九年级数学拔高训练(3)修正版
- 格式:doc
- 大小:64.50 KB
- 文档页数:2
1中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (8)专题提升(三) 数式规律型问题 (12)专题提升(四) 整式方程(组)的应用 (21)专题提升(五) 一次函数的图象与性质的应用 (28)专题提升(六) 一次函数与反比例函数的综合 (37)专题提升(七) 二次函数的图象和性质的综合运用 (47)专题提升(八) 二次函数在实际生活中的应用 (54)专题提升(九) 以全等为背景的计算与证明 (60)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (66)专题提升(十一) 以平行四边形为背景的计算与证明 (75)专题提升(十二) 与圆的切线有关的计算与证明 (83)专题提升(十三) 以圆为背景的相似三角形的计算与 (89)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (97)专题提升(十五) 巧用旋转进行证明与计算 (104)专题提升(十六) 统计与概率的综合运用 (111)专题提升(一)数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是(C)图Z1-2A.5+1B. 5C.5-1 D.1- 5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E 点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是(D)图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是(C)图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为(B)图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x+4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于(A)图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是(C)图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1. 解:原式=2-12+12=2.2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1. 解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°.解:(-3)2+2 0170-18×sin45°=9+1-32×22=10-3=7.【中考预测】 计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1. 解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢?解:x 2+y 2=(x +y )2-2xy =32-2×1=7;(x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__.【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11.3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9.类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab ;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a ;(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x =2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x,其中x =2. 解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23.【中考预测】先化简,再求值:⎝⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝ ⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2=x -2.当x =4时,原式=x -2=2. 类型之三 二次根式的化简与求值 【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值. 解:∵a =3+2,b =3-2,∴a +b =23,ab =1, ∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一. 【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为 ( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-aba +b ,当a =2+1,b =2-1时,原式=-122=-24.3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷yx -2y ,其中x =22,y = 2. 解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷yx -2y =⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y =⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷yx -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】 先化简,再求值:1a +b +1b +ba (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +bab ,∵a +b =5+12+5-12=5,ab =5-12×5+12=1,∴原式= 5.专题提升(三)数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗?请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是(C)A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B)图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的(D)图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从 2 017到 2 018再到 2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走(D)图Z3-3A .②号棒B .⑦号棒C .⑧号棒D .⑩号棒【解析】 仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒. 5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n 个图形用的棋子个数为( D )A .3nB .6nC .3n +6D.3n +3【解析】 ∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n 个图需棋子(3n +3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】 根据所给的数据发现:第n 个三角形数是1+2+3+…+n ,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n = 2 016,得n (n +1)2=2 016,解得n =63(负数舍去). 7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__.【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100,∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为__9n +3__.图Z3-5【解析】 ∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n 个图中正方形和等边三角形的个数之和=9n +3. 9.观察下列等式:第一个等式:a 1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a1+a2+a3+…+a n=【解析】a1+a2+a3+…+a n=(2-1)+(3-2)+(2-3)+(5-2)+…+(n+1-n)=n+1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有__4n+1__个涂有阴影的小正方形(用含有n的代数式表示).图Z3-6【解析】由图可知,涂有阴影的小正方形有5+4(n-1)=4n+1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒. 12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示. 由图易得12+122+123+…+12n =__1-12n __.图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n-1)=n2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n +1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一 一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t ,还剩下8 t 未装;若每辆车装4.5 t ,恰好装完.这个车队有多少辆车?解:设这个车队有x 辆车,依题意,得4x +8=4.5x ,解得x =16.答:这个车队有16辆车.【思想方法】 利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台 【解析】 设今年购置计算机的数量是x 台,去年购置计算机的数量是(100-x )台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本. 类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎨⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎪⎨⎪⎧p =1,q =12; (2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3.答:此批次蛋糕属第3档次产品.⎝ ⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1 min到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h 与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过43h与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b , 把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b , 解得⎩⎨⎧k =40,b =-60,∴直线BC 的表达式为y =40t -60. 设直线CD 的函数表达式为y 1=k 1t +b 1, 把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎪⎨⎪⎧1003=73k 1+b 1,0=4k 1+b 1,解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80;(2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得 ⎩⎪⎨⎪⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎨⎧a =60,b =20,∴甲的速度为60 km/h ,乙的速度为20 km/h , ∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝ ⎛⎭⎪⎫1≤t ≤73,s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75, 答:丙出发75 h 与甲相遇. 【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式__y =60x (0<x ≤6)__;(2)求乙组加工零件总量a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;(2)在同一直角坐标系中画出它们的图象;(3)根据图象回答下列问题:印制800份宣传材料时,选择哪一家印刷厂比较合算?商场计划花费3 000元用于印刷上述宣传材料,找哪一家印刷厂印制宣传材料多一些?解:(1)甲厂的收费函数表达式为y甲=x+1 500,乙厂的收费函数表达式为y乙=2.5x;(2)图略;。
