华东师大初一第十章轴对称、平移与旋转单元试题
- 格式:pdf
- 大小:359.93 KB
- 文档页数:4
第10章轴对称、平移与旋转单元测试卷一、选择题(每题3分,共30分)1.下列说法中,正确的有( )①△ABC在平移过程中,对应线段一定相等;②△ABC在旋转过程中,对应线段一定不平行;③△ABC在旋转过程中,周长和面积均不变;④任何图形在旋转过程中,形状一定不变.A.1个B.2个C.3个D.4个2.如图所示的“数字”图形中,有且仅有一条对称轴的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC∥EF,BC=EF.A.1个B.2个C.3个D.4个4.如图,把长方形ABCD沿直线EF折叠,若∠1=20°,则∠2等于( )A.80°B.70°C.40°D.20°5.如图①是3×3的正方形网格,若将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )A.4种B.5种C.6种D.7种6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5 cm,△ADC的周长为17 cm,则BC的长为( )A.7 cmB.10 cmC.12 cmD.22 cm7.如图所示的图形变换中,不是旋转变换的是( )A B C D8.如图所示的四个图形中,既是轴对称图形又是中心对称图形的是( )A B C D9.如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是( )A.1B.2C.3D.410.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB'C'的位置,使CC'∥AB,则旋转角的度数为( )A.35°B.40°C.50°D.45°二、填空题(每题3分,共24分)11.请写出一个是中心对称图形的几何图形的名称: .12.如图,△ABC沿BC方向平移得到△DEF,CE=2,CF=3,则平移的距离是___________.(13.如图,△ABC是等边三角形,点P是△ABC内一点.△APC按逆时针方向旋转后与△AP'B重合,则旋转中心是点___________,最小旋转角等于__________度.14.在角、等边三角形、线段、平行四边形、圆这些图形中,既是轴对称图形又是中心对称图形的有__________.15.数轴上的A点表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°,得到点D,则AD的长为__________.16.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,则格纸中与△ABC成轴对称且也以格点为顶点的三角形有__________个.17.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为________.18.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示).把线段AE绕点A旋转,使点E落在直线BC上的点F处,则F,C两点的距离为_________.三、解答题(19题8分,20、21题每题6分,22题9分,23题7分,24题10分,共46分)19.在边长为1个单位长度的正方形网格中,有4个相同的八边形组成的“十字”形图案,小明为了发现该图案的变化过程,以八边形A为“基本图形”设计了以下三种变换方案(图中EF,GH分别为水平线AB和铅垂线CD的夹角的平分线),请你将他的方案补充完整:(1)把“基本图形A”绕点O顺时针连续旋转3个_______度得到图案C,B,D;(2)把“基本图形A”分别以直线_______为对称轴,顺时针依次翻转得到图案C,B,D;(3)把“基本图形A”沿_______的方向平移_______个单位长度得到“图案B”,将“图案C”用同样的方法平移得到“图案D”;(4)求八边形A的内角和.20.如图,已知△ABC是直角三角形,DE⊥AC于点E,DF⊥BC于点F.(1)请简述图①变换为图②的过程;(2)若AD=3,DB=4,则△ADE与△BDF的面积之和为_______.21.如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请至少写出三个结论)22.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.23.如图,△ABC≌△ADE,∠B=40°,∠E=30°,∠BAE=80°,求∠BAC、∠DAC的度数.24.新源公司为了节约开支,购买了两种同种质量但颜色不同的残缺地板砖,准备用来装饰地面,现在已经把它们加工成如图①所示的等腰直角三角形地板砖.李兵同学设计出了图②③④⑤四种图案.(1)你喜欢其中的哪个图案?试叙述该图案的形成过程;(2)请你利用图形的平移、旋转或轴对称等知识,再设计一幅与上述图案不同的图案.参考答案一、1.【答案】C解:①③④正确.2.【答案】A解:A.有一条对称轴,故本选项正确;B.没有对称轴,故本选项错误;C.有两条对称轴,故本选项错误;D.有两条对称轴,故本选项错误.故选A.3.【答案】D解:此题考查平移的性质.图形经过平移后得到的图形与原图形的对应。
华师大版七年级下册数学第10章轴对称、平移与旋转含答案一、单选题(共15题,共计45分)1、下列汽车标志中,既是中心对称图形又是轴对称图形的是()A. B. C. D.2、下列图标中,是轴对称图形的是()A. B. C. D.3、在如图所示的数轴上,点B与点C关于点A对称,A,B两点对应的实数分别是和﹣1,则点C所对应的实数是( )A.1+B.2+C.2 ﹣1D.2 +14、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是()A.40°B.35°C.30°D.15°5、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()A.平移变换B.轴对称变换C.旋转变换D.相似变换6、如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点,则点的坐标是()A.(2019,2)B.(2019, )C.(4038, )D.(4037, )7、如图,在矩形ABCD中,AB=8,BC=4.将矩形沿AC折叠,CD′与AB交于点F,则AF:BF的值为()A.2B.C.D.8、直角三角形纸片的两直角边长分别为6,8,现将△ABC如右图那样折叠,使点A与点B重合,则折痕BE的长是()A. B. C. D.9、下列说法中正确命题有()①一个角的两边分别垂直于另一个角的两边,则这两个角相等.②已知甲、乙两组数据的方差分别为:S2甲=0.12,S2乙=0.09 ,则甲的波动大.③等腰梯形既是中心对称图形,又是轴对称图形.④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为.A.0个B.1个C.2个D.3个10、下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、下列图形是全等图形的是()A. B. C. D.12、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.两个圆形纸片随意平放在水平桌面上构成轴对称图形C.若两图形关于直线对称,则对称轴是对应点所连线的垂直平分线D.等腰三角形一边上的高,中线及这边对角平分线重合13、如图,将Rt△ABC绕点A按顺时针方向旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上,若DE=2,∠B=60°,则CD的长为()A.0.5B.1.5C.D.114、下面这几个车标中,是中心对称图形而不是轴对称图形的共有()A.1B.2C.3D.415、下列图形中,是轴对称图形但不是中心对称图形的是()A.直角三角形B.正三角形C.平行四边形D.正六边形二、填空题(共10题,共计30分)16、如图,将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转,使点B 的对应点D恰好落在上,点C的对应点为E,则图中阴影部分的面积为________.17、如图,已知l1∥l2,把一块含30°角的直角三角尺按如图所示的方式摆放,边BC在直线l2上,将△ABC绕点C顺时针旋转50°,则∠1的度数为________.18、如图,正方形ABCD中,AB=6,点E在边AB上,且BE=2AE.将△ADE沿ED 对折至△FDE,延长EF交边BC于点G,连结DG,BF.