全等三角形复习教案
- 格式:doc
- 大小:100.00 KB
- 文档页数:4
全等三角形复习 —构造全等三角形一、教学目标:1、学生能依据题目条件添加适当的辅助线,构造全等三角形.2、经历猜想论证的过程,体会由特殊到一般的探究问题的方法,感悟全等变换在研究几何问题中的作用.3、通过探究激发学生的探究意识,激发学生的学习兴趣. 二、教学重难点:如何添加辅助线构造全等三角形.三、学情分析1、学生已有知识:全等三角形,三种全等变换(平移、轴对称、旋转);2、学生基本情况:对图中没有直接给出全等三角形,需要通过添加辅助线构造全等三角形求角的度数存在一定的障碍.3、在复习了全等三角形的性质、判定及简单应用的基础上,进一步复习全等三角形的常考做题技巧--如何构造全等三角形 四、教学过程 活动1 出示问题问题1 如图,四边形ABCD 中AD=AB ,90DAB BCD ∠=∠=︒.求ACB ∠的度数.【师】出示问题 【生】=45ACB ∠︒【师】追问1“=45ACB ∠︒”这个结论是怎样得到的?【设计意图】引导学生用度量、特殊化等方法探究结论,在这个过程中体会变化过程中的不变量——“ACB ∠=45︒”.【活动2】分享与提升 【生】展示做法 方法1:过点A 作AF ⊥BC 于F ,AE ⊥CD 延长线于E ,90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒, 180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.在△ABF 和△ADE 中,DBE BAFB E B ADE AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADE (AAS ). ∴AF=AE∴112452BCD ∠=∠=∠=︒. 【小结】这种方法是从结论“ACB ∠=45︒”出发,得出CA 为ACD ∠的平分线,运用角平分线的轴对称性构造全等三角形解决问题.方法2: 延长CB 到点C’,使C’B=CD ,连接AC ’ 易证△AC ’B ≌△ACD 得AC ’=AC得∠C ’=∠ACB =45°教师依据学生的回答,适时进行点评.【小结】题目中出现“AD=AB ”可能有两种解决办法: 1、利用等腰三角形;2、利用全等三角形.依据已知条件和目前已有的知识选择第二种办法解决.【设计意图】通过两种方法的分析,学生体会全等变换在研究几何问题中的作用,能依据题目中的条件添加适当的辅助线,构造全等三角形.追问2 在以上的几种方法中,已知条件“90DAB BCD ∠=∠=︒”起到了怎样的作用? 【分析】90AFB E ∴∠=∠=︒. 90DAB BCD ∠=∠=︒,180B ADC ∴∠+∠=︒.又180ADE ADC ∠+∠=︒,B ADE ∴∠=∠.即互补的两个角转化为了等角.E BB'B【师生】共同分析以上几种方法,体会从已知条件“90DAB BCD ∠=∠=︒”入手解决问题的方法.小结与思考 课堂小结如何添加辅助线构造全等三角形1、 出现等腰直角三角形(共端点等线段)时怎么构造?2、 出现角平分线时怎么构造?3、 出现互补角时怎么构造?思考1 如图,这样可以得到结论吗?B思考2 如图,四边形ABCD 中AD=AB ,∠DAB +∠BCD =180°.求证:CA 平分∠DCB .【设计意图】通过小结,学生梳理本节课所学内容和研究方法,体会全等变换在研究几何问题中的作用.五、课后作业把本节课不懂之处整理成笔记。
全等三角形复习〔第1课时〕泰安六中苏晓林一、教材分析:本节课是全等三角形全章复习课,首先帮助学生理清全等三角形全章知识脉络,进一步了解全等三角形概念,理解性质、判定与运用;其次对学生所学全等三角形知识进展查缺补漏,再次通过拓展延伸以习题训练,提高学生综合运用全等三角形解决问题能力,并对中考对全等三角形考察方向有一个初步感知,为以后复习指明方向。
在练习过程中,要注意强调知识之间相互联系,使学生养成以联系与开展观点学习数学习惯.二、学情分析在知识上,学生经历全等三角形全章学习,对全等三角形性质、判定以及应用根本掌握,初步具有整体认识,但由于间隔时间有点长所以遗忘较多,全等三角形是学习初中几何根底与工具也是中考必考内容。
对全等三角形综合应用以及全章知识脉络形成正是以上各种能力综合表达,教学中要充分发挥学生主体作用,通过复习学生在全等三角形计算、证明对学生推理能力、发散思维能力与概括归纳能力将有所提高.三、教学目标1.进一步了解全等三角形概念,掌握三角形全等条件与性质;会应用全等三角形性质与判定解决有关问题.2.在题组训练过程中,引导学生总结出全等三角形解题模型,培养学生归纳总结能力,使学生体会数形结合思想、转化思想在解决问题中作用.3.培养学生把已有知识建立在联系思维习惯,并鼓励学生积极参与数学活动,在活动中学会思考、讨论、交流与合作。