2023年中考九年级数学高频考点拔高训练-- 切线的证明一、综合题1.如图,AB为半圆的直径,点C是弧AD的中点,过点C作BD延长线的垂线交于点E.(1)求证:CE是半圆的切线;(2)若OB=5,BC=8,求CE的长.2.如图,在⊙ O中,AB是直径,BC是弦,BC=BD,连接CD交⊙ O于点E,⊙BCD=⊙DBE.(1)求证:BD是⊙ O的切线.(2)过点E作EF⊙AB于F,交BC于G,已知DE= 2√10,EG=3,求BG的长.3.如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A,B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y= 34x+4,与x轴相交于点D.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.4.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC 为⊙O 的切线;(2)连接AE 并延长与BC 的延长线交于点G (如图②所示).若AB= 4√5 ,CD=9,求线段BC 和EG 的长.5.设C 为线段AB 的中点,四边形BCDE 是以BC 为一边的正方形.以B 为圆心,BD 长为半径的⊙B 与AB 相交于F 点,延长EB 交⊙B 于G 点,连接DG 交于AB 于Q 点,连接AD .求证:(1)AD 是⊙B 的切线; (2)AD=AQ ; (3)BC 2=CF•EG .6.如图,D 是以AB 为直径的⊙O 上一点,过点D 的切线DE 交AB 的延长线于点E ,过点B 作BC⊙DE 交AD 的延长线于点C ,垂足为点F.(1)求证:AB=CB ;(2)若AB=18,sinA=13,求EF 的长.7.如图,已知⊙C 过菱形ABCD 的三个顶点B ,A ,D ,连结BD ,过点A 作AE⊙BD 交射线CB 于点E.(1)求证:AE是⊙C的切线.⌢围成的部分的面积.(2)若半径为2,求图中线段AE、线段BE和AB(3)在(2)的条件下,在⊙C上取点F,连结AF,使⊙DAF=15°,求点F到直线AD的距离. 8.如图,以⊙ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设⊙CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan⊙BAC的值;(3)在(2)的条件下,若AE=3 √2,求⊙O的半径长.9.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于点F.(1)求证:FE是⊙O的切线;(2)若∠F=30°,求证:4FG2=FC⋅FB;(3)当BC=6,EF=4时,求AG的长.10.如图,⊙ABC为⊙O的内接三角形,AB为⊙O的直径,将⊙ABC沿直线AB折叠得到⊙ABD,交⊙O于点D.连接CD交AB于点E,延长BD和CA相交于点P,过点A作AG⊙CD交BP于点G.(1)求证:直线GA是⊙O的切线.(2)求证:AG•AD=GD•AB.(3)若tan⊙AGB=√2,PG=6,求sinP的值.11.如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.(1)求证:AC是⊙O的切线;⌢中点,AE与BC交于点F,(2)若点E是的BD①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.12.在RtΔABC中,∠ACB=90°,以直角边BC为直径作⊙O,交AB于点D,E为AC 的中点,连接OD、DE.(1)求证:DE为⊙O切线.(2)若BC=4,填空:①当DE=时,四边形DOCE为正方形;②当DE=时,ΔBOD为等边三角形.⌢的长为π,点P是BC上一动13.如图,A为⊙O外一点,AO⊙BC,直径BC=12,AO=10,BD点,⊙DPM =90°,点M 在⊙O 上,且⊙DPM 在DP 的下方.(1)当sinA =35时,求证:AM 是⊙O 的切线;(2)求AM 的最大长度.14.如图,AB 是⊙O 的直径,弦AC 与BD 交于点E ,且AC =BD ,连接AD ,BC.(1)求证:⊙ADB⊙⊙BCA ;(2)若OD⊙AC ,AB =4,求弦AC 的长;(3)在(2)的条件下,延长AB 至点P ,使BP =2,连接PC.求证:PC 是⊙O 的切线.15.如图,在⊙ABC 中,⊙C =90°,⊙ABC 的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点F ,⊙O 是⊙BEF 的外接圆.(1)求证:AC 是⊙O 的切线;(2)过点E 作EH⊙AB ,垂足为H ,求证:CD =HF ; (3)若CD =1,EH =3,求BF 及AF 长.16.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,PA 切⊙O 于点A ,连接OP ,过点B 作BC // OP 交⊙O 于点C ,点E 是 AB⌢ 的中点.(1)求证:PC是⊙O的切线;(2)若AB=10,BC=6,求CE的长.答案解析部分1.【答案】(1)证明:如图,连接AD、OC,OC交AD于F.∵= ,∴OC⊙AD,∴AF=FD,∵OA=OB,∴OF⊙BD,即OC⊙BE,∵EC⊙EB,∴EC⊙OC,∴EC是⊙O的切线.(2)解:连接AC,作OH⊙AC于H.∵AB是直径,∴⊙ACB=90°,∴AC= = =6,∵OH⊙AC,∴AH=CH=3,OH= =4,∵S⊙AOC= •AC•OH= •CO•AF,∴AF= = ,∴DF=AF= ,∵⊙E=⊙ECF=⊙CFD=90°,∴四边形ECFD是矩形,∴EC=DF= .2.【答案】(1)证明:如图,连接AE,则⊙BAE=⊙BCE,∵AB是直径,∴⊙AEB=90°,∴⊙BAE+⊙ABE=90°,∴⊙ABE+⊙BCE=90°,∵⊙BCE=⊙DBE,∴⊙ABE+⊙DBE=90°,即⊙ABD=90°,∴BD是⊙O的切线.(2)解:如图,延长EF交⊙O于H,∵EF⊙AB,AB是直径,∴BE⌢=BH⌢,∴⊙ECB=⊙BEH,∵⊙EBC=⊙GBE,∴⊙EBC⊙⊙GBE,∴BEBG=BCBE,∵BC=BD,∴⊙D=⊙BCE,∵⊙BCE=⊙DBE,∴⊙D=⊙DBE,∴BE=DE= 2√10,∵⊙AFE=⊙ABD=90°,∴BD⊙EF,∴⊙D=⊙CEF,∴⊙BCE=⊙CEF,∴CG=GE=3,∴BC=BG+CG=BG+3,∴2√10BG=BG+32√10,∴BG=-8(舍)或BG=5,即BG的长为5.3.【答案】(1)解:如图1,连接AE,由已知得:AE=CE=5,OE=3,在Rt⊙AOE中,由勾股定理得:OA= √AE2−OE2= √52−32=4,∵OC⊙AB,∴由垂径定理得:OB=OA=4,OC=OE+CE=3+5=8,∴A(0,4),B(0,﹣4),C(8,0),∵抛物线的顶点为C,∴设抛物线的解析式为:y=a(x﹣8)2,将点B的坐标代入得:64a=﹣4,a=﹣116,∴y=﹣116(x﹣8)2,∴抛物线的解析式为:y=﹣116x2+x﹣4;(2)解:直线l与⊙E相切;理由是:在直线l的解析式y= 34x+4中,当y=0时,即34x+4=0,x=﹣163,∴D(﹣163,0),当x=0时,y=4,∴点A在直线l上,在Rt⊙AOE和Rt⊙DOA中,∵OEOA=34,OAOD=34,∴OEOA=OAOD,∵⊙AOE=⊙DOA=90°,∴⊙AOE⊙⊙DOA,∴⊙AEO=⊙DAO,∵⊙AEO+⊙EAO=90°,∴⊙DAO+⊙EAO=90°,即⊙DAE=90°,∴直线l与⊙E相切;(3)解:如图2,过点P作直线l的垂线PQ,过点P作直线PM⊙x轴,交直线l于点M,设M(m,34m+4),P(m,﹣116m2+m﹣4),则PM= 34m+4﹣(﹣116m2+m﹣4)= 116m2﹣14m+8=116(m−2)2+ 314,当m=2时,PM取最小值是31 4,此时,P(2,﹣9 4),对于⊙PQM,∵PM⊙x轴,∴⊙QMP=⊙DAO=⊙AEO,又⊙PQM=90°,∴⊙PQM的三个内角固定不变,∴在动点P运动过程中,⊙PQM的三边的比例关系不变,∴当PM取得最小值时,PQ也取得最小值,PQ最小=PM最小•sin⊙QMP=PM最小•sin⊙AEO= 314×45= 315,∴当抛物线上的动点P(2,﹣94)时,点P到直线l的距离最小,其最小距离为315.4.【答案】(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴⊙OEC⊙⊙OBC(SSS)∴⊙OBC=⊙OEC又∵DE与⊙O相切于点E∴⊙OEC=90°∴⊙OBC=90°∴BC为⊙O的切线.(2)解:解:如图2,过点D作DF⊙BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt⊙DFC中,CF= √92−(4√5)2=1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD⊙BG,∴⊙DAE=⊙EGC,∵DA=DE,∴⊙DAE=⊙AED;∵⊙AED=⊙CEG,∴⊙EGC=⊙CEG,∴CG=CE=CB=5,∴BG=10,在Rt⊙ABG中,AG= √AB2+BG2=6 √5,∵AD⊙CG,∴⊙CEG⊙⊙DEA,∴ADCG=AEEG=45,∴EG= 59×6 √5= 10√53.5.【答案】(1)证明:连接BD,∵四边形BCDE是正方形,∴⊙DBA=45°,⊙DCB=90°,即DC⊙AB,∵C为AB的中点,∴CD是线段AB的垂直平分线,∴AD=BD,∴⊙DAB=⊙DBA=45°,∴⊙ADB=90°,即BD⊙AD,∵BD为半径,∴AD是⊙B的切线(2)证明:∵BD=BG,∴⊙BDG=⊙G,∵CD⊙BE,∴⊙CDG=⊙G,∴⊙G=⊙CDG=⊙BDG= 12⊙BCD=22.5°,∴⊙ADQ=90°﹣⊙BDG=67.5°,⊙AQB=⊙BQG=90°﹣⊙G=67.5°,∴⊙ADQ=⊙AQD,∴AD=AQ(3)证明:连接DF,在⊙BDF中,BD=BF,∴⊙BFD=⊙BDF,又∵⊙DBF=45°,∴⊙BFD=⊙BDF=67.5°,∵⊙GDB=22.5°,在Rt⊙DEF与Rt⊙GCD中,∵⊙GDE=⊙GDB+⊙BDE=67.5°=⊙DFE ,⊙DCF=⊙E=90°, ∴Rt⊙DCF⊙Rt⊙GED , ∴CF ED =CD EG , 又∵CD=DE=BC , ∴BC 2=CF•EG .6.【答案】(1)证明:连接OD ,如图1,∵DE 是⊙O 的切线, ∴OD⊙DE. ∵BC⊙DE , ∴OD⊙BC. ∴⊙ODA=⊙C. ∵OA=OD , ∴⊙ODA=⊙A. ∴⊙A=⊙C. ∴AB=BC ;(2)解:连接BD ,则⊙ADB=90°,如图2,在Rt⊙ABD 中, ∵sinA=BD AB =13,AB=18,∴BD=6.∵OB=OD , ∴⊙ODB=⊙OBD.∵⊙OBD+⊙A=⊙FDB+⊙ODB=90°, ∴⊙A=⊙FDB. ∴sin⊙A=sin⊙FDB. 在Rt⊙BDF 中, ∵sin⊙BDF=BF BD =13,∴BF=2.由(1)知:OD⊙BF , ∴⊙EBF⊙⊙EOD. ∴BE OE =BF OD.即:BE BE+9=29. 解得:BE=187. ∴EF=√BE 2−BF 2=8√27.7.【答案】(1)证明:如图1中,连结AC ,∵四边形ABCD 是菱形, ∴AC⊙BD , 又∵BD⊙AE , ∴AC⊙AE , ∴AE 是⊙O 的切线.(2)解:如图1中,∵四边形ABCD 是菱形, ∴AB =BC , 又∵AC =BC ,∴⊙ABC 是等边三角形,∴⊙ACB=60°,∵AC=2,∴AE=AC•tan60°=2 √3,∴S阴=S⊙AEC﹣S扇形ACB=12×2×2 √3﹣60⋅π⋅22360=2 √3﹣23π.(3)解:①如图2中,当点F在AD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,∵⊙ACD=60°,∴⊙ACF=⊙FCD,∴点F是弧AD的中点,∴CF⊙AD,∴点F到直线AD的距离=CF﹣CA•cos30°=2﹣√3.②如图3中,当点F在优弧BD⌢上时,∵⊙DAF=15°,∴⊙DCF=30°,过点C作CG⊙AD于D,过点F作FH⊙CG于H,可得⊙AFH=15°,⊙HFC=30°,∴CH=1,∴点F到直线AD的距离=CG﹣CH=AC•cos30°﹣CH=√3﹣1.综上所述,满足条件的点F到直线AD的距离为2﹣√3或√3﹣1. 8.【答案】(1)证明:连接OD,∴OD=OB∴⊙ODB=⊙OBD.∵AB是直径,∴⊙ADB=90°,∴⊙CDB=90°.∵E为BC的中点,∴DE=BE,∴⊙EDB=⊙EBD,∴⊙ODB+⊙EDB=⊙OBD+⊙EBD,即⊙EDO=⊙EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊙BC,∴⊙EBO=90°,∴⊙ODE=90°,∴DE是⊙O的切线(2)解:∵S2=5 S1∴S⊙ADB=2S⊙CDB∴AD DC=21∵⊙BDC⊙⊙ADB∴⋅ADDB=DBDC∴DB2=AD•DC∴DB AD =√22∴tan⊙BAC == √22(3)解:∵tan⊙BAC = DB AD =√22∴BC AB =√22 ,得BC = √22AB ∵E 为BC 的中点∴BE = √24AB∵AE =3 √2 ,∴在Rt⊙AEB 中,由勾股定理得 (3√2)2=(√24AB)2+AB 2 ,解得AB =4 故⊙O 的半径R = 12AB =2.9.【答案】(1)证明:连接 EC , OE ,∵BC 为 ⊙O 的直径, ∴∠BEC =90° , ∴CE ⊥AB , 又∵AC =BC , ∴E 为 AB 中点, 又∵O 为 BC 中点, ∴OE⊙AC , 又∵EG ⊥AC , ∴OE ⊥EG ,又 OE 为 ⊙O 的半径, ∴FE 是 ⊙O 的切线. (2)证明:∵OE =OC ,∴∠OEC=∠OCE,∵EF为圆的切线,∴∠FEC+∠OEC=90°,∵∠BEC=90°∴∠B+∠BCE=90°,∴∠FEC=∠B,又∵∠F=∠F,∴△FEC∽△FBE,∴FEFB=FCFE,∴FE2=FC⋅FB,当∠F=30°时,∠FOE=60°,又OE=OC,∴△OEC为等边三角形,∴∠OEC=60°,∴∠FEC=30°=∠F,∴CE=CF,又CG⊥FE,∴FE=2FG,∴(2FG)2=FC⋅FB,即4FG2=FC⋅FB(3)解:由(2)得FE2=FC⋅FB,又BC=6,FE=4,FB=BC+FC=6+FC,∴42=FC⋅(FC+6),因式分解得(FC+8)(FC-2)=0,解得FC=2或FC=-8舍去,∵BC=6,∴OE=OC=12BC=3,AC=BC=6,∴FO=FC+CO=2+3=5,∵CG⊙OE,∴⊙GCF=⊙EOF,⊙FGC=⊙FEO,∴△FCG∽△FOE,∴FCFO=CGOE,即25=CG3,∴CG=6 5,∴AG=AC−CG=6−65=24510.