下列结论:①△DCG≌△DFG;②BG=GC;③DG∥BF;④S△BFG=3.其中正确的结论是________(填写序号)19、如图,将△ABC向左平移3cm得到△DEF,AB、DF交于点G,如果△ABC的周长是12cm,那么△ADG与△BGF的周长之和是________.20、如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有________ 种.21、在平面直角坐标系中点关于轴对称点的坐标为________.22、如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC,BD两次折叠后,得到如图2所示的扇形OAB,然后再沿OB的中垂线EF将扇形OAB剪成左右两部分,则∠OEF=________°;右边部分经过两次展开并压平后所得的图形的周长为________23、如图,长方形ABCD中,AB=8,BC=12,点E是边BC上一点,BE=5,点F是射线BA上一动点,连接EF,将△BEF沿着EF折叠,使B点的对应点P落在长方形一边的垂直平分线上,连接BP,则BP的长是________.24、如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有________个.25、如图,在中,已知,,现将沿所在的直线向右平移4cm得到,与相交于点,若,则阴影部分的面积为________ .三、解答题(共5题,共计25分)26、如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.27、如图,在四边形中,、是对角线,已知是等边三角形,,,,求边的长.28、如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.29、在台阶侧面示意图中,台阶高1米,水平宽度2.5米,为迎接贵宾,要在台阶上铺宽度2米的地毯,项目负责人经过考虑准备在市场上购买每平方米200元地毯,他要准备多少现金?30、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、B5、C6、D7、B8、A9、C10、A11、C12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、29、。
华师大版七年级数学下册第10章轴对称、平移与旋转单元测试题一、选择题(每小题4分,共28分)1.下列图标既是轴对称图形又是中心对称图形的是 ( )2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是 ( )3.下列选项中能由左图平移得到的是 ( )4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为 ( )A.30°B.45°C.60°D.75°5.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在BC上,则∠B′C′B的度数为 ( )A.56°B.50°C.46°D.40°6.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 ( )A.50°B.60°C.70°D.80°7.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为 ( )A.13B.3C.4D.6二、填空题(每小题5分,共25分)8.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是 .9.如图,正方形ABCD中,把△ADE绕顶点A顺时针旋转90°后到△ABF的位置,则△ADE≌ ,AF与AE的关系是 .10.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 .11.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为 .12.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3米,其剖面如图所示,那么需要购买地毯 平方米.三、解答题(共47分)13.(10分)作平移后的图形,如图,经过平移,△ABC的边AB移到了EF,作出平移后的三角形.14.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1.(2)计算出三角形ABC的面积.15.(12分)如图,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BA D.求证:(1)OA=O B.(2)AB∥C D.16.(13分)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.第10章轴对称、平移与旋转单元检测答案(45分钟 100分)一、选择题(每小题4分,共28分)1.下列图标既是轴对称图形又是中心对称图形的是 ( )【解析】选C.A.既不是轴对称图形也不是中心对称图形;B.不是轴对称图形,是中心对称图形;C.既是轴对称图形,也是中心对称图形;D.既不是轴对称图形,也不是中心对称图形.2.在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是 ( )【解析】选C.C项既不能由轴对称得到,又不能由旋转得到.3.下列选项中能由左图平移得到的是 ( )【解析】选C.A选项图形,可由左图顺时针旋转90°得到,不是平移;B选项图形,可由左图旋转180°得到,不是平移;C选项图形,可由左图平移得到;D选项图形,可由左图逆时针旋转90°得到,不是平移.4.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为 ( )A.30°B.45°C.60°D.75°【解析】选C.要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.5.如图,△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且C′在BC上,则∠B′C′B的度数为 ( )A.56°B.50°C.46°D.40°【解析】选C.∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=A C.∴∠AC′C=∠C∴∠B′C′B=180°-∠AC′B′-∠AC′C=180°-67°-67°=46°.6.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 ( )A.50°B.60°C.70°D.80°【解析】选D.分别作A关于BC,DC的对称点A1,A2,连结A1A2分别交BC,CD于点E,F,连结AE,AF,此时△AEF的周长最小,∵A关于BC,DC的对称点分别为A1,A2,∴BC垂直平分AA1,DC垂直平分AA2,∴AE=A1E,AF=A2F,∴∠A1AE=∠A1,∠A2AF=∠A2,∵∠BAD=360°-∠C-∠ABC-∠ADC=360°-50°-90°-90°∴∠A1+∠A2=180°-∠BAD=180°-130°=50°,∴∠A1AE+∠A2AF=∠A1+∠A2=50°,∴∠EAF=∠BAD-(∠A1AE+∠A2AF)=130°-50°=80°.7.如果△ABC≌△DEF,△DEF的周长为13,DE=3,EF=4,则AC的长为 ( )A.13B.3C.4D.6【解析】选D.∵△ABC≌△DEF,∴DF=AC,∵△DEF的周长为13,DE=3,EF=4,∴DF=6,即AC=6.二、填空题(每小题5分,共25分)8.由图中左侧三角形仅经过一次平移、旋转或轴对称变换,不能得到的图形是 .【解析】(1)可以通过平移得到,(2)无法通过以上三种变换得到,(3)可以通过轴对称变换得到,(4)可以通过旋转得到.答案:(2)9.如图,正方形ABCD中,把△ADE绕顶点A顺时针旋转90°后到△ABF的位置,则△ADE≌ ,AF与AE的关系是 .【解析】∵△ABF是△ADE绕顶点A顺时针旋转90°后得到的,∴△ADE≌△ABF,∠EAF=90°,∴AE与AF相等且互相垂直.答案:△ABF 相等且互相垂直10.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于 .【解析】由图形可知,圆心先向前走OO1的长度即圆的周长,然后沿着弧O1O2旋转圆的周长,则圆心O运动路径的长度为:×2π×5+×2π×5=5π.答案:5π11.