四、教学重难点重点:全等三角形性质与判定应用.难点:能理解运用三角形全等解题根本过程。
五、教法与学法以“自助探究〞为主,以小组合作、练习法为辅;在具体教学活动中,要给予学生充足时间让学生自主学习,先形成自己全等三角形知识认知体系,尝试完成练习;给予学生充足空间展示学习结果,通过讨论交流、学生互评、教师最后点评方式实现本节课教学目.六、教具准备多媒体课件,七、课时安排2课时八、教学过程本节课是全等三角形全章复习课,本节课我主要采用学生“练后思〞模式,帮助学生搜整?全等三角形?全章知识脉络,建构知识网络,通过根底训练、概念变式练习、典例探究、拓展应用等活动进展查缺补漏与拓展延伸;借助“根底了题目-变式题目-典型题目-拓展题目〞五个梯次递进教学活动达成教学目标,使用多媒体课件展示教学思路,引导学生思维方向,实现课堂教学最优化。
全等三角形复习导学案一、学习目标1、理解全等三角形的概念,掌握全等三角形的性质和判定方法。
2、能够运用全等三角形的性质和判定解决相关的几何问题。
3、通过复习,提高逻辑推理能力和空间想象能力。
二、知识梳理1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应线段(角平分线、中线、高线)相等;(4)全等三角形的面积相等,周长相等。
3、全等三角形的判定方法(1)“SSS”(边边边):三边对应相等的两个三角形全等。
(2)“SAS”(边角边):两边和它们的夹角对应相等的两个三角形全等。
(3)“ASA”(角边角):两角和它们的夹边对应相等的两个三角形全等。
(4)“AAS”(角角边):两角和其中一角的对边对应相等的两个三角形全等。
(5)“HL”(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
三、典型例题例 1:已知:如图,△ABC ≌△DEF,∠A = 70°,∠B = 50°,BF = 4,求∠DFE 的度数和 EC 的长。
解:因为△ABC ≌△DEF,所以∠DFE =∠ACB。
在△ABC 中,∠ACB = 180°∠A ∠B = 180° 70° 50°= 60°,所以∠DFE = 60°。
因为△ABC ≌△DEF,所以 BC = EF。
又因为 BF = 4,所以 EC = BC BF = EF BF = 0。
例 2:如图,在△ABC 中,AD 是中线,BE 交 AD 于点 F,且 AE = EF,求证:AC = BF。
证明:延长 AD 至点 G,使 DG = AD,连接 BG。
因为 AD 是中线,所以 BD = CD。
在△ADC 和△GDB 中,AD = GD,∠ADC =∠GDB,CD = BD,所以△ADC ≌△GDB(SAS),所以 AC = GB,∠CAD =∠G。
全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。
教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。
内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。
二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。
2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。
3. 培养学生的空间想象力,提高学生的逻辑思维能力。
三、教学难点与重点重点:全等三角形的定义、性质及判定方法。
难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。
四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。
学具:练习本、彩笔、剪刀、胶水。
五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。
2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。
(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。