【答案】(1)证明:∵将⊙ABC沿直线AB折叠得到⊙ABD,∴BC=BD.∴点B在CD的垂直平分线上.同理得:点A在CD的垂直平分线上.∴AB⊙CD即OA⊙CD,∵AG∥CD.∴OA⊙GA.∵OA是⊙O的半径,∴直线GA是⊙O的切线;(2)证明:∵AB为⊙O的直径,∴⊙ACB=⊙ADB=90°.∴⊙ABD+⊙BAD=90°.∵⊙GAB=90°,∴⊙GAD+⊙BAD=90°.∴⊙ABD=⊙GAD.∵⊙ADB=⊙ADG=90°,∴⊙BAD⊙⊙AGD.∴ABAG=ADGD.∴AG•AD=GD•AB;(3)解:∵tan⊙AGB=√2,⊙ADG=90°,∴ADGD=√2.∴AD=√2GD.由(2)知,⊙BAD⊙⊙AGD,∴ADGD=BDAD,∴AD 2=GD•BD ,∴BD =2GD .∵AD⌢=AD ⌢, ∴⊙GAD =⊙GBA =⊙PCD .∵AG ∥CD ,∴⊙PAG =⊙PCD .∴⊙PAG =⊙PBA .∵⊙P =⊙P ,∴⊙PAG⊙⊙PBA .∴PA 2=PG•PB∵PG =6,BD =2GD ,∴PA 2=6(6+3GD ).∵⊙ADP =90°,∴PA 2=AD 2+PD 2.∴6(6+3GD )=(√2GD )2+(6+GD )2.解得:GD =2或GD =0(舍去).∴AD =2√2,AP =6√2,∴sinP =AD AP =2√26√2=13. 11.【答案】(1)证明:∵AB 是 ⊙O 的直径,∴⊙ADB=90°,∴⊙DBA+⊙DAB=90°,∵⊙DEA=⊙DBA ,⊙DAC=⊙DEA ,∴⊙DBA=⊙DAC ,∴⊙BAC=⊙DAC+⊙DAB=90°,∵AB 是 ⊙O 的直径,⊙BAC=90°,∴AC 是 ⊙O 的切线;(2)解:①∵点E 是 BD⌢ 的中点, ∴⊙BAE=⊙DAE ,∵⊙CFA=⊙DBA+⊙BAE ,⊙CAF=⊙DAC+⊙DAE ,⊙DBA=⊙DAC ,∴⊙CFA=⊙CAF ,∴CA=CF;②设CA=CF=x,则BC=CF+BF=x+2,∵⊙O的半径为3,∴AB=6,在Rt⊙ABC中,CA2+AB2=BC2,即:x2+62=(x+2)2,解得:x=8,∴AC=8.12.【答案】(1)证明:如图,连接CD,OE.∵BC为⊙O直径∴∠BDC=∠CDA=90°∵DE为Rt△ADC斜边AC的中线∴DE=CE∵OD=OC,OE=OE∴△COE≌△DOE(SSS)∴∠OCE=∠ODE=90°∴DE为⊙O的切线.(2)2;DE=2√313.【答案】(1)证明:如图①,过点O作OE⊙AM于点E,∵在Rt⊙AOE中,当sinA=35,OA=10,∴OE=6∵直径BC=12,∴OM=6=OE,∴点E与点M重合,OM⊙AM,∴AM是⊙O的切线.(2)解:如图②,当点P与点B重合时,AM取得最大值.AM的最大长度可以通过勾股定理求得.延长AO交⊙O于点F,作MG⊙AF于点G,连接OD、OM,DM,∵BD的长为π,∴π=∠BOD⋅π⋅6180,∴⊙BOD=30°,∵⊙DBM=90°,∴DM是⊙O的直径,即DM过点O,∴⊙COM=30°,∵AO⊙BC,∴⊙MOG=60°,在Rt⊙GOM中,⊙MOG=60°,OM=6,∴OG=3,GM=3√3,在Rt⊙GAM中,AM=√AG2+GM2=14,∴AM的最大长度:14.14.【答案】(1)证明:∵AB是⊙O的直径,∴⊙ACB=⊙ADB=90°,∵AB=AB,∴⊙ADB⊙⊙BCA(HL)(2)解:如图,连接DC,∵OD⊙AC,⌢=DC⌢,∴AD∴AD=DC,∵⊙ADB⊙⊙BCA,∴AD=BC,∴AD=DC=BC,∴⊙AOD=⊙ABC=60°,∵AB=4,∴AC=AB⋅sin60°=4×√32=2√3(3)证明:如图,连接OC,由(1)和(2)可知BC= √AB2−AC2=2∵BP=2∴BC=BP=2∴⊙BCP=⊙P,∵⊙ABC=60°,∴⊙BCP=30°,∵OC=OB,⊙ABC=60°,∴⊙OBC是等边三角形,∴⊙OCB=60°,∴⊙OCP=⊙OCB+⊙BCP=60°+30°=90°,∴OC⊙PC,∴PC是⊙O的切线.15.【答案】(1)证明:如图,连接OE.∵BE平分⊙ABC,∴⊙CBE=⊙OBE,∵OB=OE,∴⊙OBE=⊙OEB,∴⊙OEB=⊙CBE,∴OE⊙BC,∴⊙AEO=⊙C=90°,∴AC是⊙O的切线;(2)证明:如图,连结DE.∵⊙CBE=⊙OBE,EC⊙BC于C,EH⊙AB于H,∴EC=EH.∵⊙CDE+⊙BDE=180°,⊙HFE+⊙BDE=180°,∴⊙CDE=⊙HFE.在⊙CDE与⊙HFE中,{∠CDE=∠HFE∠C=∠EHF=900EC=EH,∴⊙CDE⊙⊙HFE(AAS),∴CD=HF.(3)解:由(2)得,CD=HF.又CD=1 ∴HF=1在Rt⊙HFE中,EF= √32+12=√10∵EF⊙BE∴⊙BEF=90°∴⊙EHF=⊙BEF=90°∵⊙EFH=⊙BFE∴⊙EHF⊙⊙BEF∴EFBF=HFEF,即√10BF=1√10∴BF=10∴OE=12BF=5, OH=5−1=4,∴在Rt⊙OHE中,cos∠EOA=4 5 ,∴在Rt⊙EOA中,cos∠EOA=OEOA=45,∴5OA=45∴OA=25 4∴AF=254−5=54.16.【答案】(1)证明:如图,连接OC ,∵PA切⊙O于A∴∠PAO=90∘∵OP⊙BC∴⊙AOP=⊙OBC,⊙COP=⊙OCB∵OC=OB∴⊙OBC=⊙OCB∴⊙AOP=⊙COP又∵OA=OC,OP=OP∴⊙PAO⊙⊙PCO∴⊙PAO=⊙PCO=90 º又∵OC是⊙O的半径∴PC是⊙O的切线(2)解:连接AE,BE,AC过点B作BM⊙CE于点M∴⊙CMB=⊙EMB=⊙AEB=90º∵AB是直径,∴∠ACB=90°,∵AB=10,BC=6∴AC=√AB2−BC2=8,∴cos∠CAB=ACAB=810=45又∵点E是AB⌢的中点∴⊙ECB=⊙CBM=⊙ABE=45º,∴BE=AB ×cos45 °=5√2CM=BC×cos45°=6×√22=3√2∵CB⌢=CB⌢∴∠CAB=∠CEB∴cos∠CEB=cos∠CAB=4 5∴EM= BE×cos∠CEB=5√2×45=4√2∴CE=CM+EM= 3√2+4√2=7√2∴CE的长为7√2.。
初三数学几何辅导拔高练习题几何学作为初中数学的重要内容之一,对于初三学生来说是一个较为复杂和抽象的知识点。
为了提高学生的数学水平和解题能力,对于初三数学几何的辅导是至关重要的。
本文将针对初三数学几何辅导拔高练习题进行讨论和解析。
1. 证明题给出一个等腰三角形 ABC,角 A 的度数为 100°,请证明角 B 的度数也是 100°。
解析:首先,我们可以利用等腰三角形的特性,知道等腰三角形的底角是顶角的一半。
那么我们可以假设角 B 的度数为 x°,则根据等腰三角形的性质,角 C 的度数也为 x°。
由于三角形内角和为 180°,所以我们可以得出以下等式:x + x + 100 = 1802x + 100 = 1802x = 80x = 40所以,角 B 的度数为 40°,证明得证。
2. 计算题给出一个长方形 ABCD,AB = 6cm,BC = 4cm,请计算该长方形的周长和面积。
解析:长方形的周长可以通过公式 2*(长 + 宽) 来计算。
所以,该长方形的周长为:2*(6 + 4) = 2*10 = 20cm长方形的面积可以通过公式长 * 宽来计算。
所以,该长方形的面积为:6 * 4 = 24cm²所以,该长方形的周长为20cm,面积为24cm²。
3. 应用题给出一个圆的半径 r = 5cm,问这个圆的周长和面积分别是多少?请精确计算。
解析:圆的周长可以通过公式2πr 来计算,其中π 的值取3.14。
所以,这个圆的周长为:2 * 3.14 * 5 = 31.4cm圆的面积可以通过公式πr² 来计算。
所以,这个圆的面积为:3.14 * 5² = 3.14 * 25 = 78.5cm²所以,这个圆的周长为31.4cm,面积为78.5cm²。
通过以上的练习题,我们可以看到初三数学几何辅导拔高练习题对于学生的数学能力提高非常有帮助。
中考初三数学冲刺拔高专题训练含答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (5)专题提升(三) 数式规律型问题 (9)专题提升(四) 整式方程(组)的应用 (15)专题提升(五) 一次函数的图象与性质的应用 (22)专题提升(六) 一次函数与反比例函数的综合 (31)专题提升(七) 二次函数的图象和性质的综合运用 (41)专题提升(八) 二次函数在实际生活中的应用 (48)专题提升(九) 以全等为背景的计算与证明 (54)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (60)专题提升(十一) 以平行四边形为背景的计算与证明 (69)专题提升(十二) 与圆的切线有关的计算与证明 (77)专题提升(十三) 以圆为背景的相似三角形的计算与 (83)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (92)专题提升(十五) 巧用旋转进行证明与计算 (99)专题提升(十六) 统计与概率的综合运用 (106)专题提升(一) 数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是( C )图Z1-2A.5+1B.5C.5-1 D.1-5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是( D )图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是( C )图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为( B )图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x+4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于 ( A )图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是( C )图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1. 解:原式=2-12+12=2. 2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1. 解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°.解:(-3)2+2 0170-18×sin45°=9+1-32×22 =10-3=7.【中考预测】 计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1. 解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一整式的化简与求值【经典母题】已知x+y=3,xy=1,你能求出x2+y2的值吗?(x-y)2呢?解:x2+y2=(x+y)2-2xy=32-2×1=7;(x-y)2=(x+y)2-4xy=32-4×1=5.【思想方法】利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a+b)2+(a-b)2=2(a2+b2),(a+b)2-(a-b)2=4ab,a2+b2=(a+b)2-2ab=(a-b)2+2ab,在四个量a+b,a-b,ab和a2+b2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m-n)2=8,(m+n)2=2,则m2+n2的值为( C )A.10 B.6 C.5 D.32.已知实数a满足a-1a=3,则a2+1a2的值为__11__.【解析】将a-1a=3两边平方,可得a2-2+1a2=9,即a2+1a2=11.3.[2017·重庆B卷]计算:(x+y)2-x(2y-x).解:原式=x2+2xy+y2-2xy+x2=2x2+y2.4.[2016·漳州]先化简(a+1)(a-1)+a(1-a)-a,再根据化简结果,你发现该代数式的值与a的取值有什么关系(不必说明理由)?解:原式=a2-1+a-a2-a=-1.故该代数式的值与a的取值没有关系.【中考预测】先化简,再求值:(a-b)2+a(2b-a),其中a=-1 2,b=3.解:原式=a2-2ab+b2+2ab-a2=b2.当a=-12,b=3时,原式=32=9.类型之二分式的化简与求值【经典母题】计算:(1)ab-ba-a2+b2ab;(2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x .解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2ba;(2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8.【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2=(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23.【中考预测】先化简,再求值:⎝⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值.解:∵a =3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-aba +b,当a =2+1,b =2-1时,原式=-122=-24.3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y ,其中x =22,y = 2.