如图,一块等腰直角的三角板ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C的位置,使A,C,B′三点共线,那么旋转角度的大小为 .【解析】根据旋转的性质可知,∠ACB=∠A′CB′=45°,那么旋转角度的大小为∠ACA′=180°-45°=135°.答案:135°12.某宾馆在重新装修后考虑在大厅内的主楼梯上铺设地毯,已知主楼梯宽为3米,其剖面如图所示,那么需要购买地毯 平方米.【解析】利用平移知识可得:所有台阶的水平距离的和正好与BC的长度相等,所有台阶的竖直高度的和与AB的长度相等.所以地毯总长为AB+BC=1.2+2.4=3.6(米).所以购买地毯面积为3.6×3=10.8(平方米).答案:10.8三、解答题(共47分)13.(10分)作平移后的图形,如图,经过平移,△ABC的边AB移到了EF,作出平移后的三角形.【解析】根据已知得A点的对应点是E点,B点的对应点是F,那么只要确定C 点的对应点即可.作法:过点E作AC的平行线,截取EH=AC,连结FH,则三角形EFH即为所求作的图形.如图.14.(12分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1.(2)计算出三角形ABC的面积.【解析】(1)作出△A1B1C1如图所示.(2)三角形ABC的面积=×3×2=3.15.(12分)如图,四边形ABCD的对角线AC,BD相交于点O,△ABC≌△BA D.求证:(1)OA=O B.(2)AB∥C D.【证明】(1)∵△ABC≌△BAD,∴∠CAB=∠DBA,∴OA=O B.(2)∵△ABC≌△BAD,∴AC=BD,又∵OA=OB,∴AC-OA=BD-OB,即:OC=OD,∴∠OCD=∠OD C.∵∠AOB=∠COD,∠CAB=,∠ACD=,∴∠CAB=∠ACD,∴AB∥C D.16.(13分)如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【解析】(1)答案不唯一,如:(2)(答案不唯一)。
华师大版七年级下册第10章轴对称平移与旋转单元测试题一、选择题(3分×9=27分)1、下列关于轴对称的说法,错误的是(B)A、成轴对称的两个图形是全等形;B、轴对称图形是全等形;C、对称点所连的线段被对称轴垂直平分;D、用剪纸的方法可以剪出轴对称图形;2、下列关于平移的说法,正确的是(C)A、平移由平移的距离决定;B、平移由平移的方向决定;C、对应点所连的线段平行且相等;D、平移改变了图形的位置和大小;3、下列关于旋转的说法,正确的是(D)A、旋转由旋转方向决定;B、旋转由旋转角度决定;C、旋转由旋转中心决定;D、旋转只改变图形的位置,不改变图形的大小;4、下列关于等边三角形的说法中,错误的是(B)A、等边三角形是轴对称图形;B、等边三角形是中心对称图形;C、等边三角形是旋转对称图形;D、等边三角形有3条对称轴;5、下列图案中,属于轴对称图形的是(A)A.B.C.D.6、下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有(B)A.1种B.2种C.3种D.4种7、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是(B)A.25°B.30°C.35°D.40°8、如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘使其颜色一致.那么应该选择的拼木是(B)9、如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( A)A.①B.②C.⑤D.⑥二、填空题(3分×6=18分)10、如图,AB左边是计算器上的数字“5”,若以直线AB为对称轴,那么它的轴对称图形是数字_____2_____.11、如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.12、如图是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB =8 cm,BE=4 cm,DH=3 cm,则图中阴影部分的面积为___26_______ cm2.13、如图,将△ABC沿直线AB向右平移后到达△BDE的位置,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为___30°._______.14、如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α得到△A1BC1,A1B交AC于点E,A1C1分别交AC,BC于点D,F,有下列结论:①∠CDF=α;②A1E=CF;③DF=FC;④AD =CE;⑤A1F=CE.其中正确的是___①②⑤_______(写出正确结论的序号).三、解答题(55分)15、(8分)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.16、(8分)如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.答案:1217、(9分)如图,△ABC 中,AD 是中线,△ACD 旋转后能与△EBD 重合.(1) 旋转中心是哪一点? (2) 旋转了多少度?(3) 如果M 是AC 的中点,那么经过上述旋转后,点M 转到了什么位置?18、(9分)如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在图2中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.图1图2画法4画法3画法2画法119、(10分)(本题中四个长方形的水平方向的边长均为a ,竖直方向边长均为b )在图18①中,将线段A 1A 2向右平移1个单位到B 1B 2得到封闭图形A 1A 2B 2B 1.在图18②中,将有一个折点的折线A 1A 2A 3向右平移一个单位到B 1B 2B 3得到封闭图形A 1A 2A 3B 3B 2B 1.⑴在图18③中,请你类似地画出一条有两个折点的折线,同时向右平移一个单位,从而得到一个封闭的图形,并用斜线画出阴影部分.⑵请你写出上述三个图形中除去阴影部分的面积:S 1=__,S 2=_,S 3=_. ⑶联想与探索:如图18④,在一块矩形草地上,有一条弯曲的小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分的草地面积是多少?并说明你的猜想是正确的.答案:(1)略,(2)S 1=S 2=S 3=ab -b ,(3)猜想:空白部分的草地面积是ab -b .理由可妨照(2)即能说明问题;20、(11分)如图20-a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE .(1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形c (草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上说理、画图,归纳你的发现.图18①②④ 小③图a图c 图b图20BACFEECBFA。
七年级数学下册《第十章轴对称、平移与旋转》单元测试卷及答案-华东师大版一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是()2.下列日常生活现象中,不属于平移的是()A.物体在传送带上匀速运动B.大楼电梯上上下下地迎送来客C.时钟上的秒针在不断地转动D.拉动抽屉时抽屉的运动3.如图,小明想用图形①通过作图变换得到图形②,则下列变换:(1)轴对称变换;(2)平移变换;(3)旋转变换中可行的是()A.(1)(2) B.(1)(3) C.(2)(3) D.(1)(2)(3)4.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它旋转的角度可能是()A.60°B.90°C.72°D.120°5.已知△ABC和△DEF关于点O对称,相应对称点如图所示,则下列结论正确的是()A.AO=BOB.BO=EOC.点A关于点O的对称点是点DD.点D在BO的延长线上6.如图,在△ABC中,边BC在直线MN上,且BC=9 cm.将△ABC沿直线MN平移得到△DEF,点B的对应点为E.若平移的距离为2 cm,则CE的长为()A.2 cm B.7 cm C.2 cm或9 cm D.7 cm或11 cm7.如图,点A在直线l上,△ABC与△AB′C′关于直线l对称,连结BB′分别交AC,AC′于点D,D′,连结CC′,下列结论不一定正确的是()A.