导学设计2 正弦定理的应用
- 格式:doc
- 大小:179.09 KB
- 文档页数:2
《正弦定理》教学设计方案教学目标:1.理解并掌握正弦定理的概念和原理。
2.能够独立地应用正弦定理解决实际问题。
3.培养学生的逻辑思维和分析问题的能力。
4.培养学生的团队合作和沟通表达能力。
教学重点:1.正弦定理的概念和原理2.正弦定理的应用教学难点:1.正弦定理解决实际问题的能力培养2.学生团队合作和沟通表达能力的培养教学准备:1.教师准备正弦定理的相关知识和实例。
2.准备教学案例和习题。
教学过程:Step 1:导入新知识(15分钟)1.教师引导学生回顾三角函数的基本概念,并简要介绍正弦函数。
2.教师出示一个三角形ABC,问学生能否推导出三角形的边长与角度之间的关系。
3.引导学生思考和讨论,最终得出正弦定理的原理。
Step 2:正弦定理的概念和原理(30分钟)1.教师给出正弦定理的定义和公式,并解释每个符号的含义。
2.教师通过几个具体的例子,演示如何应用正弦定理求解三角形的边长和角度。
3.学生跟随教师的指导,完成一些练习题,巩固概念和原理。
Step 3:正弦定理的应用(30分钟)1.教师提供更加复杂的实际问题,并引导学生用正弦定理解决问题。
2.学生分成小组,自主解决问题并进行讨论。
3.学生代表小组报告解题思路和结果,让其他同学参与讨论。
Step 4:归纳总结(15分钟)1.教师和学生一起归纳总结正弦定理的重要概念和应用。
Step 5:延伸拓展(15分钟)1.提供一些更加复杂的问题,让学生挑战运用正弦定理解决。
2.鼓励学生提出自己的问题,并尝试用正弦定理解决。
Step 6:作业布置(5分钟)1.布置一些选择题和应用题,让学生巩固和运用所学的知识。
2.强调作业的重要性,并提醒学生按时完成并及时讨论解答中遇到的问题。
教学反思:通过本节课的教学设计,学生可以在实际问题中运用正弦定理解决问题,培养学生的逻辑思维和分析问题的能力,同时也培养了学生的团队合作和沟通表达能力。
教师可以根据学生的反馈情况和实际教学情况进行适当的调整和改进,以提高教学效果。
正弦定理在物理解题中有着广泛的应用。
以下是一些具体的例子:
1. 在力学问题中,正弦定理可以用于解决与力、速度和加速度相关的问题。
例如,在单摆问题中,正弦定理可以用于计算摆球的加速度和速度;在弹簧振子问题中,正弦定理可以用于计算振子的位移和速度。
2. 在电学问题中,正弦定理可以用于解决与交流电有关的问题。
例如,在计算交流电的电流、电压和电阻时,可以使用正弦定理来简化计算过程。
3. 在光学问题中,正弦定理可以用于计算光的折射率和反射率。
例如,在计算光通过透镜后的焦点位置时,可以使用正弦定理来计算。
4. 在热力学问题中,正弦定理可以用于计算热量的传递和热力学系统的热容。
例如,在计算热传导系数和热扩散系数时,可以使用正弦定理来简化计算过程。
总的来说,正弦定理作为一种通用的数学工具,在物理解题中有着广泛的应用,可以用于解决各种与波形、振动、波动、光学、热力学等领域相关的问题。
《正弦定理》教案(含答案)章节一:正弦定理的引入教学目标:1. 让学生理解正弦定理的概念和意义。
2. 让学生掌握正弦定理的数学表达式。
3. 让学生了解正弦定理的应用场景。
教学内容:1. 引入正弦定理的背景和意义。
2. 介绍正弦定理的数学表达式:a/sinA = b/sinB = c/sinC。
3. 解释正弦定理的证明过程。
教学活动:1. 通过实际例子引入正弦定理的概念。
2. 引导学生推导正弦定理的数学表达式。
3. 让学生进行小组讨论,探索正弦定理的应用场景。
练习题:1. 解释正弦定理的概念。
2. 给出一个三角形,让学生计算其各边的比例。
章节二:正弦定理的应用教学目标:1. 让学生掌握正弦定理在三角形中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在三角形中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在三角形中的应用方法。
2. 让学生进行小组讨论,探讨正弦定理在实际问题中的应用。
练习题:1. 使用正弦定理计算一个三角形的面积。
2. 给出一个实际问题,让学生应用正弦定理解决问题。
章节三:正弦定理的证明教学目标:1. 让学生理解正弦定理的证明过程。
2. 让学生掌握正弦定理的证明方法。
教学内容:1. 介绍正弦定理的证明过程。
2. 解释正弦定理的证明方法。
教学活动:1. 通过几何图形的分析,引导学生推导正弦定理的证明过程。
2. 让学生进行小组讨论,理解正弦定理的证明方法。
练习题:1. 解释正弦定理的证明过程。
2. 给出一个三角形,让学生使用正弦定理进行证明。
章节四:正弦定理在实际问题中的应用教学目标:1. 让学生掌握正弦定理在实际问题中的应用。
2. 让学生能够解决实际问题中涉及的三角形问题。
教学内容:1. 介绍正弦定理在实际问题中的应用方法。
2. 讲解正弦定理在实际问题中的应用示例。
教学活动:1. 通过示例讲解正弦定理在实际问题中的应用方法。