3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。
4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。
5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。
教师巡回指导,解答学生疑问。
6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。
六、板书设计板书内容:全等三角形的定义、性质、判定方法。
七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。
()b. 全等三角形的对应角相等。
()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。
《全等三角形复习》教学设计市桥中学 数学科 梁仲宁一、教学目标1、 使学生能综合运用三角形全等的各种识别方法解题。
2、 让学生学会从多角度,多方位观察图形。
3、 培养学生将生活实际问题转化为数学问题去思考。
4、 培养学生合作交流,自主探究的能力。
二、教学重点与难点重点难点:三角形全等的各种识别方法的综合运用。
三、教具准备电脑、实物投影、相关课件。
四、教学过程设计 (一)知识回顾利用课件回顾三角形全等的各种识别方法。
(SSS 、SAS 、ASA 、AAS 、HL )(二)师生互动,熟悉全等三角形识别方法的基础应用1、投影以下图形,提供开放的教学平台,让学生自主编题与解题。
(图1) (图2) (图3)2、提醒学生注意发掘图中的隐含条件(公共边、对顶角、公共角)。
3、如有需要,教师对学生所编题目作出适当补充。
DCBAA BCDOOABCDE(三)全等知识在其他知识领域中的应用1、测量如图河的宽度,某人在河 的对岸找到一参照物树木A,视线AB 与河岸垂直,然后该人沿河岸步行7米 到O 处,进行标记,再向前7米到D 处, 最后背对河岸向前步行15米到C 点, 此时A ,O ,C 三点恰好在同一视线上, 则河的宽度为_________米.2、直线l 经过正方形ABCD 的顶点B , 点A 、C 到直线l 的距离分别是3和4,则 正方形的边长是______________.3、如图,AB 是⊙O 的直径,BC 是⊙O 的 切线,D 是⊙O 上一点,且∠ABD= ∠C=30°, 求证:ΔADB ≌ ΔOBC4、 将平行四边形纸片ABCD 按如图方式 折叠,使点C 与点A 重合,点D 落到D'处, 折痕为EF. 求证ΔABE ≌ΔAD'F(四)掌握全等的变换思想,深化提高5、 将两个全等的等腰直角三角板按如图所示摆放,令两个三角形的斜边在同一直线上,C 为两个三角形的公共顶点,连结AE 、DB ,试猜想AE 与DB 的关系。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
常考全等三角形模型教案一、教学目标。
1. 知识与技能:(1)掌握全等三角形的定义和性质;(2)能够运用全等三角形的性质解决相关问题;(3)能够灵活运用全等三角形模型进行证明和计算。
2. 过程与方法:(1)培养学生观察问题、提出问题、解决问题的能力;(2)培养学生分析问题、探索问题、解决问题的能力;(3)培养学生合作探究、独立思考、自主学习的能力。
3. 情感态度与价值观:(1)培养学生的数学思维能力和数学解决问题的兴趣;(2)培养学生的合作意识和团队精神;(3)培养学生的耐心和细心的品质。
二、教学重点与难点。
1. 教学重点:(1)全等三角形的定义和性质;(2)全等三角形模型的运用。
2. 教学难点:(1)全等三角形的性质证明;(2)全等三角形模型的灵活运用。
三、教学过程。
1. 导入新知识。
教师可通过提问或举例的方式,引导学生了解全等三角形的定义和性质,激发学生的学习兴趣。
2. 讲解新知识。
(1)讲解全等三角形的定义和性质,包括全等三角形的判定条件、全等三角形的性质等内容;(2)讲解全等三角形模型的运用,包括利用全等三角形模型解决实际问题、利用全等三角形模型进行证明和计算等内容。
3. 案例分析。
教师可选择一些典型的案例,引导学生利用全等三角形模型进行分析和解决,帮助学生加深对全等三角形模型的理解和运用。
4. 练习与训练。
(1)教师布置一些练习题,让学生利用全等三角形模型进行练习和训练;(2)教师组织学生进行小组合作,让学生在合作中相互交流、相互学习,提高解决问题的能力。
5. 总结与拓展。