∠BAC=∠B′AC′ B.CC′∥BB′C.BD=B′D′ D.AD=DD′8.下列说法正确的是()A.面积相等的两个图形全等B.周长相等的两个图形全等C.形状相同的两个图形全等D.全等图形的形状和大小相同9.如图,面积为12 cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边长BC长的两倍,则图中四边形ACED的面积为( )A.24 cm2B.36 cm2C.48 cm2D.无法确定10. 下列说法:①形状相同的图形是全等图形;②全等图形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若△ABC≌△A1B1C1,△A1B1C1≌△A2B2C2,则△ABC≌△A2B2C2.其中正确的说法有( )A.2个B.3个C.4个D.5个二.填空题(共8小题,每小题3分,共24分)11. 如图所示的图案有________条对称轴.12. 如图,△ABC与△DEC关于点C成中心对称,若AB=2,则DE=________.13. 如图,已知线段DE由线段AB平移而得,AB=DC=4 cm,EC=5 cm,则△DCE的周长是____cm.14. 如图,△ABC≌△ADE,BC的延长线交DA于点F,交DE于点G.若∠DGF=60°,∠B=30°,则∠DFG 的度数为________.15. 等边三角形至少绕其三条高的交点旋转________度才能与自身重合.16. 如图,将△ABC平移到△A′B′C′的位置(点B′在边AC上),若∠B=55°,∠C=100°,则∠AB′A′的度数为________°.17. 如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为________.18. 如图,∠AOB=45°,点M,N分别在射线OA,OB上,MN=7,△OMN的面积为14,点P是直线MN 上的动点,点P关于OA对称的点为P1,点P关于OB对称点为P2,当点P在直线NM上运动时,△OP1P2的面积最小值为__ __.三.解答题(共7小题,66分)19.(8分) 如图,△ABC与△DEF是成中心对称的两个图形,确定它们的对称中心.20.(8分) 在如图所示的正方形网格中,每个小正方形的边长都是1个单位长度,△ABC的顶点均在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1;(2)画出△A2B2C2,使△A2B2C2与△ABC关于点O成中心对称;(3)△A1B1C1与△A2B2C2是否对称?若对称,请在图中画出对称轴或对称中心.21.(8分) 如图,网格中每个小正方形的边长为1,请你认真观察图中的三个网格中阴影部分构成的图案,解答下列问题:(1)这三个图案都具有以下共同特征:①都是________对称图形,都不是________对称图形;②面积都是________.(2)请在图中的空白网格中设计出具备上述特征的图案,要求所画图案不能与所给出的图案相同,且不能由所给出的图案通过平移或旋转得到.22.(8分) 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=62°,求∠A的大小.(2)若AD=9 cm,BC=5 cm,求AB的长.23.(10分) 如图,△ABC沿直线l向右平移4 cm得到△FDE,且BC=6 cm,∠ABC=45°.(1)求BE的长.(2)求∠FDB的度数.(3)写出图中互相平行的线段(不另添加线段).24.(10分) 在△ABC中,AD平分∠BAC交BC于点D.(1)在图①中,将△ABD沿BC的方向平移,使点D移至点C的位置,得到△A′B′D′,且A′B′交AC于点E,猜想∠B′EC与∠A′之间的关系,并说明理由;(2)在图②中,将△ABD沿AC的方向平移,使A′B′经过点D,得到△A′B′D′,求证:A′D′平分∠B′A′C.25.(14分) 如图,点O在直线AB上,OC⊥AB.在Rt△ODE中,∠ODE=90°,∠DOE=30°,先将△ODE 一边OE与OC重合(如图①),然后将△ODE绕点O按顺时针方向旋转(如图②),当OE与OB重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE的大小为__ __;(2)当OD在OC与OB之间时,求∠AOD-∠COE的值;(3)在△ODE的旋转过程中,若∠AOE=4∠COD时,求旋转角∠COE的大小.参考答案1-5BCBCD 6-10DDDBB11.212. 213. 1314. 90°15. 12016. 2517. 3218.819. 解:(1)连结AD;(2)取AD的中点O,则点O就是它们的对称中心,如图(作法不唯一,也可以连结BE 或CF).20.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)△A1B1C1与△A2B2C2成轴对称,对称轴为直线EF,如图.21. 解:(1)①中心;轴②4(2)如图所示.(答案不唯一)22. 解:(1)∵BE⊥AD,∴∠EBD=90°.∵△ACF≌△DBE,∴∠FCA=∠EBD=90°.∴∠F+∠A=90°,∵∠F=62°,∴∠A=28°.(2)∵△ACF≌△DBE,∴CA=BD.∴CA-CB=BD-CB,即AB=CD.∵AD=9 cm,BC=5 cm,∴AB+CD =9-5=4(cm),∴AB=CD=2 cm.23. 解:(1)由平移知,BD=CE=4 cm.∵BC=6 cm,∴BE=BC+CE=6+4=10(cm).(2)由平移知,∠FDE=∠ABC=45°,∴∠FDB=180°-∠FDE=180°-45°=135°.(3)图中互相平行的线段有AB∥DF,AC∥FE.24. 解:(1)∠B′EC=2∠A′,理由:∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠A′=∠BAD,∴∠B′EC =∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′EC=2∠A′.(2)证明:∵△A′B′D′是由△ABD平移而来,∴A′B′∥AB,∠B′A′D′=∠BAD,∴∠B′A′C=∠BAC.∵AD平分∠BAC,∴∠BAC=2∠BAD.∴∠B′A′C=2∠B′A′D′,∴A′D′平分∠B′A′C.25. 解:(1)∠AOE=∠AOD+∠DOE=80°+30°=110°,则∠COE=∠AOE-∠AOC=110°-90°=20°(2)∠AOD-∠COE=(∠AOC+∠COD)-(∠COD+∠DOE)=∠AOC+∠COD-∠COD-∠DOE=∠AOC -∠DOE=90°-30°=60°(3)设∠COE=x,当OD在OA与OC之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=30°-x,由题意得90°+x=4(30°-x),解得x=6°;当OD在OC与OB之间时,∠AOE=∠AOC+∠COE=90°+x,∠COD=x-30°,由题意得90°+x=4(x-30°),解得x=70°,综上所述,∠AOE=4∠COD时,旋转角∠COE 为6°或70°。
2022年春华师版数学七年级下册单元测试卷班级姓名第10章轴对称、平移与旋转[时间:90分钟分值:120分]一、选择题(每题3分,共30分)1.[2021·淄博]下列图形中,不是轴对称图形的是()A B C D2.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格3.[2021·长沙模拟]如图,△ABC≌△DEC,则不能得到的结论是()A.AB=DEB.∠A=∠DC.BC=CDD.∠ACD=∠BCE4.如图,△ABC与△DEF关于直线MN成轴对称,则以下结论错误的是()A.AB∥DFB.∠B=∠EC.AB=DED.AD的连线被MN垂直平分5.[2022·崇仁校级模拟]如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°.要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10°C.12°D.18°6.[2021·成都模拟]如图,△ABC沿边BC所在直线向右平移得到△DEF,则下列结论错误的是()A.△ABC≌△DEFB.AC=DFC.AB=DED.EC=FC7.[2022·萧山模拟]将一张正方形纸片按如图步骤①、②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形为()A B C D8.