脉冲宽度说明图.doc
- 格式:doc
- 大小:74.00 KB
- 文档页数:2
正弦脉宽调制(SPWM)控制为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm 控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1 正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2 spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
、PWM原理2、调制器设计思想3、具体实现设计一、PWM(脉冲宽度调制Pulse Width Modulation)原理:脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。
图1所示为脉冲宽度调制系统的原理框图和波形图。
该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。
语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。
因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。
通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。
因而,采样值之间的时间间隔是非均匀的。
在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1)其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。
然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为:(2)其中,。
无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。
当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。
二、数字脉冲宽度调制器的实现:实现数字脉冲宽度调制器的基本思想参看图2。
图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。
5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。
循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。
在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。
图3为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。
【最新整理,下载后即可编辑】PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。
重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。
难点:PWM波形的生成方法,PWM逆变电路的谐波分析。
基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
第3、4章已涉及这方面内容:第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。
本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
电子科技大学综合课程设计报告基于单片机门控位的脉冲宽度测量与显示think2011/5/4一、 可行性分析及其原理:该项目是要实现脉冲宽度的测量,再把测量值用数码管显示。
为了实现这一功能我们大致把整个系统分为以下几个模块:1. 振荡器模块:产生某一特定振荡频率的时钟,一般要求这一频率较高,本题要求精度为10us ,所以采用100kHZ 的振荡频率即可。
2. 计数器模块:对振荡脉冲进行计数,用待测脉冲信号作为使能输入(或开关),这样就可以记录下脉冲有效的时间,计数值乘以10us 即为待测脉冲宽度。
3. 译码显示模块:题目中要求用数码管显示6位测量值,分别完成译码和数码管的静态显示或是动态扫描输出即可。
框图如下:二、 本次设计构思了两个方案:方案一:运用CD4518(BCD 码全加器)的级联来实现计数,CD4511七段译码,555多谐振荡器提供100kHZ 频率,待测信号输入到计数器使能。
电路连接图如下:上述方案为数码管静态显示。
优点为方案简单无需编程,只需要组合逻辑与时序逻辑即可完成。
缺点为硬件电路的连线过于复杂上容易出错且很难排除故障,另一个问题在于使用的外接振荡源精度不是很高,势必带来不小的误差。
此方案理论上可行,由于实际操作带来的不方便,我们考虑了后面一种方案。
方案二:利用单片机门控位实现脉冲宽度测量。
基本思路为:利用单片机内部定时器的GATE信号,对于定时器T0来讲,如果GATE=1,则用软件把TR0置1,且INT0为高电平时可以启动定时器T0,所以我们就把被测脉冲信号从INT0端输入,使其上升沿触发启动T0计数,下降沿停止T0计数。
定时器数值乘以机器周期即为脉冲宽度。
电路连接图如下:可以看出,电路结构由以下部分构成:1.振荡模块:12MHZ晶体振荡器,由XTAL1和XTAL2接入单片机。
2.单片机控制模块:AT89S51单片机实现控制,主要任务是对其进行必要的编程设计。
3.输出显示模块:由数码管动态扫描显示,注意P0需要外接上拉电阻。
机器视觉频闪脉宽计算机器视觉中的频闪脉宽计算是指在摄像机捕捉图像的过程中,通过计算频闪灯光的脉宽来获取更清晰的图像。
频闪脉宽计算是在摄像机的曝光时间和频闪灯光的脉冲宽度之间进行调整,从而使得摄像机能够在灯光亮度不足的环境中拍摄到清晰的图像。
为了对频闪脉宽计算有一个更好的理解,我们需要先了解一些相关的基本概念。
1.曝光时间:曝光时间是指摄像机对被拍摄物体进行光照的时间长度。
较长的曝光时间可以收集更多的光线数据,从而得到更亮的图像。
通常情况下,摄像机的曝光时间是通过快门速度来调整的。
2.频闪灯光:频闪灯光是指定时发出的脉冲光源。
在一些特定应用场景下,如机器视觉中的高速拍摄,频闪灯光可以用于提供足够的光照条件,从而使得摄像机可以在较短的时间内拍摄到清晰的图像。
3.脉冲宽度:脉冲宽度是指频闪灯光一次发出持续时间的长度。
较短的脉冲宽度意味着灯光的亮度只会在非常短的时间内保持,这种情况下,摄像机可以使用较短的曝光时间来避免图像因频闪灯光而过曝。
现在,我们来看一下如何计算频闪脉宽。
1.确定曝光时间:根据需要拍摄的物体和环境的特点,确定摄像机的曝光时间。
较长的曝光时间可以收集更多的光线数据,在光照条件不足的情况下可以得到更亮的图像。
