ⎪⎝⎭. …… 7分 ∴1cos 23θ=. …… 8分∵θ为锐角,即02πθ<<, ∴02θπ<<.∴sin 23θ==. …… 10分∴sin 2tan 2cos 2θθθ== ……12分17.(本小题满分12分)(本小题主要考查茎叶图、样本均值、样本方差、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识) (1) 解: ()11071111111131141221136x =+++++=甲, …… 1分()11081091101121151241136x =+++++=乙, …… 2分()()()()()()222222211071131111131111131131131141131221136S ⎡⎤=-+-+-+-+-+-⎣⎦甲=21, ……3分()()()()()()222222211081131091131101131121131151131241136S ⎡⎤=-+-+-+-+-+-⎣⎦乙 883=, ……4分∵x =甲x 乙, 22S S <甲乙, …… 5分EODC 1A 1B 1CBA∴甲车间的产品的重量相对较稳定. …… 6分(2) 解: 从乙车间6件样品中随机抽取两件,共有15种不同的取法:()()1089108110,10,,,()()108112108115,,,,()()108124109110,,,,()()109112109115,,,,()()109124110112,,,, ()()110115110124,,,,()()112115112124,,,,()115124,. …… 8分设A 表示随机事件“所抽取的两件样品的重量之差不超过2克”,则A 的基本事件有4种: ()()1089108110,10,,,()109110,,()110112,. …… 10分故所求概率为()415P A =. …… 12分18. (本小题满分14分)(本小题主要考查空间线面关系、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)(1)证明:连接1B C ,设1B C 与1BC 相交于点O ,连接OD , ∵ 四边形11BCC B 是平行四边形,∴点O 为1B C 的中点. ∵D 为AC 的中点, ∴OD 为△1ABC 的中位线,∴ 1//OD AB . …… 3分 ∵OD ⊂平面1BC D ,1⊄AB 平面1BC D ,∴1//AB 平面1BC D . …… 6分 (2)解法1: ∵1⊥AA 平面ABC ,1AA ⊂平面11AAC C ,∴ 平面ABC ⊥平面11AAC C ,且平面ABC 平面11AAC C AC =.作BE AC ⊥,垂足为E ,则BE ⊥平面11AAC C , …… 8分EODC 1A 1B 1CBA∵12AB BB ==,3BC =, 在Rt △ABC中,AC ===AB BC BE AC ==…… 10分∴四棱锥11-B AAC D 的体积()1111132V AC AD AA BE =⨯+ …… 12分126=3=. ∴四棱锥11-B AAC D 的体积为3. (14)分解法2: ∵1⊥AA 平面ABC ,AB ⊂平面ABC ,∴1⊥AA AB .∵11//BB AA , ∴1BB ⊥AB .∵1,AB BC BC BB B ⊥= ,∴AB ⊥平面11BB C C . …… 8分 取BC 的中点E ,连接DE ,则1//,2DE AB DE AB =, ∴DE ⊥平面11BB C C .三棱柱111-ABC A B C 的体积为1162V AB BC AA == , …… 10分则11111326D BCC V BC CC DE V -=⨯= 1=,111111111112323A BBC V B C BB A B V -=⨯== .……12分而V =1D BCC V -+111A BB C V -+11B AA C D V -,∴6=12+11B AAC DV -+. ∴113B AA C D V -=.∴四棱锥11-B AAC D 的体积为3. ……14分19.