[2021·哈尔滨模拟]如图,将△ABC纸片绕点A按逆时针方向旋转某个角后得到△AEF,CB、AF的延长线交于点D,AE∥CB,∠D=40°,则∠BAC的度数为()A.30°B.40°C.50°D.60°9.如图,△ABC≌△ADE,∠B=20°,∠E=110°,∠EAB =30°,则∠BAD的度数为()A. 80°B. 110°C. 70°D. 130°10.[2021春·商水县期末]如图,点P在∠MON的内部,点P关于OM、ON的对称点分别为A、B,连结AB,交OM 于点C,交ON于点D,连结PC、PD.若∠MON=50°,则∠CPD=()A.70°B.80°C.90°D.100°二、填空题(每题4分,共24分)11.[2021秋·宁河县期中]把图中的风车图案,绕着它的中心O旋转,旋转角至少为____度时,旋转后的图形能与原来的图形重合.12.[2021春·农安县期末]如图,将锐角△ABC绕点B 按顺时针方向旋转35°,得到△A′BC′.若A′C′⊥BC于点D,则∠C的度数是____.13.[2021春·鄄城县期末]某同学从平面镜里看到镜子对面的电子钟的示数如图所示,这时的实际时间是__________.14.如图,正方形ABCD经平移后成为正方形CEFG,其平移的方向为_________________________________的方向,平移的距离为线段______________________________的长;正方形CEFG也能看成是正方形ABCD经过旋转得到的,它的旋转中心为点_______,旋转角度为______.15.如图,将△OAB绕着点O逆时针连续旋转两次得到△OA″B″,每次旋转的角度都是50°.若∠B″OA=120°,则∠AOB=_______.16.如图,某住宅小区内有一长方形地块,若在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为2 m,则绿化的面积为_______ m2.三、解答题(共66分)17.(9分)如图,∠A=90°,点E为BC上一点,点A 和点E关于BD对称,点B和点C关于DE对称,求∠ABC 和∠C的度数.18.(9分)[2021·温州]如图,P、Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的P AQB;(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.图1图2 19.(12分)如图,已知△ABC≌△DEF,∠A=30°,∠B =50°,BF=2,求∠DFE的度数和EC的长.20.(12分)[2021秋·濮阳县期中]如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P.若AD =DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.21.(12分)[2021春·黄陂区月考]如图1,将线段AB平移至CD,使A与D对应,B与C对应,连结AD、BC.(1)填空:AB与CD的关系为______________________,∠B与∠D的大小关系为__________;(2)如图2,若∠B=60°,F、E为BC的延长线上的点,∠EFD=∠EDF,DG平分∠CDE交BE于G,求∠FDG;(3)在(2)中,若∠FDG=α,其他条件不变,则∠B=_______.图1图2 22.(12分)如图1,将△ABC绕顶点A顺时针旋转得到△AB′C′,若∠B=30°,∠C=40°.(1)当△ABC当顺时针旋转至少多少度时,旋转后的△AB′C′的顶点B′与原三角形的顶点C和A在同一直线上(如图2)?(2)在(1)的基础上,再继续旋转至少多少度时,点C、A、C′在同一直线上(如图3)?图1图2图3参考答案1.C【解析】选项A、B、D均可以沿一条直线折叠,图形左、右或上、下两部分可以重合,故均为轴对称图形,只有C选项不是轴对称图形.2.D3.C4.A【解析】AB与DF不一定平行,故A项错误;△ABC与△DEF关于直线MN成轴对称,则∠B=∠E,AB=DE,点A与点D是对应点,AD的连线被MN垂直平分,故B、C、D项正确.5.C【解析】∵AC∥OD′,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD-∠BOD′=82°-70°=12°.6.D7.D8.B【解析】∵EA∥CB,∴∠EAD=∠D=40°,∴由旋转的性质可知∠BAC=∠EAD=40°.9.A【解析】∵△ABC≌△ADE,∠B=20°,∴∠D=∠B =20°.在△ADE中,∠DAE=180°-∠D-∠E=180°-20°-110°=50°,∴∠BAD=∠DAE+∠EAB=50°+30°=80°.10.B【解析】如答图,连结OA、OB、OP,设P A与OM交于点E,PB与ON交于点F.∵点P关于OM、ON的对称点分别为A、B,∴OA=OP=OB,CA=CP,DP=DB,∠AOC=∠COP,∠POD=∠DOB,∴∠AOB=∠AOC+∠COP+∠POD+∠DOB=2∠COD=100°,∴∠OAB=∠OBA=12(180°-∠AOB)=40°.设∠COP=α,∠DOP=β,则α+β=50°.∵OA=OP,∠AOP=2α,∴∠OP A=∠OAP=12(180°-2α)=90°-α.∵∠OAB=40°,∴∠CP A=∠CAP=∠OAP-∠OAB=50°-α.同理,∠DPB=50°-β.∵∠EPF=360°-∠EOF-∠OEP-∠OFP=360°-50°-90°-90°=130°,∴∠CPD=∠EPF-(∠CP A+∠DPB)=130°-(50°-α+50°-β)=30°+(α+β)=80°.11.9012.55°【解析】∵将锐角△ABC绕点B按顺时针方向旋转35°,得到△A′BC′,∴∠CBC′=35°,∠C=∠C′.∵A′C′⊥BC于点D,∴∠BDC′=90°,∴∠C′=90°-35°=55°,∴∠C=∠C′=55°.13.10:5114.射线AC(答案不唯一,写出一个即可)AC(答案不唯一,写出一个即可) C 180°15.20°【解析】∵∠AOA′=∠A″OA′=∠BOB′=∠B′OB″=50°,∴∠B″OB=100°.∵∠B″OA=120°,∴∠AOB=∠B″OA-∠B″OB=120°-100°=20°.16.540【解析】如答图,把两条“之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是长方形,根据长方形的面积公式即可求出结果.∵CF=32-2=30(m),CG=20-2=18(m),∴长方形EFCG的面积=30×18=540(m2).故绿化的面积为540 m2.17.解:∵点A和点E关于BD对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.又∵点B和点C关于DE对称,∴∠EBD=∠C,∴∠ABC=2∠C.∵∠A=90°,∴∠ABC+∠C=2∠C+∠C=3∠C=90°,∴∠C=30°,∴∠ABC=2∠C=60°.18.解:(1)画法不唯一,如答图1所示:答图1(2)画法不唯一,如答图2所示:答图2 19.解:∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=180°-30°-50°=100°.∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF-CF=BC-CF,即EC=BF.∵BF=2,∴EC=2.20.解:(1)∵∠ABE=162°,∠DBC=30°,∴∠ABD+∠CBE=132°.∵△ABC≌△DBE,∴∠ABC=∠DBE,∴∠ABD=∠CBE=132°÷2=66°.即∠CBE的度数为66°.(2)∵△ABC≌△DBE,∴DE=AD+DC=4.8,BE=BC=4.1,∴△DCP和△BPE的周长和=DC+DP+CP+BP+PE +BE=DC+DE+BC+BE=15.4.21.(1) AB∥CD,且AB=CD相等(3) 2α【解析】(1)AB∥CD,且AB=CD,∠B与∠D相等.解:(2)∵AB∥CD,∴∠DCE=∠B.由三角形的外角性质,得∠CDF=∠DFE-∠DCE,∴∠CDG=∠CDF+∠FDG=∠DFE-∠DCE+∠FDG.∵在△DEF中,∠DEF=180°-2∠DFE,在△DFG中,∠DGF=180°-∠FDG-∠DFE,∴∠EDG=∠DGF-∠DEF=180°-∠FDG-∠DFE-(180°-2∠DFE)=∠DFE-∠FDG.∵DG平分∠CDE,∴∠CDG=∠EDG,∴∠DFE-∠DCE+∠FDG=∠DFE-∠FDG,∴∠FDG=12∠DCE,即∠FDG=12∠B.又∵∠B=60°,∴∠FDG=12×60°=30°.【解析】(3)思路同(2).∵∠FDG=α,∴∠B=2α.22.解:(1)∵∠B=30°,∠C=40°,∴∠BAC=180°-∠B-∠C=110°.∵将△ABC绕其顶点A顺时针旋转,旋转后的△AB′C′的顶点B′与原三角形的顶点C和A在同一直线上,∴∠BAB′=110°,∴需要旋转至少110°.(2)若在(1)的基础上,再继续旋转,使点C、A、C′在同一直线上,则旋转后∠BAB′=180°,∴∠CAB′=180°-110°=70°.即在(1)的基础上,再继续旋转至少70°时,点C、A、C′在同一直线上.。
