交大附中自主招生数学试题
- 格式:pdf
- 大小:591.03 KB
- 文档页数:4
2019年交大附中自招数学试卷一、填空题1、求值:cos30sin 45tan 60⋅⋅=.2、反比例函数1y x =与二次函数243y x x =-+-的图像的交点个数为.3、已知210x x --=,则3223x x -+=.4、设方程()()()()()()11111211210x x x x x x ++++++++=的两根为1x ,2x ,则()()1211x x ++=.5、直线y x k =+(0k <)上依次有,,,A B C D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k =.6、交大附中文化体行设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体育课,英才班部分学生参加篮球小组、其余学生参加排球小组。
篮球小组中男生比女生多五分之一,排球小组男女生人数相等;一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有人.7、已知,,,a b c n 是互不相等的正整数,且1111a b c n +++也是整数,则n 的最大值是.8、如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.9、若关于x 的方程()()2460x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m =.10、设ABC 的三边,,a b c 均为正整数,且40a b c ++=,当乘积abc 最大时,ABC 的面积为.11、如图,在直角坐标系中,将AOB 绕原点旋转到OCD ,其中()3,1A -,()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为.二、解答题12、如图,数轴上从左到右依次有,,,A B C D 四个点,它们对应的实数分别为,,,a b c d ,如果存在实数λ,满足:对线段AB 和CD 上的任意M W,其对应的数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(),,,,a b c d λ为“完美数组”。
2020年上海交大附中自主招生数学试卷一、填空题(共3小题,每小题0分,满分0分)1.直线l1∥l2∥l3∥l4,其中l1,l2之间距离和l3,l4之间距离均为1,l2,l3之间距离为2.正方形ABCD 的四个顶点分别在l1,l2,l3,l4上,则S四边形ABCD=.2.设f(x)=,则f()+f()+…+f()+f(2)+f(3)+…+f(99)=.3.设第n行第m个数为a n,m.满足a n,n=a n,1=,a n,m=a n+1,m+a n+1,m+1,求a12,11=.二、解答题(共6小题,满分0分)4.设P(x1,y1)、Q(x2,y2),定义PQ的“xx距离”为|x1﹣x2|+|y1﹣y2|,求下列情况中PQ的“xx距离”的最小值.(1)P(﹣2,2),Q在y=x﹣1上;(2)P(﹣2,2),Q在y=x2﹣1上;(3)P在y=x﹣1上,Q在y=x2﹣1上;5.试用直尺,圆规在图中作出∠ACB=90°,CA=CB的△ACB,其中A在找段a上,B在线段b上.6.我们知道存在无穷多组最大公数约为1的正整数a、b、c使a2+b2=c2,求证:存在无穷多组最大公约数为1的正整数r、s、t,其中r<s<t,使得(rs)2+(rt)2=(st)2.7.矩形ABCD,AB=3,BC=4,联结AC,若以B为圆心,r为半径的圆与线段AC,AD,CD都有公共点,则r的取值范围是.8.解关于x的方程a(x﹣1)++3=0.9.(1)如图1,求证:∠AOD=2∠ACD;(2)如图2,AC⊥BD,M是AB中点:①求证:EM⊥CD;②CD=2OM.2020年上海交大附中自主招生数学试卷参考答案一、填空题(共3小题)1.10;2.98;3.;。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与x轴的交点坐标。
A. (1, 0),(3, 0)B. (0, 1),(3, 1)C. (1, 3),(3, 1)D. (0, 3),(3, 1)2. 已知等差数列{an}的公差d=2,若a1+a5=18,求a3的值。
A. 8B. 10C. 12D. 143. 在平面直角坐标系中,点A(2, 3),点B(5, 7),求线段AB的中点坐标。
A. (3, 5)B. (4, 6)C. (5, 7)D. (7, 9)4. 已知复数z = 3 + 4i,求z的模。
A. 5B. 7C. 9D. 115. 已知三角形ABC的边长分别为a、b、c,且满足a+b+c=12,a^2+b^2=c^2,求三角形ABC的面积。
A. 6B. 8C. 10D. 126. 已知函数f(x) = 2x^3 - 3x^2 + 4x - 1,求f(x)的极值点。
A. x=1,x=2B. x=1,x=3C. x=2,x=3D. x=1,x=47. 已知等比数列{an}的公比q=2,若a1+a3+a5=24,求a2的值。
A. 6B. 8C. 10D. 128. 在平面直角坐标系中,点P(1, 2),点Q(4, 6),求线段PQ的长度。
A. 3B. 4C. 5D. 69. 已知复数z = 1 - 3i,求z的共轭复数。
A. 1 + 3iB. 1 - 3iC. -1 + 3iD. -1 - 3i10. 已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与y轴的交点坐标。