解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y. 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +bab,∵a +b =5+12+5-12=5,ab =5-12×5+12=1,∴原式= 5.专题提升(三) 数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗?请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是( C )A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是( B )图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y 与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从 2 017到 2 018再到 2 019,箭头的方向是下列选项中的( D )图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从2 017到2 018再到2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走图Z3-3( D )A.②号棒B.⑦号棒C.⑧号棒D.⑩号棒【解析】仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒.5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n个图形用的棋子个数为 ( D ) A.3n B.6nC.3n+6 D.3n+3【解析】∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n个图需棋子(3n+3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】根据所给的数据发现:第n个三角形数是1+2+3+…+n,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n=2 016,得n(n+1)2=2 016,解得n=63(负数舍去).7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__. 【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100, ∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为__9n +3__.图Z3-5【解析】 ∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n 个图中正方形和等边三角形的个数之和=9n +3.9.观察下列等式:第一个等式:a1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a1+a2+a3+…+a n=【解析】a1+a2+a3+…+a n=(2-1)+(3-2)+(2-3)+(5-2)+…+(n+1-n)=n+1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有__4n+1__个涂有阴影的小正方形(用含有n的代数式表示).图Z3-6【解析】 由图可知,涂有阴影的小正方形有5+4(n -1)=4n +1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒.12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示.由图易得12+122+123+…+12n =__1-12n __. 图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】 1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n -1)=n 2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n+1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是 ( C ) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少? 请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400. 答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰 1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎨⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min). ∵5<458,∴该教学楼建造的这4个门不符合安全规定. 【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值;(2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a档次产品,则10+2(a-1)=14,解得a=3.答:此批次蛋糕属第3档次产品.(2)设该烘焙店生产的是第x档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】 (1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3. 图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发 1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留 2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1 min到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过 5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h),甲乙两人之间的距离为y (km),y 与t 的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发 1 h ;甲出发0.5 h 与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b ,把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b ,解得⎩⎨⎧k =40,b =-60, ∴直线BC 的表达式为y =40t -60.设直线CD 的函数表达式为y 1=k 1t +b 1,把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎨⎧1003=73k 1+b 1,0=4k 1+b 1,解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80; (2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得⎩⎨⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎨⎧a =60,b =20, ∴甲的速度为60 km/h ,乙的速度为20 km/h ,∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝⎛⎭⎪⎫1≤t ≤73, s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75, 答:丙出发75h 与甲相遇. 【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y 与时间x 之间的函数关系式__y =60x (0<x ≤6)__;(2)求乙组加工零件总量a 的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y =kx ,∴6k =360,解得k =60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用。
2023年中考九年级数学高频考点拔高训练-圆的切线的证明1.如图,△ABD是△O的内接三角形,E是弦BD的中点,点C是△O外一点,且△DBC=△A=60°,连接OE并延长与△O相交于点F,与BC相交于点C.(1)求证:BC是△O的切线;(2)若△O的半径为6cm,求弦BD的长.2.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果∠BAC=60°,AE=4√3,求AC长.3.如图,AC与△O相切,切点为C,点B在CO的延长线上,BD△AO,垂足为D,△ABD=△BO D.(1)求证:AB为△O的切线;(2)若BC=4,AC=3,求BD的长.4.如图,AB 是△O 的直径,点E 在△O 上,连接AE 和BE ,BC 平分△ABE 交△O 于点C ,过点C 作CD△BE ,交BE 的延长线于点D ,连接CE .(1)请判断直线CD 与△O 的位置关系,并说明理由;(2)若sin△ECD =35,CE =5,求△O 的半径. 5.如图,AB 为△O 的直径,C 、D 为△O 上不同于A 、B 的两点,△ABD =2△BAC ,连接CD ,过点C 作CE△DB ,垂足为E ,直径AB 与CE 的延长线相交于F 点.(1)求证:CF 是△O 的切线;(2)当BD = 185 ,sinF = 35时,求OF 的长. 6.如图,线段AB 经过圆心O ,交△O 于点A 、C ,点D 为△O 上一点,连结AD 、OD 、BD ,△A =△B =30°.(1)求证:BD 是△O 的切线.(2)若OA =5,求OA 、OD 与AD 围成的扇形的面积.7.如图,在Rt△ABC 中,△ACB =90°,CD 是斜边AB 上的中线,以CD 为直径的△O 分别交AC 、BC 于点M 、N ,过点N 作NE△AB ,垂足为E(1)若△O的半径为52,AC=6,求BN的长;(2)求证:NE与△O相切.8.如图,AB是△O的弦,OP△OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是△O的切线;(2)若△O的半径为√5,OP=1,求BC的长.9.如图,AB是△O的直径,点C在AB的延长线上,AD平分△CAE交△O于点D,且AE△CD,垂足为点E.(1)求证:直线CE是△O的切线.(2)若BC=3,CD=3 √2,求弦AD的长.10.如图,AB为圆的直径,C是△O上一点,过点C的直线交AB的延长线于点M.作AD△MC,垂足为D,已知AC平分△MAD .(1)求证:MC是△O的切线:(2)若AB=BM=4,求tan△MAC的值11.如图,AB是△O的直径,点C在△O上,BD平分∠ABC交△O于点D,过点D作DE⊥BC,垂足为E.(1)求证:DE与△O相切;(2)若AB=10,AD=6,求DE的长.12.如图,点O在△APB的平分线上,△O与PA相切于点C.(1)求证:直线PB与△O相切;(2)PO的延长线与△O交于点E.若△O的半径为3,PC=4.求弦CE的长.13.如图,已知A(﹣5,0)、B(﹣3,0),点C在y轴的正半轴上,△CBO=45°,CD△AB,△CDA=90°点,P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时间ts.(1)求点C的坐标;(2)当△BCP=15°时,且△OPC中最长边是最短边的2倍,求t的值;(3)以点P为圆心,PC为半径的△P随点P的运动而变化,当△P与四边形ABCD的边(或边所在的直线)相切时,求t的值.14.已知AB为⊙O的直径,C为⊙O上一动点,连接AC,BC,在BA的延长线上取一点D,连接CD,使CD=CB.(1)如图1,若AC=AD,求证:CD是⊙O的切线;(2)如图2,延长DC交⊙O于点E,连接AE.①若⊙O的直径为√10,sinB=√10,求AD的长;10②若CD=2CE,求cosB的值.15.如图,AB、AC分别是△O的直径和弦,OD△AC于点D,过点A作△O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是△O的切线;(2)若△ABC=60°,AB=10,求线段CF的长,16.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,△BCD=60°,点E是AB上一点,AE=3EB,△P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是△P的切线;(3)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.答案解析部分1.【答案】(1)证明:连接OB ,如图所示:∵E 是弦BD 的中点,∴BE =DE ,OE△BD , BF ⌢=12BD ⌢ , ∴△BOE =△A ,△OBE+△BOE =90°,∵△DBC =△A ,∴△BOE =△DBC ,∴△OBE+△DBC =90°,∴△OBC =90°,即BC△OB ,∴BC 是△O 的切线;(2)解:∵OB =6,△DBC =△A =60°,BC△OB , ∴OC =12,∵△OBC 的面积= 12 OC•BE = 12OB•BC , ∴BE = OB×BC OC =6×6√312=3√3 , ∴BD =2BE =6 √3 ,即弦BD 的长为6 √3 .2.