七年级数学下册《第十章 轴对称、平移与旋》单元测试卷及答案解析-华东师大版 一、单选题1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A .B .C .D .2.下列四个图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .3.如图,将△ABC 绕点A 逆时针旋转65°得到△AED ,则△BAE 的度数是( )A .65°B .45°C .35°D .25°4.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是( )A .B .C .D .5.如图,若ABC DEF ≌,则D ∠等于( )A .30︒B .50︒C .60︒D .100︒6.如图,在ABC 中40C ∠=︒,把ABC 沿BC 边上的高AM 所在的直线翻折,点C 落在边CB 的延长线上的点C '处,如果20BAC ∠='︒,则BAC ∠的度数为( )A .80︒B .75︒C .85︒D .70︒7.如图,DEF 经过怎样的平移得到ABC ( )A .把DEF 向左平移4个单位,再向上平移2个单位B .相DEF 向右平移4个单位,再向下平移2个单位C .把DEF 向右平移4个单位,再向上平移2个单位D .把DEF 向左平移4个单位.再向下平移2个单位8.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A'OB',若△AOB =15°,则△AOB'的度数是( )A .25°B .30°C .35°D .40°9.下列图案中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC 是格点三角形,请你找出方格中所有与△ABC 全等,且以A 为顶点的格点三角形,这样的三角形共有( )个(△ABC 除外).A .2B .3C .4D .5二、填空题11.如图,在ABC 中,D 是BC 上一点250ABC BAD ∠=∠=︒,将ABD 沿着AD 翻折得到AED ,则CDE ∠= .12.如图,△ABC 沿BC 所在直线向右平移得到△DEF ,已知EC =4,BF =18,则平移的距离为 .13.两块不同的三角板按如图1所示摆放,AC 边重合4530BAC DAC ∠∠=︒=︒,接着如图2保持三角板ABC 不动,将三角板ACD 绕着点C 按顺时针以每秒10︒的速度旋转90︒后停止.在此旋转过程中,当旋转时间t = 秒时三角板A CD ''有一条边与三角板ABC 的一条边恰好平行.14.三个全等三角形摆成如图所示的形式,则αβγ∠+∠+∠的度数为 .三、作图题15.如图,在正方形网格中,ABC 各顶点都在格点上,点A ,B ,C 的坐标分别为()51-,,()54-,和()14-,.四、解答题16.如图是正方形纸片ABCD ,分别沿AE 、AF ,折叠后边AB 与AD 恰好重叠于AG ,求△EAF 的大小.17.如图,在一块长为20m ,宽为10m 的长方形草地上,修建了宽为1m 的小路,求这块草地的绿地面积.18.如图,已知30BAC ∠=︒,把ABC 绕着点A 顺时针旋转,使得点B 与CA 的延长线上的点D 重合,求AEC ∠的度数.19.如图,点P 是△AOB 外的一点,点Q 与P 关于OA 对称,点R 与P 关于OB 对称,直线QR 分别交OA ,OB 于点M ,N ,若PM=PN=3,MN=4,求线段QR 的长.20.如图,ACB 和DCE 均为等边三角形,点A 、D 、E 在同一直线上,连结BE .试说明AD BE =.聪明的小亮很快就找到了解决该问题的方法,请你帮助小亮把说理过程补充完整.解:∵ACB 和DCE 均为等边三角形∴CA CB =,CD=CE ,ACB ∠= 60=︒(等边三角形的性质) ∴ACD ∠=即ACD 绕点C 按逆时针方向旋转 度,能够与 重合 ∴ACD ≌ (旋转变换的性质) ∴AD BE =( ).五、综合题21.如图,已知110AOB ∠=︒,OC 在AOB ∠内部,OD 在BOC ∠的内部,40COD ∠=︒.(1)若50AOC ∠=︒,则BOD ∠= ;若AOC x ∠=︒,则BOD ∠= (用含x 的代数式表示);(2)若2AOD BOC ∠=∠,求AOC ∠的度数;(3)将AOC ∠以OC 为折痕进行翻折,OA 落在OE 处,将BOD ∠以OD 为折痕进行翻折,OB 落在OF 处,AOC ∠的度数变化时EOF ∠的度数是否发生变化?若变化,请说明理由:若不变,请求出EOF ∠的度数.22.如图,在边长为1个单位长度的小正方形组成的网格中.(1)把△ABC 进行平移,得到△A′B′C′,使点A 与A′对应,请在网格中画出△A′B′C′;(2)线段AA′与线段CC′的关系是 .23.如图1,AB CD 点E ,F 分别在直线CD AB ,上2BEC BEF ∠∠=,过点A 作AG BE ⊥的延长线交于点G ,交CD 于点N ,AK 平分BAG ∠,交EF 于点H ,交BE 于点M.(1)直接写出AHE FAH KEH ∠∠∠,,之间的关系:_ . (2)若12BEF BAK ∠=∠,求AHE ∠. (3)如图2,在(2)的条件下,将KHE 绕着点E 以每秒5°的速度逆时针旋转,旋转时间为t ,当KE 边与射线ED 重合时停止,则在旋转过程中,当KHE 的其中一边与ENG 的某一边平行时直接写出此时t 的值.参考答案与解析1.【答案】B【解析】【解答】解:千里之行,四个字中,可以看作是轴对称图形的是:里;故答案为:B .【分析】根据轴对称图形的定义逐项判断即可。
华东师大版七年级数学下册《第十章轴对称、平移与旋转》单元检测卷-带答案(考试时间:120分钟;全卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共12个小题,每小题4分,共48分1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字中是轴对称图形的是()2.下列图形中,属于中心对称图形的是()3.如图,已知△ABC与△A′B′C′关于直线l对称,∠B=110°,∠A′=25°,则∠C的度数为()A.25° B.45° C.70° D.110°4.如图,将△ABC绕点C按照顺时针方向旋转35°得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A的度数为()A.45° B.50° C.55° D.60°5.已知△ABC≌△DEF,△DEF的周长为13,AB+BC=7,则AC的长为()A.3 B.4 C.6 D.206.下列说法中正确的是()A.平移不改变图形的形状和大小,旋转则改变图形的形状和大小B.图形可以向某方向平移一定的距离,也可以向某方向旋转一定距离C.平移和旋转的共同点是改变图形的位置D.在平移和旋转图形中,对应角相等,对应线段相等且平行7.如图,把△ABC以点A为中心逆时针旋转得到△ADE,点B,C的对应点分别是点D,E,且点E在BC的延长线上,连接BD,则下列结论中一定正确的是()A.∠CAE=∠BED B.AB=AE C.∠ACE=∠ADE D.CE=BD 8.如图是4×4的网格图,将图中标有①,②,③,④的一个小正方形涂灰,使所有的灰色图形构成中心对称图形,则涂灰的小正方形是()A.① B.② C.③ D.④9.如图,以正六边形ABCDEF的顶点D为旋转中心,按顺时针方向旋转,使得新正六边形A′B′C′D′E′F′的顶点落在直线CD上,则正六边形ABCDEF至少旋转()A.30° B.45° C.60° D.90°10.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3的度数为()A.90° B.135° C.150° D.180°11.如图,某园林内,在一块长33 m,宽21 m的长方形土地上,有两条斜交叉的小路,其余地方种植花卉进行绿化.已知小路的出路口均为1.5 m,则绿化地的面积为()A.693 B.614.25 C.78.75 D.58912.如图,△ABC≌△AEF,点F在BC上,下列结论:①AC=AF;②∠FAB=∠EAB;③∠FAC=∠BAE;④若∠C=50°,∠FAC=80°,则∠BFE=80°.