A. (1, 0),(3, 0)B. (0, 1),(3, 1)C. (1, 3),(3, 1)D. (0, 3),(3, 1)11. 已知等差数列{an}的公差d=-2,若a1+a5=18,求a3的值。
交大附中自招真题卷整理【例1】已知甲、乙、丙三个电荷,依次排列在同一直线上,且都处于静止状态,由此可以判断()A. 甲、乙、丙带同种电荷B. 甲、丙带同种电荷,甲、乙带异种电荷C. 甲、丙带同种电荷,甲、乙可能带同种电荷,也可能带异种电荷D. 无论甲、乙、丙带何种电荷,均可能使它们同时静止【例2】如图所示,作用在杠杆一端且始终与杠杆垂直的力F,将杠杆缓慢地由位置A拉至位置B,在这个过程中,力F的大小()A.变小B. 不变C. 变大D.先变大后变小【例3】人们常常用充气泵为金鱼缸内的水补充氧气,如图所示为充气泵气室的工作原理图。
设大气压强为P0,气室中的气体压强为P,气体通过阀门S1、S2与空气导管相连接,下列选项中正确的是()A. 当橡皮碗被拉伸时,P>P0,S1开通,S2关闭B. 当橡皮碗被拉伸时,P<P0,S1开通,S2关闭C. 当橡皮碗被压缩时,P>P0,S1关闭,S2开通D. 当橡皮碗被压缩时,P<P0,S1关闭,S2开通【例4】如图所示,静止的传送带上有一木块A正在匀速下滑,当传送带突然向上开动时,木块滑到底部所需的时间t与传送带静止不动时所需时间t0相比()A. t=t0B. t>t0C. t<t0D. 无法判断【例5】某旅客在火车车厢内以1.5米/秒的速度行走。
当车厢静止时,他从车厢头走到车厢尾需要20秒。
当火车以10米/秒的速度向前匀速行驶时,则他从车厢头走到车厢尾需要的时间是______秒,站在地面上的人看见该旅客通过的路程为______米。
【例6】如图所示,将一块重为3N,体积为100cm3的石块,用细线系着浸没在装有水的圆柱形容器中,容器中水的深度由10cm上升到12cm。
则石块所受浮力大小为______牛;细线松动,石块沉到容器底静止后,容器对水平地面的压强为______帕(容器的重力和容器壁的厚度,g=10N/kg)。
【例7】把一根粗糙的木棒按图所示的方式放在分开的两手的食指上。
交大附中数学真题试卷一、选择题(每题3分,共30分)1. 下列哪个数不是实数?A. πB. √2C. -1D. i2. 已知函数f(x) = 2x^2 - 3x + 1,求f(2)的值。
A. 5B. 3C. 1D. 73. 根据题目所给的几何图形,以下哪个选项是正确的?A. 三角形ABC是等边三角形B. 三角形ABC是直角三角形C. 三角形ABC是等腰三角形D. 三角形ABC是等差三角形4. 已知等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 27C. 29D. 315. 以下哪个不是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 36. 已知圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π7. 以下哪个是复数的共轭?A. z = 3 + 4iB. z = 3 - 4iC. z = -3 + 4iD. z = -3 - 4i8. 根据题目所给的代数式,求x的值。
A. x = 2B. x = -2C. x = 1D. x = -19. 以下哪个是正弦函数的周期?A. 2πB. πC. 4πD. 110. 已知函数g(x) = sin(x) + cos(x),求g(π/4)的值。
A. 1B. √2C. 2D. 0二、填空题(每题4分,共20分)11. 求方程3x + 5 = 14的解。
_______12. 已知三角形ABC的三边长分别为3, 4, 5,求其周长。
_______13. 已知等比数列的首项为2,公比为3,求第5项的值。
_______14. 求函数h(x) = x^3 - 2x^2 + x - 2在x=1处的导数值。
_______15. 已知向量a = (3, 4),向量b = (-1, 2),求向量a与向量b的点积。
________三、解答题(每题25分,共50分)16. 解不等式组:\[\begin{cases}x + 2 > 4 \\3x - 5 < 14\end{cases}\]17. 证明:若a, b, c是三角形ABC的三边长,且满足a^2 + b^2 = c^2,则三角形ABC是直角三角形。
第一套:满分150分2020-2021年西安交通大学附属中学初升高自主招生数学模拟卷一.选择题(共8小题,满分48分)1.(6分)如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM=()A.3:2:1 B.5:3:1C.25:12:5 D.51:24:102.(6分)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②1> ;m4③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是【】A.0B.1C.2D.33.(6分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A. B. C. D.4.(6分)如图,在平面直角坐标系中,⊙O 的半径为1,则直线y x 2=-与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能 5.(6分)若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A .B .C .D .6.