(本小题满分14分)(本小题主要考查求曲线的轨迹方程、直线、圆、抛物线等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1)解法1: 设动点P 的坐标为(),x y ,依题意,得1PF x =+,1x =+, ……2分化简得:24y x =,∴曲线1C 的方程为24y x =. …… 4分解法2:由于动点P 与点(1,0)F 的距离和它到直线:l 1x =-的距离相等,根据抛物线的定义可知, 动点P 的轨迹是以点(1,0)F 为焦点,直线l 为准线的抛物线.…… 2分∴曲线1C 的方程为24y x =. …… 4分(2)解: 设点T 的坐标为00(,)x y ,圆2C 的半径为r ,∵ 点T 是抛物线21:4C y x =上的动点,∴2004y x =(00x ≥).∴AT = ……6分==∵2a >,∴20a ->,则当02x a =-时,AT 取得最小值为, …… 8分依题意得 1a =-,两边平方得2650a a -+=,解得5a =或1a =(不合题意,舍去). …… 10分∴023x a =-=,200412y x ==,即0y =± ∴圆2C 的圆心T的坐标为(3,±. ∵ 圆2C 与y 轴交于,M N 两点,且||4MN =, ∴||4MN ==.∴r ==. ……12分∵点T 到直线l的距离014d x =+=> ∴直线l 与圆2C 相离. …… 14分20.(本小题满分14分)(本小题主要考查数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵数列是首项为1,公差为1的等差数列,()11n n =+-=.∴2n S n =. …… 2分当1n =时,111a S ==;当n ≥2时,1n n n a S S -=-()221n n =--21n =-.又11a =适合上式.∴21n a n =-. …… 4分(2)解:n b ====12=. (6)分∴1nii b=∑12n b b b =+++1111222⎛=+++ ⎝112⎛= ⎝=.…… 8分故要使不等式1nii b=∑≥对任意n ∈N *都成立,≥n ∈N *都成立,得11L ≤=对任意n ∈N *都成立. ……10分令n c =111n n n c c ++==>.∴1n n c c +>. ∴113n n c c c ->>>= .…… 12分∴L ≤. ∴实数L 的取值范围为⎛-∞ ⎝⎦. …… 14分[另法]:1n n c c +-=1n +=0=>.∴1n n c c +>. ∴11n n c c c ->>>=…… 12分∴3L ≤. ∴实数L 的取值范围为,3⎛-∞ ⎝⎦. …… 14分21.(本小题满分14分)(本小题主要考查二次函数、函数的性质、函数的零点、分段函数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识)(1) 解:∵()00f =,∴0c =. …… 1分 ∵对于任意x ∈R 都有1122f x f x ⎛⎫⎛⎫-+=-- ⎪ ⎪⎝⎭⎝⎭, ∴函数()f x 的对称轴为12x =-,即122b a -=-,得a b =. …… 2分又()f x x ≥,即()210ax b x +-≥对于任意x ∈R 都成立,∴0a >,且∆()210b =-≤. ∵()210b -≥, ∴1,1b a ==.∴()2f x x x =+. (4)分(2) 解:()()1g x f x x λ=--()()22111,,111,.x x x x x x λλλλ⎧+-+≥⎪⎪=⎨⎪++-<⎪⎩…… 5分① 当1x λ≥时,函数()()211g x x x λ=+-+的对称轴为12x λ-=,若112λλ-≤,即02λ<≤,函数()g x 在1,λ⎛⎫+∞⎪⎝⎭上单调递增; …… 6分若112λλ->,即2λ>,函数()g x 在1,2λ-⎛⎫+∞⎪⎝⎭上单调递增,在11,2λλ-⎛⎫ ⎪⎝⎭上单调递减.