其中错误的有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6个小题,每小题4分,共24分13.如图,如果△ABC和△A′B′C′关于点O中心对称,那么AA′必过点,且被这个点14.如图是一个轴对称图形,AD所在的直线是对称轴,则线段BO,CF的对称线段分别是;△ACE的对称三角形是15.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别是S1,S2,则S1 S2 (选填“>”“<”或“=”)16.如图,在正方形ABCD中,E为边CD上的一点,连接BE,∠BEC=60°,将△BEC绕点C按顺时针方向旋转90°得到△DFC,连接EF,则∠EFD的度数为17.用等腰直角三角尺画∠AOB=45°,并将三角尺沿OB方向平移到如图所示的虚线处,然后将其绕点M按逆时针方向旋转22°,则三角尺的斜边与边OA的夹角α为18.对于平面图形上的任意两点P,Q,如果经过某种变换(如:平移、旋转、轴对称等)得到新图形上的对应点P′,Q′,保持PP′=QQ′,我们把这种对应点连线相等的变换称为“同步变换”.对于三种变换:①平移;②旋转;③轴对称;④中心对称,其中一定是“同步变换”的有 (选填序号)三、解答题:本大题共7个小题,共78分,解答应写出文字说明、证明过程或演算步骤19.(10分)如图,△ABC和△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若∠BAC=108°,∠BAE=30°,求∠EAF的度数20.(10分)在如图的方格纸中,每个小正方形的边长都为1,△ABC与△A1B1C1构成的图形是中心对称图形(1)画出此中心对称图形的对称中心;(2)画出将△A1B1C1沿直线DE方向向上平移5格得到的△A2B2C2;(3)以点C2为旋转中心将△A2B2C2顺时针方向旋转90°得到△A3B3C2,画出△A3B3C221.(10分)已知△ABC≌△EFG,AB=EF,BC=FG,∠A=58°,∠F-∠G=32°.求∠B与∠C的度数22.(10分)如图,△AOC逆时针旋转到△BOD,其中∠AOC=120°,点A,O,D 在同一直线上.(1)旋转中心是哪一点?(2)旋转了多少度?(3)指出对应线段、对应角及对应点23.(12分)将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE(1)如果AC=6 cm,BC=8 cm,试求△ACD的周长;(2)如果∠CAD∶∠BAD=1∶2,求∠B的度数24.(12分)如图,已知△ABC≌△AEF,∠BAE=25°,∠F=57°(1)请证明∠BAE=∠CAF;(2)△ABC可以经过图形的变换得到△AEF.请描述这个变换;(3)求∠AMB的度数25.(14分)如图,已知直线l1∥l2,点A,B在直线l1上,点C,D在直线l2上,点C在点D的右侧,∠ADC=80°,∠ABC=n°,BE平分∠ABC,DE平分∠ADC,直线BE,DE交于点E,且点E在l1与l2之间(1)写出∠EDC的度数:________;(2)试求∠BED的度数(用含n的代数式表示);(3)将线段BC向右平行移动,使点B在点A的右侧,其他条件不变,请画出图形并直接写出∠BED的度数(用含n的代数式表示)参考答案1.( C )2.( B )3.( B )4.( C )5.( C )6.( C )7.( A )8.( C )9.( C )10.( B )11.( B )12.( A )13.O,平分14.CO,BE;△ABF15.S1=S216.15° 17.22° 18.①19、解:∵∠BAC =108°,∠BAE =30° ∴∠CAE =108°-30°=78° 再根据对称性,得∠EAF =∠CAF∴∠EAF =12∠CAE =39°20解:(1)对称中心点O 如图所示 (2)△A 2B 2C 2如图所示 (3)△A 3B 3C 2如图所示21、解:∵△ABC ≌△EFG ,AB =EF ,BC =FG ∴∠A =∠E ,∠B =∠F ,∠C =∠G∵∠A =58°,∴∠B +∠C =180°-∠A =180°-58°=122° ∵∠F -∠G =32°,即∠B -∠C =32°,∴∠B =77°,∠C =45° 22、解:(1)旋转中心为点O(2)∵∠BOD =∠AOC ,∠AOC =120°,点A ,O ,D 在同一直线上 ∴∠AOB =180°-120°=60°∵线段OA的对应线段为OB∴旋转角为∠AOB=60°.即旋转了60°(3)对应角:∠A对应∠OBD; ∠C对应∠D; ∠AOC对应∠ BOD;对应线段:OA对应OB;OC对应OD;CA对应DB;对应点:A对应 B; C对应D23、解:(1)由折叠的性质可得BD=AD,∠B=∠BAD∵△ACD的周长为AC+AD+CD∴△ACD的周长为AC+BD+CD=AC+BC=6+8=14(cm)(2)设∠CAD=x°,则∠BAD=2x°∵∠B=∠BAD,∴∠B=2x°∵∠B+∠DAB+∠CAD=90°,∴2x°+2x°+x°=90°,∴x=18 ∴∠B=36°24、(1)证明:∵△ABC≌△AEF∴∠BAC=∠EAF∴∠BAC-∠PAF=∠EAF-∠PAF∴∠BAE=∠CAF(2)解:由题意知△ABC绕点A顺时针旋转25°可以得到△AEF(3)解:∵△ABC≌△AEF,∠F=57°,∠BAE=25°∴∠C=∠F=57°,∠CAF=∠BAE=25°∴∠AMB=∠C+∠CAF=57°+25°=82°25第 11 页 共 11 页解:(1)∵DE 平分∠ADC ,∠ADC =80°,∴∠EDC =12∠ADC =40°(2)如题图,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ∴∠ABE =∠BEF ,∠CDE =∠DEF∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°∴∠BED =∠BEF +∠DEF =12n °+40°(3)如答图①,点A 在点B 的左边时∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =n °,∠ADC =80° ∴∠ABE =12n °,∠CDE =40°,∵AB ∥CD ,∴AB ∥CD ∥EF∴∠BEF =180°-∠ABE =180°-12n °,∠CDE =∠DEF =40°∴∠BED =∠BEF +∠DEF =180°-12n °+40°=220°-12n °;如答图②,∠BED =12n °+140°综上所述,当点B 在点A 右侧时,∠BED 的度数为12n °+140°或220°-12n °。
第十章轴对称、平移与旋转一、选择题(每小题3分,共30分)1.下列图形中一定是轴对称图形的是( )A.直角三角形B.四边形C.平行四边形D.长方形2.下列图形中,既是中心对称图形,又是轴对称图形的是( )3.如图,△ABC经过平移到达△DEF的位置,则下列四个说法中,正确的有( )①AB∥DE,AB=DE;②AD∥BE∥CF,AD=BE=CF;③AC∥DF,AC=DF;④BC ∥EF,BC=EF.A.1个 B.2个 C.3个 D.4个4.如图,是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( ) A.150° B.180° C.210° D.120°5.如图,在下列四种图形变换中,该图案不包含的变换是( )A.平移 B.轴对称 C.旋转 D.中心对称6.如图,如果甲、乙两图关于点O成中心对称,则乙图不符合题意的一块是( )7.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为( ) A.30° B.60° C.90° D.150°,8.如图,将边长为2个单位的等边△ABC沿边BC向右平移1个单位得到△DEF,则四边形ABFD的周长为( )A.6 B.8 C.10 D.129.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P 关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为( ) A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm10.如图,由四个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包括△ABC本身)共有( )A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共15分)11.