(6分)如图,Rt △ABC 中,BC=,∠ACB=90°,∠A=30°,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点E 4、E 5、…、E 2013,分别记△BCE 1、△BCE 2、△BCE 3、…、△BCE 2013的面积为S 1、S 2、S 3、…、S 2013.则S 2013的大小为( ) A.31003 B.320136 C.310073 D.67147.(6分)抛物线y=ax 2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a 的取值范围是( )A .≤a ≤1B .≤a ≤2C .≤a ≤1D .≤a ≤28.(6分)如图,矩形ABCD 的面积为5,它的两条对角线交于点O 1,以AB ,AO 1为两邻边作平行四边形ABC 1O 1,平行四边形ABC 1O 1的对角线交BD 于点02,同样以AB ,AO 2为两邻边作平行四边形ABC 2O 2.…,依此类推,则平行四边形ABC 2009O 2009的面积为( )A.n 25 B.n 22 C.n 31 D.n 23二.填空题:(每题7分,满分42分)9.(7分)方程组的解是 .10.(7分)若对任意实数x 不等式ax >b 都成立,那么a ,b 的取值范围为 .11.(7分)如图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是 .12.(7分)有一张矩形纸片ABCD ,AD=9,AB=12,将纸片折叠使A 、C 两点重合,那么折痕长是 .13.(7分)设﹣1≤x ≤2,则|x ﹣2|﹣|x|+|x+2|的最大值与最小值之差为 .14.(7分)两个反比例函数y=,y=在第一象限内的图象如图所示.点P 1,P 2,P 3、…、P 2007在反比例函数y=上,它们的横坐标分别为x 1、x 2、x 3、…、x 2007,纵坐标分别是1,3,5…共2007个连续奇数,过P 1,P 2,P 3、…、P 2007分别作y 轴的平行线,与y=的图象交点依次为Q 1(x 1′,y 1′)、Q 1(x 2′,y 2′)、…、Q 2(x 2007′,y 2007′),则|P 2007Q 2007|= .三.解答题:(每天12分,满分60分)15.(12分).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.16.(12分)如图,ABC △是等腰直角三角形,CA CB =,点N 在线段AB 上(与A 、B 不重合),点M 在射线BA 上,且45NCM ∠=︒。
精品文档,欢迎下载!2019年交大附中自招数学试卷1.求值:cos30sin 45tan 60︒⋅︒⋅︒=2.反比例函数1y x=与二次函数243y x x =-+-的图像的交点个数为3.已知210x x --=,则3223x x -+=4.设方程(1)(11)(11)(21)(1)(21)0x x x x x x ++++++++=的两根为1x 、2x ,则12(1)(1)x x ++的值为5.直线y x k =+(0k <)上依次有A 、B 、C 、D 四点,它们分别是直线与x 轴、双曲线k y x=、y 轴的交点,若AB BC CD ==,则k 的值为6.交大附中文化体育设施齐全,学生既能在教室专心学习,也能在操场开心运动,德智体美劳全面发展,某次体锻课,英才班部分学生参加篮球小组,其余学生参加排球小组,篮球小组中男生比女生多五分之一,排球小组男女生人数相等,一段时间后,有一名男生从篮球小组转到排球小组,一名女生从排球小组转到篮球小组,这样篮球小组的男女生人数相等,排球小组女生人数比男生人数少四分之一,问英才班有多少人?7.已知a 、b 、c 、n 是互不相等的正整数,且1111a b c n+++也是整数,则n 的最大值为8.如图,ABCDE 是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为9.若关于x 的方程2(4)(6)0x x x m --+=的三个根恰好可以组成某直角三角形的三边长,则m 的值为10.设△ABC 的三边a 、b 、c 均为正整数,且40a b c ++=,则当乘积abc 最大时,△ABC 的面积为11.如图,在直角坐标系中,将△OAB 绕原点旋转到△OCD ,其中(3,1)A -、(4,3)B ,点D 在x 轴正半轴上,则点C 的坐标为12.如图,数轴上从左到右依次有A 、B 、C 、D 四个点,它们对应的实数分别为a 、b 、c 、d ,如果存在实数λ,满足:对线段AB 和CD 上的任意一点M ,其对应的实数为x ,实数xλ对应的点N 仍然在线段AB 或CD 上,则称(,,,,)a b c d λ为“完美数组“,例如:(1,2,3,6,6)就是一组”完美数组“,已知||1AB =,||5BC =,||4CD =,求此时所有的”完美数组“,写出你的结论和推算过程.参考答案1.42.3个3.24.20035.92- 6.36人7.428.4π9.65910.11.913(,)55-12.(4,3,2,6,12)--,(2,1,8,4,8)---,(2,3,8,12,24)2019年交大附中自招数学试卷(二)1.()S n 为n 的各位数字之和,例(2019)201912S =+++=.(1)当1099n ≤≤时,求()n S n 的最小值;(2)当100999n ≤≤时,求()n S n 的最小值;(3)当10009999n ≤≤时,求()n S n 的最小值.2.(1)如图,2AB =,1BC =,3CD =,M 为以BD 为直径的圆上任意一点,求证:AM MC为定值.(2)尺规作图:以上图结论画出点P ,使::1:1:2PA PB PC =,保留作图痕迹并写出步骤.。