…… 7分② 当1x λ<时,函数()()211g x x x λ=++-的对称轴为112x λλ+=-<, 则函数()g x 在11,2λλ+⎛⎫- ⎪⎝⎭上单调递增,在1,2λ+⎛⎫-∞- ⎪⎝⎭上单调递减. …… 8分综上所述,当02λ<≤时,函数()g x 单调递增区间为1,2λ+⎛⎫-+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭; …… 9分 当2λ>时,函数()g x 单调递增区间为11,2λλ+⎛⎫- ⎪⎝⎭和1,2λ-⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2λ+⎛⎫-∞- ⎪⎝⎭和11,2λλ-⎛⎫ ⎪⎝⎭. (10)分(3)解:① 当02λ<≤时,由(2)知函数()g x 在区间()0,1上单调递增, 又()()010,1210g g λ=-<=-->,故函数()g x 在区间()0,1上只有一个零点. …… 11分② 当2λ>时,则1112λ<<,而()010,g =-<21110g λλλ⎛⎫=+> ⎪⎝⎭, ()121g λ=--,(ⅰ)若23λ<≤,由于1112λλ-<≤,且()211111222g λλλλ---⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭()21104λ-=-+≥, 此时,函数()g x 在区间()0,1上只有一个零点; …… 12分(ⅱ)若3λ>,由于112λ->且()121g λ=--0<,此时,函数()g x 在区间()0,1上有两个不同的零点. …… 13分综上所述,当03λ<≤时,函数()g x 在区间()0,1上只有一个零点; 当3λ>时,函数()g x 在区间()0,1上有两个不同的零点. …… 14分。
2011 年高考广东数学(文科 )模拟试题本试卷共两部分, 21 小题 ,满分 150 分,考试用时 120分钟 .第一部分选择题(共 40 分 )一、选择题 :本大题共 8 小题 ,每题 5 分,满分 40 分 ,在每题给出的四个选项中 ,只有一项为哪一项切合题目要求的 .1.会合 P={-1,0,1}, Q={yy=cosx,x∈ R},则 P∩ Q=()A. P B. Q C.{-1,1} D.{0,1}2.已知向量 =(1,1),2+=(4,2),则向量 ,的夹角的余弦值为()A.B.-C.D.-3.等差数列 {an}中, a3+a11=8,数列 {bn} 是等比数列,且 b7=a7,则 b6•b8 的值为()A. 2B. 4C. 8D. 164.一个算法的程序框图以下列图所示,若该程序输出的结果是,则判断框中应填入的条件是 ()A. i<5B. i<6C. i>5D. i>65. 设实数 x 和 y 知足拘束条件x+y≤10, x-y≤ 2,x≥ 4,则z=2x+3y 的最小值为 ()A. 26 B. 24C. 16 D. 146.设 a,b 是两条直线,,是两个平面,则a⊥b的一个充足条件()A.C.a⊥ ,b//,a,b⊥,//⊥ B. a⊥ ,b⊥ ,//D . a,b//, ⊥7. 定义运算: a1 a2a3 a4=a1a4-a2a3,已知函数f( x)=sinx-11 cosx,则函数 f (x)的最小正周期是( )A. B. C. 2 D.48.已知双曲线 -=1(a>0,b>0)与抛物线 y2=8x 有一个公共的焦点F,且两曲线的一个交点为P,若PF=5,则双曲线的离心率为 ( )A. 2B. 2C. D.第二部分非选择题 (共 110 分)二、填空题 .(本大题共 6 小题,每题 5 分,此中 14、15题为选做题,考生只选此中之一作答,如两题均作答,以14题的分数为准)(一)必做题: 9-13 题是必做题,每道试题考生都一定作答.9. 某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了 5 名学生的学分,用茎叶图表示(如右图).S1,S2分别表示甲、乙两班各自5 名学生学分的标准差,则 S1S2.(填“ >”“ <”或“=”)10.已知 f(x) =2x,(x≤ 1)lg(x-1),(x>1)则 f( f(1)) =.11.一个几何体的三视图如右图所示,则该几何体的体积为 .12.已知函数(fx)为奇函数,且当x>0 时,(fx)=log2x,则知足不等式 f ( x) >0 的 x 的取值范围是 .13.已知圆C的圆心与点M(1,-2) 对于直线 x-y+1=0 对称,而且圆C与x-y+1=0 相切,则圆 C 的方程为.(二)选做题:第14、 15 题是选做题,考生只选做一题,两题全答的,只计算第14 题的得分.14.(坐标系与参数方程选做题)若直线sin(+)=,直线 3x+ky=1 垂直,则常数k= .15.