【答案】(1)证明:连接 OD ,如图,∵∠BAC 的平分线 AD 交 ⊙O 于点 D ,∴∠BAD=∠DAC,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠DAC,∴OD//AE,∵DE⊥AE,∴DE⊥OD,OD为半径,∴DE是⊙O的切线(2)解:作OF⊥AC于F∵∠BAC=60°,∴∠DAE=30°,在RtΔADE中,DE=AE⋅tan30°=4四边形ODEF为矩形,∴OF=DE=4,在RtΔOAF中,∵∠OAF=60°∴AF=√3=4√33∴AC=2AF=8√3 33.【答案】(1)证明:作OH△AB,垂足为H∵AC与△O相切,切点为C,∴△ACO=90°∴△OAC+△AOC=90°又BD△AO∴△BDO=90°∴△BOD+△DBO=90°,△BAD+△ABD=90°又△BOD=△AOC,△ABD=△BOD∴△OAC=△BAD∴OH=OC又OC为△O半径∴AB为△O的切线(2)解:在Rt△BOH和Rt△BAC中AB=√BC2+AC2=5sin∠ABC=OHOB=ACAB=354−OB OB=35,解得OB=52,OC=32,OA=√OC2+AC2=32√5∵△AOC=△BOD,△C=△D=90°∴△AOC△△BOD∴OAOB=ACBD∴32√552=3BD,解得:BD=√5.4.【答案】(1)解:结论:CD是△O的切线.理由:连接OC.∵OC=OB,∴△OCB=△OBC,∵BC平分△ABD,∴△OBC=△CBE,∴△OCB=△CBE,∴OC//BD ,∵CD△BD ,∴CD△OC ,∵OC 是半径,∴CD 是△O 的切线;(2)解:设OA =OC =r ,设AE 交OC 于点J .∵AB 是直径,∴△AEB =90°,∵OC△DC ,CD△DB ,∴△D =△DCJ =△DEJ =90°,∴四边形CDEJ 是矩形,∴△CJE =90°,CD =EJ ,CJ =DE ,∴OC△AE ,∴AJ =EJ ,∵sin△ECD =DE CE =35,CE =5, ∴DE =3,CD =4,∴AJ =EJ =CD =4,CJ =DE =3,在Rt△AJO 中,r 2=(r ﹣3)2+42,∴r =256, ∴△O 的半径为256. 5.【答案】(1)解:连接OC .如图1所示:∵OA=OC,∴△1=△2.又∵△3=△1+△2,∴△3=2△1.又∵△4=2△1,∴△4=△3,∴OC△DB.∵CE△DB,∴OC△CF.又∵OC为△O的半径,∴CF为△O的切线;(2)解:连接AD.如图2所示:∵AB是直径,∴△D=90°,∴CF△AD,∴△BAD=△F,∴sin△BAD=sinF=BDAB=35,∴AB=53BD=6,∴OB=OC=3,∵OC△CF,∴△OCF=90°,∴sinF=OCOF=35,解得:OF=5.6.【答案】(1)证明:∵△ADO=△BAD=30°,∴△DOB=60°∵△ABD=30°,∴△ODB=90°∴OD△BD.∵点D为△O上一点,∴BD是△O的切线.(2)解:∵△DOB=60°,∴△AOD=120°.∵OA=5,∴OA、OD与AD围成的扇形的面积为120·π·52360=253π.7.【答案】(1)解:∵ △O 的半径为52,则CD=5,AB=10,BC=√AB2−AC2=√100−36=8CD为直径,得DN△BC,D为AB的中点,则BD=CD,则△BDC为等腰三角形,由三线合一知,BN=NC=12BC=4。
2023年中考九年级数学高频考点拔高训练--相似三角形的综合题1.如图1,直线y=﹣43x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作△I,记△I与射线AC的另一个交点为E.①若PEPQ=35,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为是多少?2.如图,在Rt△ABC中,△ACB=90°,AC=8cm,BC=6cm,点P沿AB边从点A开始以2cm/s的速度向点B运动,点Q沿CB边从点C开始以1cm/s的速度向点B运动,P、Q同时出发,用t (s)表示运动的时间(0≤t≤5).(1)当t为何值时,以P、Q、B为顶点的三角形与△ABC相似.(2)分别过点A,B作直线CP的垂线,垂足为D,E,设AD+BE=y,求y与t的函数关系式;并求当t为何值时,y有最大值.(3)直接写出PQ中点移动的路径长度.3.如图,在矩形ABCD中,以AB的中点O为圆心,以OA为半径作半圆,连接OD交半圆于点E,在BE⌢上取点F,使EF⌢=AE⌢,连接BF,DF.(1)求证:DF与半圆相切;(2)如果AB=10,BF=6,求矩形ABCD的面积.4.如图,已知MN//BC,A是MN上一点,AM=AN,MC交AB于D,NB交AC于E,连接DE.(1)求证:DE//BC;(2)设MC与BN的交点为点G,如果DE=1,BC=4,求C△MGNC△CGB的值.5.已知:如图,在四边形ABCD中,AD△BC,△C=90°,AB=AD=50,BC=64,连结BD,AE△BD 垂足为E,(1)求证:△ABE△△DCB;(2)求线段DC的长.6.在▱ABCD中,E是DC的中点,连接AE并延长,交BC的延长线于点F.(1)求证:BC=CF;(2)点G是CF上一点,连接AG交CD于点H,且∠DAF=∠GAF.若CG=2,GF=5,求AН的长.7.已知直线m△n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P 为线段CD的中点.(1)操作发现:直线l△m,l△n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:;(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得△APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.8.如图,在平面直角坐标系中,直线y=kx+3与x轴、y轴分别交于A,B两点. 抛物线y=−14x2+32x经过点A,且交线段AB于点C,BC=√5.(1)求k的值.(2)求点c的坐标.(3)向左平移抛物线,使得抛物线再次经过点C,求平移后抛物线的函数解析式.9.如图,在△ABCD中,点G是对角线AC上一点,DE垂直平分CG,交GC于点O,交BC于点E,作GF△AD交DE于点F,连接FC.(1)求证:四边形GFCE是菱形;(2)点H为线段AO上一点,连接HD,HF,当△1=△2时,若AD=6,CF=2,求AH•CH的值.10.如图,已知直线y=12x+1与y轴交于点A,与x轴交于点D,抛物线y=ax2+bx+c与直线交于A,E两点,与x轴交于B(1,0),C(2,0)两点.(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,请通过计算写出一个满足条件点P的坐标.11.Rt△ABC在直角坐标系内的位置如图所示,反比例函数y=k x(k≠0)在第一象限内的图象与BC边交于点D(4,m),与AB交于点E(2,n)(1)求m与n的数量关系.(2)当tan∠BAC=12时,记△BDE面积为S,用含有k的式子表示S.(3)若△BDE的面积为2.设P是线段AB边上的点,在(2)的条件下,是否存在点P,以B,C,P为顶点的三角形与△EDB相似?若存在,求出此时点P的坐标;若不存在,请说明理由. 12.将抛物线C:y=(x﹣1)2向下平移4个单位长度得到抛物线C1,再将抛物线C1向左平移1个单位长度得到抛物线C2.(1)直接写出抛物线C1,C2的解析式;(2)如图(1),抛物线C1 与x轴交于A,B两点,与y轴交于C点,且D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求S1 S2的最大值;(3)如图(2),直线y=kx(k≠0,k为常数)与抛物线C2交于E,F两点,M为线段EF的中点;直线y=−4k x与抛物线C2交于G,H两点,N为线段GH的中点.求证:直线MN经过一个定点.13.如图,点E是矩形ABCD的边BC的中点,连接DE交AC于点F。
中考数学拔高题练习题一.选择题(共14小题)1.(2014?陕西)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A .c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b2.(2014?陕西)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A .4 B.C.D.53.(2014?娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.4.(2014?娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A .40°B.45°C.50°D.60°5.(2014?深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A .B.C.D.6.(2014?深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A .600﹣250B.600﹣250 C.350+350D.5007.(2014?深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A .2 B.3 C.4 D.58.(2014?深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A .1 B.3﹣C.﹣1 D.4﹣29.(2014?汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A .函数有最小值B.对称轴是直线x=C.当x <,y随x的增大而减D.当﹣1<x<2时,y>0小10.(2014?天水)如图,扇形OAB动点P从点A 出发,沿线段B0、0A匀速运动到点A,则0P的长度y 与运动时间t之间的函数图象大致是()A .B.C.D.11.(2014?天水)如图,是某公园的一角,∠AOB=90°,的半径OA长是6米,点C是OA的中点,点D 在上,CD∥OB,则图中草坪区(阴影部分)的面积是()A.(3π+)平方米B.(π+)平方米C .(3π+9)平方米D.(π﹣9)平方米12.(2014?绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A .2个B.3个C.4个D.5个13.(2014?绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A .b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<014.(2014?海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A .B.C.D.二.填空题(共15小题)15.(2014?陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.16.(2014?娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成.17.(2014?娄底)如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是.18.(2014?成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=度.19.(2014?成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)20.(2014?深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=.21.(2014?深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有.22.(2014?汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.23.(2014?天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为()24.(2014?天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=的图象于点C,则△OAC的面积为.25.(2014?绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为.26.(2014?绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.27.(2014?沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.28.(2014?海南)如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD 的度数为90°,则∠B的度数是.29.(2014?海南)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=.三.解答题(共1小题)30.(2014?海南)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).中考数学拔高题练习题(解析版)一.选择题(共14小题)1.(2014?陕西)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A .c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.2.(2014?陕西)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A .4 B.C.D.5考点:菱形的性质.专题:几何图形问题.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC?AE=AC?BD可得答案.