正弦定理及应用教案教案标题:正弦定理及应用教案教案目标:1. 理解正弦定理的概念和公式;2. 掌握正弦定理在解决三角形问题中的应用方法;3. 培养学生的数学思维和解决问题的能力。
教学准备:1. 教师准备:教案、黑板、白板、彩色粉笔、投影仪;2. 学生准备:教材、笔记本。
教学过程:步骤一:导入(5分钟)1. 教师出示一张三角形的图片,引导学生回顾三角形的基本概念和性质。
2. 引导学生思考:在解决三角形问题时,我们有哪些方法可以使用?步骤二:概念讲解(15分钟)1. 教师引导学生回顾三角形中的边和角的概念,并提出正弦定理的概念。
2. 教师讲解正弦定理的公式:a/sinA = b/sinB = c/sinC,并解释公式中各变量的含义。
3. 教师通过例题演示正弦定理的应用方法,解决已知两边和一个夹角的情况。
步骤三:应用练习(20分钟)1. 教师出示一些应用正弦定理解决的问题,并引导学生分组讨论解题思路。
2. 学生在小组内互相讨论,尝试解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤四:拓展应用(15分钟)1. 教师出示一些较为复杂的三角形问题,引导学生运用正弦定理解决。
2. 学生在小组内合作解决问题,并记录解题过程和答案。
3. 学生展示解题过程和答案,教师进行点评和讲解。
步骤五:归纳总结(10分钟)1. 教师引导学生总结正弦定理的应用方法和注意事项。
2. 学生将重点内容记录在笔记本上,作为复习和巩固。
步骤六:作业布置(5分钟)1. 教师布置相关的练习题作为课后作业。
2. 学生完成作业并在下节课前交给教师。
教学反思:本节课通过导入、概念讲解、应用练习、拓展应用和归纳总结等环节,引导学生理解正弦定理的概念和公式,并掌握其在解决三角形问题中的应用方法。
通过小组合作和展示,培养学生的数学思维和解决问题的能力。
同时,布置相关作业,巩固学生的学习成果。
正弦定理应用正弦定理是解决三角形中角度和边长关系的一个重要定理。
它给出了一种计算三角形中任意一边与角度之间的关系的方法。
在三角形abc中,假设a、b、c分别表示三个角的度数,而A、B、C分别表示相对应角的对边的边长。
根据正弦定理可以得出以下关系:sinA/a = sinB/b = sinC/c这个定理可以用来解决各种与三角形中边长和角度之间的关系有关的问题。
下面将介绍几个典型的正弦定理应用。
1. 求解未知边长:当已知一个三角形的两个角以及它们对应的两边时,可以利用正弦定理求解未知边长。
假设我们已知角A和B以及它们对应的边a和b,要求解边c,可以使用以下公式:c = a * (sinC / sinA)2. 求解未知角度:当已知一个三角形的三边时,可以利用正弦定理求解未知角度。
假设我们已知边a、b和c,要求解角A,可以使用以下公式:sinA = (a / c) * sinC通过求解sinA的值,可以利用反正弦函数计算出角A的度数。
3. 判断三角形的形状:利用正弦定理,可以判断一个三角形是锐角三角形、直角三角形还是钝角三角形。
当三角形的边长满足正弦定理的关系时,可以通过比较角度的大小来确定三角形的形状。
4. 应用于空间几何问题:正弦定理不仅适用于平面三角形,也可以应用于空间几何问题。
在空间中的三角形中,可以利用正弦定理计算各种角度和边长的关系。
总之,正弦定理是解决三角形中角度和边长关系的重要工具。
它可以帮助我们求解未知边长、未知角度以及判断三角形的形状。
在实际应用中,我们可以根据具体问题选择合适的公式和计算方法来使用正弦定理,从而解决各种与三角形相关的计算问题。
高中数学教案正弦定理
主题:正弦定理
一、教学目标:
1. 理解正弦定理的概念和原理;
2. 熟练运用正弦定理解决相关问题;
3. 发展学生的逻辑思维和数学推理能力。
二、教学重点:
1. 正弦定理的概念和公式;
2. 正弦定理在实际问题中的应用。
三、教学内容:
1. 正弦定理的概念和公式:
设三角形ABC中,a为边BC的长度,b为边CA的长度,c为边AB的长度,A、B、C分别为角A、角B、角C的对边,则正弦定理可以表示为:
$$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$$
2. 正弦定理的应用:
通过正弦定理可以解决一些不易直接求解的三角形问题,例如求解未知边长或角度大小等。
四、教学方法:
1. 引导学生通过实例理解正弦定理的概念和原理;
2. 结合实际问题,让学生应用正弦定理解决相关问题;
3. 多种形式的练习,巩固学生的理解和运用能力。
五、教学过程:
1. 导入:通过一个实际问题引入正弦定理的概念;
2. 讲解:介绍正弦定理的公式及推导过程;
3. 练习:让学生通过练习题来熟练运用正弦定理;
4. 总结:总结正弦定理的应用方法及注意事项。
六、课后作业:
1. 完成相关练习题;
2. 思考如何在实际生活中应用正弦定理解决问题。
七、教学评估:
1. 练习题成绩;
2. 学生对正弦定理的理解和应用能力。
八、教学反思:
1. 教师应该根据学生的实际水平合理设计教学内容;
2. 加强与实际问题的联系,提高学生的学习兴趣和动力。
“正弦定理教案设计-”一、教学目标:1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的证明过程。
3. 让学生能够运用正弦定理解决实际问题。
二、教学内容:1. 正弦定理的定义及公式。
2. 正弦定理的证明过程。
3. 正弦定理在实际问题中的应用。
三、教学重点:1. 正弦定理的定义和公式。
2. 正弦定理的证明过程。
四、教学难点:1. 正弦定理的证明过程。
2. 正弦定理在实际问题中的应用。
五、教学方法:1. 采用讲授法,讲解正弦定理的定义、公式和证明过程。
2. 采用案例分析法,分析正弦定理在实际问题中的应用。
3. 采用小组讨论法,让学生分组讨论正弦定理的证明过程和实际应用。
教学目标:1. 让学生理解正弦定理的定义和意义。
2. 让学生掌握正弦定理的证明过程。
3. 让学生能够运用正弦定理解决实际问题。
教学内容:1. 正弦定理的定义及公式。
2. 正弦定理的证明过程。
3. 正弦定理在实际问题中的应用。
教学重点:1. 正弦定理的定义和公式。
2. 正弦定理的证明过程。
教学难点:1. 正弦定理的证明过程。
2. 正弦定理在实际问题中的应用。
教学方法:1. 采用讲授法,讲解正弦定理的定义、公式和证明过程。
2. 采用案例分析法,分析正弦定理在实际问题中的应用。
3. 采用小组讨论法,让学生分组讨论正弦定理的证明过程和实际应用。
六、教学步骤:1. 引入:通过复习初中阶段学习的三角函数知识,引导学生思考如何将这些知识应用于解决更复杂的问题。
2. 讲解:讲解正弦定理的定义和公式,通过示例解释其意义。
3. 证明:引导学生思考正弦定理的证明过程,分组讨论并展示各自的证明方法。
4. 应用:通过实际问题,让学生运用正弦定理进行求解,分组讨论并分享解题过程。
七、教学评估:1. 课堂提问:检查学生对正弦定理定义和公式的理解程度。
2. 小组讨论:评估学生在讨论正弦定理证明过程中的思维能力和团队协作能力。
3. 课后作业:布置有关正弦定理应用的题目,让学生巩固所学知识。
正弦定理教学设计正弦定理教学设计(精选5篇)作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。
教学设计应该怎么写才好呢?下面是小编精心整理的正弦定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。
正弦定理教学设计1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
正弦定理、余弦定理的应用考纲要求:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.考情分析:1.对解决实际问题中的角度、方向、距离及测量问题的考查是高考考查的重点.2.在选择题、填空题、解答题中都可能考查,多属中、低档题.教学过程基础知识实际问题中的有关概念及常用术语(1)基线:在测量上,根据测量需要适当确定的 _______ 叫做基线.(2)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(3)方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)方向角:相对于某一正方向的水平角(如图③)①北偏东α:指北方向顺时针旋转α到达目标方向.②东北方向:指北偏东45°或东偏北45°.③其他方向角类似.(5)坡角与坡比坡面与水平面所成的锐二面角叫做坡角,坡面的垂直高度h与水平宽度之比即i=h b=tan α(其中α为坡角) 叫做坡比(如图).(6)视角观测点与观测目标两端点的连线所成的夹角叫做视角(如图).双基自测1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是 ( )A .α>βB .α=βC .α+β=90°D .α+β=180°2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A在点B ( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°, ∠CAB =105°后,就可以计算出A 、B 两点的距离为 ( )A .50 2 mB .50 3 mC .25 2 m D.2522m典例分析考点一:测量距离问题[例1] (2010·陕西高考)如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A点北东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?变式1.(2012·衢州质检)如图,为了测量河的宽度,在一岸边选定两点A,B 望对岸的标记物C,测得∠CAB=30°,∠CBA=75°,AB=120 m,则这条河的宽度为________..