(几何证明选讲选做题)如图,过点 D 作圆的切线切于B 点,作割线交圆于A,C 且 BD=3,AD=4,AB=2,则 BC=.三、解答题:本大题共 6 小题 ,满分 80 分 ,解答须写出文字说明、证明过程或演算步骤.16.(本小题满分12 分)已知函数 f ( x) =cos2x+sinxcosx.(1)求函数 f( x)的最大值;(2)在△ ABC 中,AB=AC=3,角 A 知足 f(+)=1,求△ ABC的面积 .17.(此题满分13 分)某班同学利用国庆节进行社会实践,对[25,55] 岁的人群随机抽取 n 人进行了一次生活习惯能否切合低碳观点的检查,若生活习惯切合低碳观点的称为“低碳族”,不然称为“非低碳族”,获得以下统计表和各年纪段人数频次散布直方图:(Ⅰ)补全频次散布直方图并求n、a、p 的值;(Ⅱ)从年纪段在 [40,50) 的“低碳族”中采纳分层抽样法抽取 6 人参加户外低碳体验活动,此中选用 2 人作为领队,求选用的 2 名领队中恰有 1 人年纪在 [40,45) 岁的概率 .18.(此题满分13 分)如图,已知直四棱柱ABCD-A1B1C1D1的底面是直角梯形,AB⊥ BC,AB//CD,E,F 分别是棱 BC,B1C1上的动点,且 EF//CC1,CD=DD1=1, AB=2, BC=3.(Ⅰ)证明:不论点如何运动,四边形 EFD1D都为矩形;(Ⅱ)当EC=1时,求几何体A-EFD1D的体积.19.(本小题满分14 分)已知椭圆 C:+=1(a>b>0)经过点 (0,1),其右焦点到直线x+y+=0 的距离为 2.(1)求椭圆 C 的方程;(2)若椭圆 C 上存在两点 P,Q 对于直线 l:x=my+1 对称,务实数 m 的取值范围 .20.(本小题满分14 分)已知数列 {an}知足 a1=-1,an+1-2an-3=0,数列 {bn} 知足bn=log2(an+3).(1)求{bn}的通项公式 ;(2)若数列 {2n+1bn}的前 n 项的和为 Sn,试比较 Sn 与8n2-4n 的大小 .21.(本小题满分14 分)已知函数 f ( x) =x3-x2-2a2x+1(a>0),(1)求函数 f( x)的极值;(2)若函数 y=f( x)的图像与直线 y=0 恰有三个交点,务实数 a 的取值范围;(3)已知不等式 f ′( x) <x2-x+1 对随意 a∈ (1,+∞)都建立,务实数 x 的取值范围 .2011 年高考广东数学(文科)模拟试题参照答案一、选择题:本大题共 8 小题,每题 5 分,共 40 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的.二、填空题(每题 5 分,共 20 分, 14、15 题为选做题)9. <; 10. 0; 11. +12; 12. (-1,0)∪ (1,+∞);13.(x+3)2+(y-2)2=8;14.-3; 15. .三、解答题16.(本小题满分12 分)1 f x=cos2x+sinxcosx=+sin2x2=(sin2x+cos2x)+=sin 2x+ +.4-1≤ sin 2x+≤ 1f x + 6 2 f + =1sin(A+)=cosA=. 9 A ABCsinA=10AB=AC=3ABC S=× AB×AC× sinA=1217.(13 )1-(0.04+0.04+0.03+0.02+0.01)×2× 5=0.2n==10000 31000× 0.3=300第四组的频次为×,因此第四组的人数为1000× 0.15=150,因此 a=150× 0.4=60. 5 分(Ⅱ)由于 [40,45) 岁年纪段的“低碳族”与 [45,50) 岁年纪段的“低碳族” 的比值为 60:30=2:1,因此采纳分层抽样法抽取6 人, [40,45) 岁中有 4 人, [45,50) 岁中有 2人.8分设[40,45) 岁中的 4 人为 a、 b、 c、 d, [45,50) 岁中的 2 人为 m 、n,则选用 2 人作为领队的有 (a,b)、(a,c)、(a,d)、(a,m) 、(a,n)、(b,c)、(b,d)、(b,m) 、(b,n) 、(c,d)、(c,m)、(c,n)、(d,m) 、(d,n)、(m,n) ,共 15 种;此中恰有 1 人年纪在 [40,45) 岁的有 (a,m) 、(a,n)、(b,m) 、 (b,n)、 (c,m)、(c,n)、 (d,m) 、 (d,n),共 8种.10分因此选用的 2 名领队中恰有 1 人年纪在 [40,45) 岁的概率为P=.12分18.