解答:解:连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC?DB=×6×8=24,∴BC?AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.3.(2014?娄底)一次函数y=kx﹣k(k<0)的图象大致是()A .B.C.D.考点:一次函数的图象.分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.解答:解:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限,故选:A.点评:此题主要考查了一次函数图象,直线y=kx+b,可以看做由直线y=kx平移|b|个单位而得到.当b>0时,向上平移;b<0时,向下平移.4.(2014?娄底)如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A .40°B.45°C.50°D.60°考点:平行线的性质.分析:由把一块直角三角板的直角顶点放在直尺的一边上,∠1=40°,可求得∠3的度数,又由AB∥CD,根据“两直线平行,同位角相等“即可求得∠2的度数.解答:解:∵∠1+∠3=90°,∠1=40°,∴∠3=50°,∵AB∥CD,∴∠2=∠3=50°.故选:C.点评:此题考查了平行线的性质.解题的关键是注意掌握两直线平行,同位角相等定理的应用.5.(2014?深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A .B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选:C.点本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,评:列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(2014?深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A .600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.7.(2014?深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A .2 B.3 C.4 D.5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c <0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选:B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.8.(2014?深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A .1 B.3﹣C.﹣1 D.4﹣2考点:等腰梯形的性质.专题:压轴题.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG?cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF?sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选:D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.9.(2014?汕头)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A .函数有最小值B.对称轴是直线x=C.当x <,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.专题:压轴题;数形结合.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x <时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.10.(2014?天水)如图,扇形OAB动点P从点A 出发,沿线段B0、0A匀速运动到点A,则0P的长度y 与运动时间t之间的函数图象大致是()A .B.C.D.考点:动点问题的函数图象.专题:动点型.分析:分点P在弧AB上,在线段BO上,线段OA上三种情况讨论得到OP的长度的变化情况,即可得解.解答:解:点P在弧AB上时,OP的长度y等于半径的长度,不变;点P在BO上时,OP的长度y从半径的长度逐渐减小至0;点P在OA上时,OP的长度从0逐渐增大至半径的长度.纵观各选项,只有D选项图象符合.故选:D.点评:本题考查了动点问题的函数图象,根据点P的位置分点P在弧上与两条半径上三段讨论是解题的关键.11.(2014?天水)如图,是某公园的一角,∠AOB=90°,的半径OA长是6米,点C是OA的中点,点D在上,CD∥OB,则图中草坪区(阴影部分)的面积是()A.(3π+)平方米B.(π+)平方米C .(3π+9)平方米D.(π﹣9)平方米考点:扇形面积的计算.专题:应用题.分析:连接OD,根据直角三角形30°角所对的直角边等于斜边的一半可得∠CDO=30°,再根据直角三角形两锐角互余求出∠COD=60°,根据两直线平行,内错角相等可得∠BOD=∠CDO,然后根据S阴影=S△COD+S扇形OBD列式计算即可得解.解答:解:如图,连接OD,∵∠AOB=90°,CD∥OB,∴∠OCD=180°﹣∠AOB=180°﹣90°=90°,∵点C是OA的中点,∴OC=OA=OD=×6=3米,∴∠CDO=30°,∴∠COD=90°﹣30°=60°,∴CD=OC=3,∵CD∥OB,∴∠BOD=∠CDO=30°,∴S阴影=S△COD+S扇形OBD,=×3×3+,=+3π.故选:A.点评:本题考查了扇形的面积计算,主要利用了直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,平行线的性质,作辅助线,把阴影部分分成直角三角形和扇形两个部分是解题的关键.12.(2014?绥化)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A .2个B.3个C.4个D.5个考点:矩形的性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何图形问题.分析:①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.解答:解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.点评:本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.13.(2014?绥化)如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A .b2>4ac B.ac>0 C.a﹣b+c>0 D.4a+2b+c<0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向下得a<0,由抛物线与y轴的交点在x轴上方得c>0,则可对B进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对C选项进行判断;由于x=2时,函数值大于0,则有4a+2b+c>0,于是可对D选项进行判断.解答:解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项正确;∵抛物线开口向下,∴a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴ac<0,所以B选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以C选项错误;∵当x=2时,y>0,故选:A.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.14.(2014?海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A .B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:数形结合.分析:根据反比例函数y=(k≠0),当k<0时,图象分布在第二、四象限和一次函数图象与系数的关系进行判断;解答:解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.点评:本题考查了反比例函数的图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.二.填空题(共15小题)15.(2014?陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.考点:垂径定理;圆周角定理.专题:压轴题.分析:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.解答:解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,∵∠AMB=45°,∴∠AOB=2∠AMB=90°,∴△OAB为等腰直角三角形,∴AB=OA=2,∵S四边形MANB=S△MAB+S△NAB,∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,此时四边形MANB面积的最大值=S=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.故答案为:4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.16.(2014?娄底)如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由3n+1个▲组成.考点:规律型:图形的变化类.专题:规律型.分析:仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.解答:解:观察发现:第一个图形有3×2﹣3+1=4个三角形;第二个图形有3×3﹣3+1=7个三角形;第一个图形有3×4﹣3+1=10个三角形;…第n个图形有3(n+1)﹣3+1=3n+1个三角形;故答案为:3n+1.点评:考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17.(2014?娄底)如图,?ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是9.考点:平行四边形的性质;三角形中位线定理.分析:根据平行四边形的性质得出DE=AD=BC,DO=BD,AO=CO,求出OE=CD,求出△DEO的周长是DE+OE+DO=(BC+DC+BD),代入求出即可.解答:解:∵E为AD中点,四边形ABCD是平行四边形,∴DE=AD=BC,DO=BD,AO=CO,∴OE=CD,∵△BCD的周长为18,∴BD+DC+BC=18,∴△DEO的周长是DE+OE+DO=(BC+DC+BD)=×18=9,故答案为:9.点评:本题考查了平行四边形的性质,三角形的中位线的应用,解此题的关键是求出DE=BC,DO=BD,OE=DC.18.(2014?成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.考点:切线的性质;圆周角定理.题:分析:连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数.解答:解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键.19.(2014?成都)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)考点:一次函数图象上点的坐标特征.分析:根据一次函数的性质,当k>0时,y随x的增大而增大.解答:解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.点评:此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.20.(2014?深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.评:形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.21.(2014?深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=2×32﹣1=17,第三个图形正三角形的个数为17×3+2=2×33﹣1=53,第四个图形正三角形的个数为53×3+2=2×34﹣1=161,第五个图形正三角形的个数为161×3+2=2×35﹣1=485.如果是第n个图,则有2×3n﹣1个故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.22.(2014?汕头)如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.23.(2014?天水)如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P3,…,如此进行下去,直至得m10,顶点为P10,则P10的坐标为((9.5,﹣0.25))考点:二次函数图象与几何变换.专题:规律型.分根据旋转的性质,可得图形的大小形状没变,可得答案.解答:解:y=﹣x(x﹣1)(0≤x≤1),OA1=A1A2=1,P2P4=P1P3=2,P2(1.5,﹣0.25)P10的横坐标是1.5+2×[(10﹣2)÷2]=9.5,p10的纵坐标是﹣0.25,故答案为(9.5,﹣0.25).