求距离问题要注意(1)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.考点二:测量高度问题[例2] (2012·郑州质检)某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A、B、C三地位于同一水平面上,在C处进行该仪器的垂直弹射,观测点A、B两地相距100米,∠BAC=60°,在A地听到弹射声音的时间比B地晚217秒.在A地测得该仪器至最高点H时的仰角为30°,求该仪器的垂直弹射高度CH.(声音的传播速度为340米/秒)变式2.(2012·台州模拟)如图,测量河对岸的旗杆高AB时,选与旗杆底B在同一水平面内的两个测点C与D.测得∠BCD=75°,∠BDC=60°,CD=a,并在点C测得旗杆顶A的仰角为60°,则旗杆高AB为________.求解高度问题首先应分清(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.考点三:测量角度问题[例3] (2012·无锡模拟)如图,两座相距60 m的建筑物AB、CD的高度分别为20 m、50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角∠CAD的大小是________.1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.利用正、余弦定理解实际问题的答题模板[考题范例](12分)(2010·福建高考)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶,假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解:(1)设小艇与轮船在B 处相遇,相遇时小艇航行的距离为S 海里,如图所示.在△AOB 中A =90°-30°=60°∴S =900t 2+400-2·30t ·20·cos 60° =900t 2-600t +400= 900⎝⎛⎭⎪⎫t -132+300.(4分)∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23,又t =23时,v =30(海里/小时).故v =30时,t 取得最小值,且最小值等于23. 此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下: 航行方向为北偏东30°,航行速度为30海里/小时,小艇能以最短时间与轮船相遇. (12分)一个步骤解三角形应用题的一般步骤: (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.两种情形解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.本节检测1.在某次测量中,在A处测得同一平面方向的B点的仰角是50°,且到A的距离为2,C点的俯角为70°,且到A的距离为3,则B、C间的距离为( )A.16B.17C.18D.19 2.地上画了一个角∠BDA=60°,某人从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点N,则N与D之间的距离为( )A.14米 B.15米 C.16米 D.17米3.(2012·大连联考)如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是( )A.10米 B.102米 C.103米 D.106米4.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是( )A.50 m B.100 m C.120 m D.150 m5.(2012·北师大附中模拟)一艘海轮从A处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是( )A.102海里 B.103海里 C.202海里 D.203海里6.如图,在日本地震灾区的搜救现场,一条搜救狗从A处沿正北方向行进x m到达B处发现一个生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x=________.7.一船以每小时15 km的速度向东航行,船在A处看到一个灯塔M在北偏东60°方向,行驶4 h后,船到B处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.自我反思。
5.13 正弦定理及其应用一、教材分析正弦定理是高中新教材人教B版必修内容,是使学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形中的边长与角度之间的数量关系。