解:(Ⅰ)在直四棱柱 ABCD-A1B1C1D1中, DD1//CC1,∵EF//CC1,∴ EF//DD 2 分又∵平面ABCD//平面A1B1C1D1,平面ABCD∩平面 EFD1D=ED,平面 A1B1C1D1∩平面EFD1D=FD1,∴ ED//FD1,∴四边形EFD1D为平行四边4DD1ABCD DE ABCDAEABCD-A1B1C1D1DD1 ABCD AE ABCD DD1 AE. 8Rt ABEAB=2 BE=2AE=2,9Rt CDEEC=1 CD=1DE=,10ABCD AD==, AE2+DE2=AD2 AE ED.ED∩DD1=DEFD1D DE= DD1=1 EFD1D S=DE•DD1=A-EFD1D:V=S•AE=××2=1419.10 1b=1.F(c,0)=2c=.3a2=b2+c2=1+2=3C+y2=1.52PQy=-mx+n,Cy=-mx+n +y2=1(3m2+1)x2-6mnx+3n2-3=0.7=36m2n2-12(3m2+1)(n2-1)>0n2<3m2+19=,=-m•+n=+n=.(,)l=+12mn=3m2+1(3m2+1)2<4m2(3m2+1)3m2+1<4m2,m2>1m (-∞ ,-1) (1,+∞ ).1320.: (1) an+1-2an-3=0, an+1+3=2(an+3),an+3=(a1+3)2n-1=2n,4bn=log22n=n.6(2) Sn=1× 22+2× 23+3×24+ +n× 2n+1, × 2 2Sn=1× 23+2×24+3×25+ +n×2n+2,--Sn=22+23+24+ +2n+1-n× 2n+2=-n× 2n+2Sn=4+(n-1)× 2n+2.9Sn-(8n2-4n)=4+(n-1)× 2n+2-8n2+4n=(n-1)× 2n+2-4(2n+1)(n-1)=4(n-1)[2n-(2n+1)].n=1 n-(8n2-4n)=0 Sn=8n2-4n 10 n=2 Sn-(8n2-4n)=4×(22-5)=-4Sn<8n2-4n11 n=3Sn-(8n2-4n)=4×2× (23-7)=8Sn>8n2-4n;12 分当n>3时,由指数函数的图像知总有2n>(2n+1),∴n>3时有Sn>8n2-4n.13 分21.解:( 1)∵ f ′(x) =x2-ax-2a2,令f′(x)=x2-ax-2a2=0,则x=-a或x=2a.∴ f ′( x) =x2-ax-2a2>0 时, x2a,∴x=-a 时, f (x)获得极大值 f ′( -a) =a3+1,x=2a 时, f ( x)获得极小值 f ( 2a) =-a3+1.(2)要使函数 y=f (x)的图像与直线 y=0 恰有三个交点,则函数 y=f ( x)的极大值大于零,极小值小于零;由( 1)的极值可得 :a3+1>0,-a3+1=.(3)要使 f ′( x)<x2-x+1 对随意 a∈ (1,+∞)都建立 ,即 x2-ax-2a2<x2-x+1,(1-a)x<2a2+1,∵a∈ (1,+∞),∴ 1-a<0.x>对随意 a∈ (1,+∞ )都建立 ,则 x 大于的最大值 .∵=-=-[2(a-1)++4] ,由 a∈ (1,+∞ ),a-1>0,∴ 2(a-1)+≥ 2,当且仅当 a=1+时取等号,∴≤ -(2+4),故 x>()max=-(4+2).(作者单位:陈兴盛,深圳市光明新区高级中学;刘会金,光明新区教育科学研究管理中心)责任编校徐国坚注:本文中所波及到的图表、讲解、公式等内容请以PDF2011年高考广东数学(文科)模拟试题格式阅读原文。
2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 1 1
2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 本试卷共4页,21小题,满分150分。考试用时120分钟。 参考公式: 锥体的体积公式V=13sh,其中S是锥体的底面积,h为锥体的高.