点评:本题考查了二次函数图象与几何变换,注意旋转前后的图形大小与形状都没发生变化是解题关键.24.(2014?天水)如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB 交反比例函数y=的图象于点C,则△OAC的面积为2.考点:反比例函数系数k的几何意义.专题:代数几何综合题.分析:由于AB⊥x轴,根据反比例函数k的几何意义得到S△AOB=3,S△COB=1,然后利用S△AOC=S△AOB﹣S△COB进行计算.解答:解:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为:2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.25.(2014?绥化)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上的点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为3或6.考点:翻折变换(折叠问题).专题:分类讨论.分析:分两种情况:①当∠EFC=90°时,先判断出点F在对角线AC上,利用勾股定理列式求出AC,设BE=x,表示出CE,根据翻折变换的性质可得AF=AB,EF=BE,然后在Rt△CEF中,利用勾股定理列出方程求解即可;②当∠CEF=90°时,判断出四边形ABEF是正方形,根据正方形的四条边都相等可得BE=AB.解答:解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折的性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折的性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE的长为3或6.故答案为:3或6.点评:本题考查了翻折变化的性质,勾股定理,正方形的判定与性质,此类题目,利用勾股定理列出方程求解是常用的方法,本题难点在于分情况讨论,作出图形更形象直观.26.(2014?绥化)如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.27.(2014?沈阳)如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.考点:三角形中位线定理;几何概率.专题:几何图形问题.分析:先设阴影部分的面积是x,得出整个图形的面积,再根据几何概率的求法即可得出答案.解答:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,。
2023年中考九年级数学高频考点拔高训练--三角形的动点问题1.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=cm,BQ=cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10 cm2?2.如图1,A、B两点的坐标分别为(a,0),(b,0),且a、b满足(a+2)2+ |b−8|=0,C的坐标为(3,c)(1)判断△ABC的形状.(2)动点P从点A出发,以1个单位/ s的速度在线段AC上运动,另一动点Q从点C出发,以3个单位/ s的速度在射线CB上运动,运动时间为t.①如图2,若AC=13,直线PQ交x轴于H,当PH=QH时,求t的值.②如图3,若c=5,当Q运动到BC中点时,M(3,m)为AQ上一点,连CM,作CN⊥AQ交AB于N.试探究AM和CN的数量关系,并给出证明. 3.如图,OC、AB互相垂直,已知OA=8,OC=6,且AB=AC.(1)求OB的长;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的面积为1,求t的值;②如图③,在点M运动的过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的OM的长;若不能,请说明理由.4.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(a,0),B(b,4),C(2,c),BC//x轴,且a、b满足√a+b−1+|2a−b+10|= 0.(1)则a=;b=;c=;(2)如图1,在y轴上是否存在点D,使三角形ABD的面积等于三角形ABC 的面积?若存在,请求出点D的坐标;若不存在,请说明理由;(3)如图2,连接OC交AB于点M,点N(n,0)在x轴上,若三角形BCM的面积小于三角形BMN的面积,直接写出n的取值范围是.5.如图1,△ABC中,CD△AB于D,且AD:BD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=160cm2,如图2,动点M从点A出发以每秒2cm的速度沿线段AB向点B运动,同时动点N从点B出发以相同速度沿线段BC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与AC平行,求t的值;②若点E是边BC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.6.如图,在Rt△ABC中,△ACB=90°,AC=8,BC=6,DE是△ABC的中位线,点F 是BC边上的一个动点,连结AF交BD于点H,交DE于点G。
中考数学冲刺拔高专题训练目录专题提升(一) 数形结合与实数的运算 (1)专题提升(二) 代数式的化简与求值 (5)专题提升(三) 数式规律型问题 (9)专题提升(四) 整式方程(组)的应用 (16)专题提升(五) 一次函数的图象与性质的应用 (23)专题提升(六) 一次函数与反比例函数的综合 (33)专题提升(七) 二次函数的图象和性质的综合运用 (44)专题提升(八) 二次函数在实际生活中的应用 (51)专题提升(九) 以全等为背景的计算与证明 (57)专题提升(十) 以等腰或直角三角形为背景的计算与证明 (63)专题提升(十一) 以平行四边形为背景的计算与证明 (72)专题提升(十二) 与圆的切线有关的计算与证明 (81)专题提升(十三) 以圆为背景的相似三角形的计算与 (87)专题提升(十四) 利用解直角三角形测量物体高度或宽度 (96)专题提升(十五) 巧用旋转进行证明与计算 (103)专题提升(十六) 统计与概率的综合运用 (110)专题提升(一) 数形结合与实数的运算类型之一数轴与实数【经典母题】如图Z1-1,通过画边长为1的正方形的边长,就能准确地把2和-2表示在数轴上.图Z1-1【思想方法】(1)在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都可以表示一个实数.我们说实数和数轴上的点一一对应;(2)数形结合是重要的数学思想,利用它可以比较直观地解决问题.利用数轴进行实数的大小比较,求数轴上的点表示的实数,是中考的热点考题.【中考变形】1.[2017·北市区一模]如图Z1-2,矩形ABCD的边AD长为2,AB长为1,点A在数轴上对应的数是-1,以A点为圆心,对角线AC长为半径画弧,交数轴于点E,则这个点E表示的实数是 ( C )图Z1-2A.5+1B. 5C.5-1 D.1- 5【解析】∵AD长为2,CD长为1,∴AC=22+12=5,∵A点表示-1,∴E点表示的数为5-1.2.[2016·娄底]已知点M,N,P,Q在数轴上的位置如图Z1-3,则其中对应的数的绝对值最大的点是 ( D )图Z1-3A.M B.N C.P D.Q3.[2016·天津]实数a,b在数轴上的对应点的位置如图Z1-4所示,把-a,-b,0按照从小到大的顺序排列,正确的是 ( C )图Z1-4A.-a<0<-b B.0<-a<-bC.-b<0<-a D.0<-b<-a【解析】∵从数轴可知a<0<b,∴-b<0,-a>0,∴-b<0<-a. 4.[2017·余姚模拟]如图Z1-5,数轴上的点A,B,C,D,E表示连续的五个整数,若点A,E表示的数分别为x,y,且x+y=2,则点C表示的数为( B )图Z1-5A.0 B.1 C.2 D.3【解析】根据题意,知y-x=4,即y=x+4,将y=x+4代入x+y=2,得x+x +4=2,解得x=-1,则点A表示的数为-1,则点C表示的数为-1+2=1. 5.如图Z1-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP 为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于 ( A )图Z1-6A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间【解析】∵点P的坐标为(-2,3),∴OP=22+32=13.∵点A,P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=13,∵9<13<16,∴3<13<4.∵点A在x轴的负半轴上,∴点A的横坐标介于-4和-3之间.故选A.6.[2017·成都改编]如图Z1-7,数轴上点A表示的实数是.图Z1-7【中考预测】如图Z1-8,数轴上的点A,B分别对应实数a,b,下列结论中正确的是( C )图Z1-8A.a>b B.|a|>|b|C.-a<b D.a+b<0【解析】由图知,a<0<b且|a|<|b|,∴a+b>0,即-a<b,故选C.类型之二实数的混合运算【经典母题】计算:2×(3+5)+4-2× 5.解:2×(3+5)+4-2×5=2×3+2×5+4-2×5=6+4+2×5-2×5=10.【中考变形】1.[2016·台州]计算: 4-⎪⎪⎪⎪⎪⎪-12+2-1. 解:原式=2-12+12=2. 2.[2017·临沂]计算:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1. 解:|1-2|+2cos45°-8+⎝ ⎛⎭⎪⎫12-1=2-1+2×22-22+2=2-1+2-22+2=1.3.[2017·泸州]计算:(-3)2+2 0170-18×sin45°.解:(-3)2+2 0170-18×sin45°=9+1-32×22=10-3=7.【中考预测】 计算:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1. 解:12-3tan30°+(π-4)0-⎝ ⎛⎭⎪⎫12-1=23-3×33+1-2=3-1.专题提升(二) 代数式的化简与求值类型之一 整式的化简与求值【经典母题】已知x +y =3,xy =1,你能求出x 2+y 2的值吗?(x -y )2呢?解:x 2+y 2=(x +y )2-2xy =32-2×1=7;(x -y )2=(x +y )2-4xy =32-4×1=5.【思想方法】 利用完全平方公式求两数平方和或两数积等问题,在化简求值、一元二次方程根与系数的关系中有广泛应用,体现了整体思想、对称思想,是中考热点考题.完全平方公式的一些主要变形有:(a +b )2+(a -b )2=2(a 2+b 2),(a +b )2-(a -b )2=4ab ,a 2+b 2=(a +b )2-2ab =(a -b )2+2ab ,在四个量a +b ,a -b ,ab 和a 2+b 2中,知道其中任意的两个量,能求出(整体代换)其余的两个量.【中考变形】1.已知(m -n )2=8,(m +n )2=2,则m 2+n 2的值为( C ) A .10 B .6 C .5 D .32.已知实数a 满足a -1a =3,则a 2+1a 2的值为__11__. 【解析】 将a -1a =3两边平方,可得a 2-2+1a 2=9,即a 2+1a 2=11. 3.[2017·重庆B 卷]计算:(x +y )2-x (2y -x ).解:原式=x 2+2xy +y 2-2xy +x 2=2x 2+y 2.4.[2016·漳州]先化简(a +1)(a -1)+a (1-a )-a ,再根据化简结果,你发现该代数式的值与a 的取值有什么关系(不必说明理由)?解:原式=a 2-1+a -a 2-a =-1.故该代数式的值与a 的取值没有关系.【中考预测】先化简,再求值:(a -b )2+a (2b -a ),其中a =-12,b =3.解:原式=a 2-2ab +b 2+2ab -a 2=b 2.当a =-12,b =3时,原式=32=9. 类型之二 分式的化简与求值【经典母题】计算:(1)a b -b a -a 2+b 2ab; (2)⎝ ⎛⎭⎪⎫3x x -2-x x +2·x 2-4x . 解:(1)原式=a 2-b 2ab -a 2+b 2ab =-2b 2ab =-2b a; (2)原式=3x (x +2)-x (x -2)(x -2)(x +2)·x 2-4x =2x 2+8x x 2-4·x 2-4x=2x +8. 【思想方法】 (1)进行分式混合运算时,一定要注意运算顺序,并结合题目的具体情况及时化简,以简化运算过程;(2)注意适当地利用运算律,寻求更合理的运算途径;(3)分子分母能因式分解的应进行分解,并注意符号的处理,以便寻求组建公分母而约分化简;(4)要注意分式的通分与解分式方程去分母的区别.【中考变形】1.[2017·重庆A 卷]计算:⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2. 解:原式=⎝ ⎛⎭⎪⎫3a +2+a 2-4a +2÷(a -1)2a +2 =(a +1)(a -1)a +2·a +2(a -1)2=a +1a -12.[2017·攀枝花]先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.解:原式=x +1-2x +1·x (x +1)(x +1)(x -1)=x -1x +1·x (x +1)(x +1)(x -1)=x x +1. 当x =2时,原式=22+1=23. 【中考预测】先化简,再求值:⎝ ⎛⎭⎪⎫x 2-4x +3x -3-13-x ⎝ ⎛⎭⎪⎫x 2-2x +1x 2-3x +2-2x -2,其中x =4. 