教师对本节课的内容进行总结,并对全等三角形模型的拓展进行引导,让学生在课后能够继续深入学习和探究。
四、教学反思。
本节课采用了导入新知识、讲解新知识、案例分析、练习与训练、总结与拓展等教学方法,使学生在实际操作中更好地理解和掌握了全等三角形模型的相关知识。
同时,通过小组合作的方式,培养了学生的合作意识和团队精神。
然而,在教学过程中,也存在一些不足之处,如案例分析的数量和质量有待提高,学生的自主学习能力有待培养等。
第11章《全等三角形》复习教案
教学目标:
1.了解图形的全等,经历探索三角形全等条件及性质的学习过程,掌握两个三角形全等的条件与性质。
2.能用三角形的全等和角平分线性质解决实际问题 3.培养逻辑思维能力,发展基本的创新意识和能力 教学重点难点:
2.难点:对全等三角形性质及判定方法的运用 教学过程:
1、全等三角形的概念及其性质
1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形 。
2)全等三角形性质: (1)对应边相等 (2)对应角相等(3)周长相等 (4)面积相等
例1.已知如图(1),ABC ∆≌DCB ∆,其中的对应边:____与____,____与____,____与____,
对应角:______与_______,______与_______,______与_______.
例2.如图(2),若BOD ∆≌C B COE ∠=∠∆,.指出这两个全等三角形的对应边; 若ADO ∆≌AEO ∆,指出这两个三角形的对应角。
(图1) (图2) ( 图3)
例3.如图(3), ABC ∆≌ADE ∆,BC 的延长线交DA 于F ,交DE 于G,
ο105=∠=∠AED ACB ,οο25,10=∠=∠=∠D B CAD ,求DFB ∠、DGB ∠的度数.
2.全等三角形的判定方法 1)、三边对应相等的两个三角形全等 ( SSS )
例1.如图,在ABC ∆中,ο
90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
例2.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.
例3. 如图,在ABC ∆中,M 在BC 上,D 在AM 上,AB=AC , DB=DC 。
求证:MB=MC
2)两边和夹角对应相等的两个三角形全等( SAS )
例4.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠
3)、两角和夹边对应相等的两个三角形全等 ( ASA )
例5.如图,梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 交DC 的延长线于F 求证:ABE ∆≌FCE ∆
4)、两角和夹边对应相等的两个三角形全等 ( AAS )
例6.如图,在ABC ∆中,AB=AC ,D 、E 分别在BC 、AC 边上。
且B ADE ∠=∠,AD=DE 求证:ADB ∆≌DEC ∆.
5)、一条直角边和斜边对应相等的两个直角三角形全等 ( H L ) 例7.如图,在ABC ∆中,ο
90=∠C ,沿过点B 的一条直线BE 折叠ABC ∆,使点C 恰好落在AB 变的中点D 处,则∠A 的度 数= 。
3.角平分线
1)。
角平分线性质定理:角平分线上的点到这个角两边的距离相等。
逆定理: 到一个叫两边的距离相等的点在这个角的平分线上。
例8.(2006 芜湖课改)如图,在ABC △中,90C ∠=o
,
AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点 到直线AB 的距离是 cm .
A
B
C
例9.如图,已知在Rt △ABC 中,∠C =90°, BD 平分∠ABC , 交AC 于D .
(1) 若∠BAC =30°, 则AD 与BD 之间有何数量关系,说明你的理由; (2) 若AP 平分∠BAC ,交BD 于P , 求∠BPA 的度数.
4.尺规作图 (1)、尺规作图是指限定用无刻度的直尺和圆规作为工具的作图。
(2)、尺规作图举例 例1.(06长沙)如图,已知AOB ∠和射线O B '',用尺规作图法作A O B AOB '''∠=∠(要求保留作图痕迹).
例2. 如图,Rt △ABC 中,∠C=90°, ∠CAB=30°, 用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).
P
A
B
C
D A
B
B '
O '
A
B
C
C
B
A。