在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导证明,并引导学生分析正弦定理可以解决两类关于解三角形的问题:(1)已知两角和一边,解三角形;(2)已知两边和其中一边的对角,解三角形。
二、学情分析本节授课对象是高一学生,是在学生学习了必修④基本初等函数Ⅱ和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。
高一学生对生产生活问题比较感兴趣,由实际问题出发可以激起学生的学习兴趣,使学生产生探索研究的愿望。
三、教学目标1.知识与技能:(1)引导学生发现正弦定理的内容,探索证明正弦定理的方法;(2)简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题2.过程与方法:(1)通过对定理的探究,培养学生发现数学规律的思维方法与能力;(2)通过对定理的证明和应用,培养学生独立解决问题的能力和体会分类讨论和数形结合的思想方法。
3.情感、态度与价值观:(1)通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识;(2)通过本节学习和运用实践,体会数学的科学价值、应用价值,学习用数学的思维方式解决问题、认识世界,进而领会数学的人文价值、美学价值,不断提高自身的文化修养。
四、教学重点、难点教学重点:1.正弦定理的推导 2.正弦定理的运用教学难点: 1.正弦定理的推导 2.正弦定理的运用。
五、学法与教法学法:开展“动脑想、严格证、多交流、勤设问”的研讨式学习方法,逐渐培养学生“会观察”、“会类比”、“会分析”、“会论证”的能力。
教法:运用“发现问题—自主探究—尝试指导—合作交流”的教学模式整堂课围绕“一切为了学生发展”的教学原则,突出:①动——师生互动、共同探索;②导——教师指导、循序渐进。
山西大学附中高中数学(必修5)导学设计 编号2
正弦定理的应用
【学习目标】1. 会运用正弦定理解决简单的解三角形问题.
2. 会运用正弦定理在相关问题中进行边角互化.
【学习重点】正弦定理的应用
【学习难点】合理利用正弦定理解决相关问题
【学习过程】
一.导学:
1.一般地,把 叫做三角形的元素, 叫做解三角形.
2. 正弦定理在解三角形中的应用:
利用正弦定理可以解决以下两类解三角形的问题:
(1)已知 ,求 .
(2)已知 ,求 .
①若 为锐角,则
②若 为直角或钝角,则
二.导练:
1. 在ABC ∆中,已知 75,3,45=∠==∠C AC A ,则BC 的长为 .
2. 在ABC ∆中,已知5,25,45===b c B ,则a = .
3. (1) 在ABC ∆中,已知 60,3,3==
=A b a ,求B 和c .
(2)在ABC ∆中,已知 30,326,26===A b a ,求B 和c .
4.(1)已知在ABC ∆中,B A C 222sin sin sin +=,则该三角形为( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .不能确定
(2)在ABC ∆中,c b a ,,分别为角C B A ,,的对边,c
b A 2212cos 2+=,则ABC ∆的形状为( )
A .正三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形
5.在ABC ∆中,若,5522cos ,4,2==
=B C a π求ABC ∆的面积S .
6. 在ABC ∆中,求证:0cos cos cos cos cos cos 2
22222=+-++-++-A
C a c C B c b B A b a .
三.目标检测:
1.在ABC ∆中,若B A sin sin >,则A 与B 的大小关系为( )
A .
B A > B .B A <
C .A B ≥
D .A 、B 的大小关系不能确定
2.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若 135=A , 30=B ,2=a ,则b 等于( )
A .1
B .2
C .3
D .2
3. 在ABC ∆中,3,1=
=b a , 30=A ,则B 等于( ) A . 60 B . 60或 120 C . 30或 150 D .
120 4. ABC ∆的三个内角,,A B C 所对的边分别为,,,c b a a A b B A a 3cos sin sin 2=+,则=a
b ( ) A. 2 B. 3 C. 22 D. 32 5.在ABC ∆中,A 、B 、C 的对边分别为
c b a ,,,记 45,2,===B b x a ,若ABC ∆有两解,则x 的取值范围是 .
6. 在ABC ∆中,已知A b B a tan tan 22=,则三角形的形状为 .
7.在ABC ∆中,A B b a 2,62,3===.
(1)求A cos 的值; (2)求c 的值.
8.在ABC ∆中,已知内角A π=3
,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值.。