线性回归方程ybxa中系数计算公式xbyaxxyyxxbniiniii,)())((211 样本数据12,,...nxxx的标准差222211xxxxxxnsn,其中yx,表示样本均值, n是正整数,则))((1221nnnnnnbabbaababa
一、选择题:本大题共10小题,每小题5分,满分50分。在每小题给出四个选项中,只有一项符合题目要求。 1.设复数z满足1iz,其中i为虚数单位,则z=( ) A.i B.i C.1 D.1 2.已知集合22(,)|,1Axyxyxy为实数,且,(,)|,1Bxyxyxy为实数,且,则AB的元素个数为( ) A.4 B.3 C.2 D.1 3.已知向量(1,2)a,(1,0)b,(3,4)c,若为实数,//abc,则=( ) A.41 B.21 C.1 D.2 4.函数)1lg(11)(xxxf的定义域是( ) A.1, B.),1( C.),1()1,1( D.),( 5.不等式0122xx的解集是( ) A.1,21 B.),1( C.),2()1,( D.),1(21,
6.已知平面直角坐标系xOy上的区域D由不等式组yxyx2220给定。若(,)Mxy为D上的动点,点A的坐标为21,,则OAOMz的最大值为( ) 2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 2 2
A.3 B.4 C.23 D.24 7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( ) A.20 B.15 C.12 D.10 8.设圆C 与圆22(3)1xy外切,与直线0y相切,则C的圆心轨迹为( ) A.抛物线 B.双曲线 C.椭圆 D.圆 9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形, 则几何体体积为( )
A.34 B.4 C.32 D.2 10.设()fx,()gx,()hx是R上的任意实值函数,如下定义两个函数()fgx和()()fgx:对任意xR,()(())fgxfgx;()()fgx=()()fxgx,
则下列等式恒成立的是( ) A.)(xhghfxhgf B.)(xhghfxhgf C.)(xhghfxhgf D.)(xhghfxhgf 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。 (一)必做题(11~13题) 11.已知na是递增等比数列,22a,434aa,则此数列的公比q=________。 12.设函数1cos)(3xxxf,若11fa,则fa 。 13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系: 时间x 1 2 3 4 5 命中率y 0.4 0.5 0.6 0.6 0.4
小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 。 (二)选做题(14-15小题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)已知两曲线参数方程分别为0sincos5yx和tytx245(tR), 2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 3 3
它们的交点坐标为 。 15.(几何证明选讲选做题)如图4,在梯形ABCD中,//ABCD,4AB,2CD。,EF分别为,ADBC上点,且3EF,//EFAB,则梯形ABFE与梯形EFCD的面积比为 。
三、解答题:本大题共6小题,满分80分。解答须写出文字说明、证明过程和演算步骤。 16.(本题满分为12分) 已知函数631sin2)(xxf,Rx。
(1)求)0(f的值;(2)设2,0,,131023f,5623f,求sin的值。
17.(本小题满分13分)在某次测验中,有6位同学的平均成均为75分,用nx表示编号为n(1,2,,6)n的同学所得成绩,且前5位同学的成绩如下: 编号n 1 2 3 4 5 成绩nx 70 76 72 70 72
(1)求第6位同学的成绩6x,及这6位同学成绩的标准差s; (2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。 2011年普通高等学校招生全国统一考试(广东卷)数学(文科)