如图,下列各图是旋转对称图形的有____,是中心对称图形的有____.12.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB =15°,则∠AOD=____度.13.如图,△ABC≌△DEF,∠A=70°,∠B=40°,BF=6,则∠DEF=____,EC=____.14.如图,一块长46 m,宽25 m的草地上,准备修两条如图所示的小径,则修了小径后,草地可种草的面积变为____ m2.15.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上的一点,若AF=12AB,则可通过____(填“平移”“旋转”或“轴对称”)变换,使△ABE变换到△ADF的位置,且线段BE,DF的数量关系是____,位置关系是___.三、解答题(共75分)16.(8分)下列图形是全等图形的有:____.(填序号)17.(9分)如图,四边形ABCD的顶点D在直线m上.(1)画出四边形ABCD关于直线m为对称轴的对称图形A1B1C1D;(2)延长线段BA和B1A1,它们的交点与直线m有怎样的关系;(3)如果∠A=91°,BC=16 cm,请你求出∠A1的度数与B1C1的长.18.(9分)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(9分)如图,在8×8的方格纸中,将△ABC向右平移4个单位长度得到△A1B1C1,△ABC关于直线MN对称的图形为△A2B2C2,将△ABC绕点O旋转180°得△A3B3C3.(1)在方格纸中画出△A1B1C1、△A2B2C2和△A3B3C3;(2)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成轴对称?请画出对称轴;(3)在△A1B1C1、△A2B2C2和△A3B3C3中,哪两个三角形成中心对称?请画出对称中心P.20.(9分)学完图形的全等后,数学老师出了一道题:“如图,已知△ABC≌△ADE,∠BAD=40°,∠C=50°,问DE与AC有何位置关系,并说明理由.”请你完成这道题.21.(10分)认真观察前四个图中阴影部分构成的图案(每个小正方形的边长都为1),回答下列问题:(1)请写出这四个图案都具有的三个共同特征:特征1:__________________________________________________;特征2:__________________________________________________;特征3:__________________________________________________.(2)请在第五个图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.22.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,使它与△ABC全等且点A与点A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.23.(11分)如图,在正方形ABCD中,点E在BC上,∠FDE=45°,△DEC 按顺时针方向旋转一个角度后得△DGA.(1)图中哪一个点是旋转中心?旋转角度是多少?(2)试指明图中旋转图形的对应线段与对应角?(3)图中有除正方形四边相等外的相等线段与相等的角吗?有没有能够完全重合的三角形?若有,请找出来;若没有,说明理由.(4)你能求出∠GDF的度数吗?说明你的理由.答案选择题1-5:DCDBA6-10:CBBAC填空题11. (1)(2)(3)(4)(5)(7) (1)(3)(4)(5)(7)12. 3013. 614. 108015 旋转、BE=DF、BE⊥DF16. ①与⑨,②与③,④与⑧,⑪与⑫17. 解:(1)画图略(2)交点在直线m上(3)∠A1=91°,B1C1=16 cm18. 解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示,△ECD为所求作19. 解:(1)画图略(2)△A2B2C2与△A3B3C3成轴对称,画图略(3)△A1B1C1与△A 3B3C3成中心对称,对称中心点P为A1A3的垂直平分线与B1B3的垂直平分线的交点20. 解:DE⊥AC.理由:∵△ABC≌△ADE,∴∠BAC=∠DAE,∠E=∠C=50°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,∴∠CAE=40°,∴∠AFE =180°-∠CAE-∠E=90°21. 解:(1)都是中心对称图形;都是轴对称图形;面积都是4 (2)画图略22. 解:(1)本题是开放题,答案不唯一,图中给出了两个满足条件的三角形,其他解答只要正确即可(2)D点如图所示,AD是由AB绕A点逆时针旋转90°而得到的,或AD是由AB绕A点顺时针旋转270°而得到的23. 解:根据图形旋转的特征可以得到:(1)图中△DEC是绕旋转中心点D顺时针旋转90°后到达△DGA的位置(2)图中DE与DG,DC与DA,EC与GA是对应线段,∠CDE与∠ADG,∠C与∠DAG,∠DEC与∠G是对应角(3)相等线段有DG =DE,GA=EC,相等的角有∠G=∠DEC,∠GDA=∠EDC,∠DAG=∠C,能够完全重合的三角形是△DCE与△DAG (4)∵△DCE绕D点旋转90°到△DAG的位置,此时DG⊥DE,而∠FDE=45°,∴∠GDF=45°。
第10章轴对称、平移与旋转一、单选题1.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.2.如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形3.如图,两个直角三角形重叠在一起,将沿AB方向平移得到,,,下列结论:① ;② ;③ :④ ;⑤阴影部分的面积为.其中正确的是()A. ①②③④B. ②③④⑤C. ①②③⑤D. ①②④⑤4.如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1,则其旋转中心可以是()5.下列银行标志是中心对称图形的是()A. B. C. D.6.如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A. 11B. 10C. 9D. 87.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )A. BE=4B. ∠F=30°C. AB∥DED. DF=58.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A. 3cmB. 5cmC. 8cmD. 13cm9.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.()A. B. C. D.10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A. ①②B. ②③C. ③④D. ②③④11.如图,将(其中,),绕点按顺时针方向旋转到的位置,使得点,,在同一直线上,则旋转角的度数为( )A. B. C. D.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为( )A. 3B. 4C. 5D. 613.图中的两个梯形成中心对称,点P的对称点是()A. 点AB. 点BC. 点CD. 点D14.如图,已知图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点15.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形.A. 1个B. 2个C. 3个D. 4个二、填空题16.如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=________.17.如图,将周长为12的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________18.如图,在正方形ABCD中,,点E在CD边上,且,将绕点A顺时针旋转90°,得到,连接,则线段的长为________.19.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对.20.如图,△DEF是由△ABC沿BC方向向右平移2cm后得到,若△ABC的周长为10cm,则四边形ABFD的周长等于________ cm。