2.确定频闪灯光脉冲宽度:根据所使用的频闪灯光设备的特性,确定频闪灯光脉冲宽度。
脉冲宽度的选择应该可以提供足够的光照条件,同时不会导致图像过曝。
3.根据曝光时间和脉冲宽度计算脉冲频率:根据以下公式计算频闪灯光的脉冲频率(单位为Hz):脉冲频率=1/(曝光时间+脉冲宽度)4.确定适当的脉冲频率范围:根据实际需求,确定一个适当的脉冲频率范围。
过高的脉冲频率可能会导致图像模糊,而过低的脉冲频率可能会导致图像过曝。
根据实际拍摄情况和设备性能,进行合理的选择。
需要注意的是,频闪脉宽计算是一个相对复杂的过程,需要考虑多种因素,如光照条件、物体运动速度、摄像机的帧率等。
因此,在实际应用中,通常需要根据具体情况进行调试和优化,以获得最佳的频闪脉宽计算结果。
一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。
PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。
采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。
由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。
又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。
此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。
把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。
二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。
各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。
度正比于该曲线函数值的矩形脉冲。
若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。
在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
脉冲宽度调制————————————————————————————————作者:————————————————————————————————日期:ﻩ脉冲宽度调制脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
目录1简介2背景介绍3基本原理4谐波频谱5具体过程6优点7控制方法8应用领域9具体应用1简介脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术。
PWM控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
2背景介绍随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。
可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。
模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。
9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。
与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。
模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V,5V}这一集合中取值。
激光脉宽波形-概述说明以及解释1.引言1.1 概述概述激光脉宽波形是指描述激光光脉冲宽度变化的特征,对于激光的稳定性和输出功率等方面具有重要意义。
随着激光技术的不断发展和应用需求的增加,对激光脉宽波形的研究越来越受到重视。
传统上,激光脉冲的波形主要以高斯型为主,但在某些特殊应用场合下,需要得到不同形状的脉冲波形,如方波、锯齿波等。
因此,研究激光脉宽波形的定义和特性,对于实现定制化的激光输出具有重要意义。
本文将重点介绍激光脉宽波形的定义和重要性,探讨其在光电通信、超快激光技术、精密测量等领域的应用,并总结激光脉宽波形的研究意义。
此外,还将展望激光脉宽波形在未来的发展前景,并给出相应的结论。
通过对激光脉宽波形的深入研究,我们可以更好地理解激光脉冲的特性及其对各种应用的影响,从而为激光科学和技术的发展提供新的思路和方法。
同时,对激光脉宽波形的研究还将推动激光在光通信、光谱分析、材料加工等领域的应用前景,并有望在更多的领域带来创新和突破。
文章结构部分内容如下:1.2 文章结构本篇长文主要包括以下几个部分:第一部分是引言,通过概述问题的背景和重要性,介绍了文章的结构和目的。
第二部分是正文,主要分为三个小节来讨论激光脉宽波形的相关内容。
首先,我们会定义和说明激光脉宽的概念,并强调其重要性。
然后,我们将探讨激光脉宽波形的特点,包括其形状、幅度和频率等方面。
最后,我们会介绍激光脉宽波形在不同领域的应用,例如激光医学、激光雷达等。
第三部分是结论,首先总结了激光脉宽波形研究的意义和重要性,指出了其在科学研究和工程应用中的潜力。
然后,展望了激光脉宽波形未来的发展趋势,探讨了可能的研究方向和应用前景。
最后,通过简明扼要地总结文章的主要观点和论证,做出全文的结论。
通过以上的结构安排,本文将全面而系统地介绍激光脉宽波形的定义、特点和应用,并展望其未来的发展。
这样的结构将使读者对激光脉宽波形有一个全面的了解,并能够对该领域的研究和应用做出进一步的思考和探索。
脉冲及脉冲波形主要参数
一、常见的脉冲波形
一个不断开合的电键,负载上产生脉冲电压波形,见图10.1。
脉冲波形很多,常见的还有方波、梯形波、锯齿波、三角波等如图10.2所示。
二、波形的主要参数
理想的脉冲波形只有三个参数,如图10.3(a)所示,即脉冲幅度Um,脉冲周期T和脉冲宽度tW。
描述参数有几种,参见图10.3(b)。
(1)脉冲幅度Um——脉冲从起始值到峰值之间的变化量称为脉冲幅度。
(2)脉冲上升时间tr——脉冲前沿由0.1Um上升到0.9Um所需要的时间,tr愈短,脉冲上升得越快。
(3)脉冲下降时间tf——脉冲后沿由0.9Um下降至0.1Um所需要的时间,tf愈短,脉冲下降得越快。
(4)脉冲宽度tW——指脉冲前沿与脉冲后沿的0.5Um处两点间的时间间隔,又称脉冲持续期。
(5)脉冲周期T——对于周期性重复脉冲,指前后相邻脉冲的间隔时间,其倒数为脉冲重复的频率。
(6)占空比q——指脉冲宽度tW与脉冲周期T的比值,有q=tW/T.
三、频带宽度
(1)“频带宽度”定义见教村16页;(2)题库3.23,探头的分辨力与“频带宽度”成正比;(3)分辨力与灵敏度是相对或相反的。