4 4
18.(本小题满分13分)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的。BBAA,,,分别为,,,CDCDDEDE的中点。2211,,,OOOO分别为EDDEDCCD,,,的中点。
(1)证明:BOAO,,,21四点共面;(2)设G为AA中点,延长1AO到H,使得11''OHAO, 证明:2BO⊥平面HBG。
19.(本小题满分14分)设0a,讨论函数xaxaaxxf)1(2)1(ln)(2的单调性。 2011年普通高等学校招生全国统一考试(广东卷)数学(文科)
5 5
20.(本小题满分14分)设0b,数列{}na满足1ab,111nanbaannn(2n) (1)求数列{}na的通项公式;(2)证明:对于一切正整数n,121nnab。 2011年普通高等学校招生全国统一考试(广东卷)数学(文科)
6 6
21.(本小题满分14分)在平面直角坐标系xOy,直线:2lx交x轴于点A,设P是l上一点,M是线段OP的垂直平分线上一点,且满足MPOAOP。 (1)当点P在l上运动时,求点M的轨迹E的方程; (2)已知(1,1)T,设H是E上动点,求HOHT的最小值,并给出此时点H的坐标; (3)过点(1,1)T且不平行于y轴的直线1l与轨迹E有且只有两个不同的交点,求直线1l的斜率k的取值范围。 2011年普通高等学校招生全国统一考试(广东卷)数学(文科)
7 7
2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 参考答案 一、选择题:1.A;2.C;3.B;4.C;5.D;6.B;7.D; 8.A;9.C;10.B; 二、填空题:11.2;12.9;13.0.5,0.53;14.251,5;15.7:5 三、解答题: 16.解:(1)102sin2162f。
(2)1032sin2sin26613f,∴5sin13, 63=2sin=2sin2665f
,3sin5,
∵2,0,,∴22512cos1sin11313,2234cos1sin155, ∴5412356sin=sincoscossin13513565。 17.解:(1)由67076727072756x,得690x,
∴222222170757675727570757275907576s。 (2)从前5位同学中,随机地选2位同学的所有结果有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72)共10种,其中恰有1位同学成绩在区间(68,75)中的有:
(70,76),(76,72),(76,70),(76,72)共4种,故所求的概率为42105。
18.(1)证明:如下图,连结2OB,∵2O是DE中点,∴2O是圆2O的圆心,∵B是DE的中点,∴2OBCE, ∵平面CEEC底面DBE,平面CEEC底面DBECE,∴2OB平面CEEC,同理1OA平面CEEC,∴21//OBOA,∴BOAO,,,21四点共面。 2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 8 8
(2)如上图,∵2O是DE中点,∴2O是圆2O的圆心,∵B是DE的中点,∴2OBCE, ∵平面CEEC平面DBE,平面CEEC平面DBECE,∴2OB平面CEEC,由(1)知 1OA平面CEEC,∴21//OBOA,21OBOA,∴12'//OHOB,12'OHOB,∴12OHBO是
矩形,∴2HBOB,∵HBBB,2OBBB、平面2OBB,2OBBBB,∴HB平面2OBB, ∵2BO平面2OBB,∴2HBBO。连结1OA,1OA,1OA与HG交于E,在1RtAAO与RtHAG中,==2AAAH,1==1AOAG,∴1RtAAORtHAG,∴1AAOAHG,1AOAHGA, ∵+=90HGAAHG,∴1+=90HGAAAO,∴=90AEG,∴1AOHG。连结2AO,2AO,
1OB,22OO,∵22//AAOO,22=AAOO,∴22AAOO是平行四边形,同理12AOBO是平行四边形,
∴221////AOAOOB,221==AOAOOB,∴12AOBO是平行四边形,∴21//BOAO,∴2BOHG, ∵HGHB、平面HBG,HGHBH,∴2BO平面HBG。