解:原式=⎝ ⎛⎭⎪⎫x 2-4x +3x -3+1x -3⎣⎢⎡⎦⎥⎤(x -1)2(x -1)(x -2)-2x -2 =(x -2)2x -3·⎝⎛⎭⎪⎫x -1x -2-2x -2=(x -2)2x -3·x -3x -2 =x -2.当x =4时,原式=x -2=2.类型之三 二次根式的化简与求值【经典母题】已知a =3+2,b =3-2,求a 2-ab +b 2的值.解:∵a =3+2,b =3-2,∴a +b =23,ab =1,∴a 2-ab +b 2=(a +b )2-3ab =(23)2-3=9.【思想方法】 在进行二次根式化简求值时,常常用整体思想,把a +b ,a -b ,ab 当作整体进行代入.整体思想是很重要的数学思想,利用其解题能够使复杂问题变简单.整体思想在化简、解方程、解不等式中都有广泛的应用,是中考重点考查的数学思想方法之一.【中考变形】1.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C )A .9B .±3C .3D .52.[2016·仁寿二模]先化简,再求值:a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ,其中a =2+1,b =2-1.解:原式=(a -b )2(a +b )(a -b )÷b -a ab =a -b a +b ·ab b -a =-ab a +b, 当a =2+1,b =2-1时,原式=-122=-24. 3.[2017·绵阳]先化简,再求值:⎝ ⎛⎭⎪⎫x -y x 2-2xy +y 2-x x 2-2xy ÷y x -2y,其中x =22,y = 2.解:原式=⎣⎢⎡⎦⎥⎤x -y (x -y )2-x x (x -2y )÷y x -2y=⎝ ⎛⎭⎪⎫1x -y -1x -2y ÷y x -2y=⎣⎢⎡⎦⎥⎤(x -2y )-(x -y )(x -y )(x -2y )÷y x -2y=-y (x -y )(x -2y )·x -2y y =-1x -y . 当x =22,y =2时,原式=-1x -y =-12=-22. 【中考预测】先化简,再求值:1a +b +1b +b a (a +b ),其中a =5+12,b =5-12. 解:原式=ab +a (a +b )+b 2ab (a +b )=(a +b )2ab (a +b )=a +b ab, ∵a +b =5+12+5-12=5,ab =5-12×5+12=1, ∴原式= 5.专题提升(三) 数式规律型问题【经典母题】观察下列各式:52=25;152=225;252=625;352=1 225;…你能口算末位数是5的两位数的平方吗?请用完全平方公式说明理由.解:把末位数是5的自然数表示成10a+5的一般形式,其中a为自然数,则(10a+5)2=100a2+100a+25=100a(a+1)+25,因此在计算末位数是5的自然数的平方时,只要把100a与a+1相乘,并在积的后面加上25即可得到结果.【思想方法】模型化思想和归纳推理的思想在中考中应用广泛,是热点考题之一.【中考变形】1.小明在做数学题时,发现下面有趣的结果:3-2=1;8+7-6-5=4;15+14+13-12-11-10=9;24+23+22+21-20-19-18-17=16;…根据以上规律可知第10行左起第1个数是 ( C ) A.100 B.121 C.120 D.82【解析】根据规律可知第10行等式的右边是102=100,等式左边有20个数加减.∵这20个数是120+119+118+…+111-110-109-108-…-102-101,∴左起第1个数是120.2.[2016·邵阳]如图Z3-1,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是 ( B )图Z3-1A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+1【解析】∵观察可知:左边三角形的数字规律为1,2,…,n,右边三角形的数字规律为21,22…,2n,下边三角形的数字规律为1+2,2+22,…,n+2n,∴最后一个三角形中y与n之间的关系为y=2n+n.3.[2018·中考预测]根据图Z3-2中箭头的指向规律,从2 017到2 018再到2 019,箭头的方向是下列选项中的 ( D )图Z3-2【解析】由图可知,每4个数为一个循环组依次循环,2 017÷4=504……1,∴2 017是第505个循环组的第2个数,∴从2 017到2 018再到2 019,箭头的方向是.故选D.4.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图Z3-3中,按照这一规则,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…则第6次应拿走( D )A.②号棒B.⑦号棒图Z3-3C .⑧号棒D .⑩号棒【解析】 仔细观察图形,第1次应拿走⑨号棒,第2次应拿走⑤号棒,第3次应拿走⑥号棒,第4次应拿走②号棒,第5次应拿走⑧号棒,第6次应拿走⑩号棒.5.[2017·烟台]用棋子摆出下列一组图形(如图Z3-4):图Z3-4按照这种规律摆下去,第n 个图形用的棋子个数为( D )A .3nB .6nC .3n +6 D.3n +3 【解析】 ∵第1个图需棋子3+3=6;第2个图需棋子3×2+3=9;第3个图需棋子3×3+3=12;…∴第n 个图需棋子(3n +3)个.6.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…以此类推,那么第9个三角形数是__45__,2 016是第__63__个三角形数.【解析】 根据所给的数据发现:第n 个三角形数是1+2+3+…+n ,则第9个三角形数是1+2+3+4+5+6+7+8+9=45;由1+2+3+4+…+n =2 016,得n (n +1)2=2 016,解得n =63(负数舍去).7.操场上站成一排的100名学生进行报数游戏,规则是:每位同学依次报自己的顺序数的倒数加1.如:第1位同学报⎝ ⎛⎭⎪⎫11+1,第2位同学报⎝ ⎛⎭⎪⎫12+1,第3位同学报⎝ ⎛⎭⎪⎫13+1,…这样得到的100个数的积为__101__. 【解析】 ∵第1位同学报的数为11+1=21,第2位同学报的数为12+1=32,第3位同学报的数为13+1=43,…∴第100位同学报的数为1100+1=101100,∴这样得到的100个数的积=21×32×43×…×101100=101.8.[2017·潍坊]如图Z3-5,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为__9n+3__.图Z3-5【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…∴第n个图中正方形和等边三角形的个数之和=9n+3.9.观察下列等式:第一个等式:a1=11+2=2-1;第二个等式:a2=12+3=3-2;第三个等式:a3=13+2=2-3;第四个等式:a4=12+5=5-2;…按上述规律,回答以下问题:(1)用含n的代数式表示第n个等式:a n=1n+n+1=n+1-n ;(2)a 1+a 2+a 3+…+a n =【解析】 a 1+a 2+a 3+…+a n =(2-1)+(3-2)+(2-3)+(5-2)+…+(n +1-n )=n +1-1.10.[2016·山西]如图Z3-6是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有__4n +1__个涂有阴影的小正方形(用含有n 的代数式表示).图Z3-6【解析】 由图可知,涂有阴影的小正方形有5+4(n -1)=4n +1(个).11.如图Z3-7是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…则第n 个图案中有__5n +1__根小棒.图Z3-7【解析】 ∵第1个图案中有6根小棒,第2个图案中有6+5×1=11根小棒,第3个图案中有6+5×2=16根小棒,…∴第n 个图案中有6+5(n -1)=5n +1根小棒.12.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭.”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图Z3-8所示.由图易得12+122+123+…+12n =__1-12n __.图Z3-813.[2016·安徽](1)观察图Z3-9中的图形与等式的关系,并填空:图Z3-9【解析】 1+3+5+7=16=42,观察,发现规律:1+3=22,1+3+5=32,1+3+5+7=42,…∴1+3+5+…+(2n-1)=n2.(2)观察图Z3-10,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:图Z3-101+3+5+…+(2n-1)+__2n+1__+(2n-1)+…+5+3+1=__2n2+2n+1__.【解析】观察图形发现:图中黑球可分为三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=n2+2n+1+n2=2n2+2n+1.【中考预测】一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图Z3-11方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?图Z3-11解:(1)把4张餐桌拼起来能坐4×4+2=18(人);把8张餐桌拼起来能坐4×8+2=34(人);(2)设这样的餐桌需要x张,由题意,得4x+2=90,解得x=22.答:这样的餐桌需要22张.专题提升(四) 整式方程(组)的应用类型之一 一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t ,还剩下8 t 未装;若每辆车装4.5 t ,恰好装完.这个车队有多少辆车?解:设这个车队有x 辆车,依题意,得4x +8=4.5x ,解得x =16.答:这个车队有16辆车.【思想方法】 利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( C )A .25台B .50台C .75台D .100台 【解析】 设今年购置计算机的数量是x 台,去年购置计算机的数量是(100-x )台,根据题意可得x =3(100-x ),解得x =75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎨⎧4x +3y =2 000,x +2y =1 000,解得⎩⎨⎧x =200,y =400. 答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎨⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎨⎧2x +4y =560,4x +4y =800,解得⎩⎨⎧x =120,y =80. 答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min). ∵5<458,∴该教学楼建造的这4个门不符合安全规定. 【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎨⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品? 解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3.答:此批次蛋糕属第3档次产品.⎝ ⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品.(2)设该烘焙店生产的是第x档次的产品,根据题意,得[10+2(x-1)][76-4(x-1)]=1 080,解得x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】 (1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.专题提升(五) 一次函数的图象与性质的应用类型之一 一次函数的图象的应用【经典母题】如图Z5-1,由图象得⎩⎨⎧5x -2y +4=0,3x +2y +12=0的解是 ⎩⎨⎧x =-2,y =-3.图Z5-1【思想方法】 (1)每个二元一次方程组都对应着两个一次函数,于是也对应着两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点坐标;(2)一次函数、一元一次方程、一元一次不等式有着独立的概念,但在本质上,后者是前者的特殊情况,从而可以利用函数图象解决方程或方程组问题,体现出数形结合的思想.【中考变形】1.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市某游乐园游玩,乐乐乘私家车从衢州出发1 h 后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y (km)与乘车时间t (h)的关系如图Z5-2所示.请结合图象解决下列问题:图Z5-2(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18 min到达游乐园,问私家车的速度必须达到多少?解:(1)v=2402-1=240(km/h),答:高铁的平均速度为240 km/h;(2)设乐乐离开衢州的距离y与时间t的函数关系为y=kt,则1.5k=120,k=80,∴函数表达式为y=80t,当t=2时,y=160,216-160=56(km).答:乐乐距离游乐园还有56 km;(3)把y=216代入y=80t,得t=2.7,2.7-1860=2.4(h),2162.4=90(km/h).答:乐乐要提前18 min到达游乐园,私家车的速度必须达到90 km/h. 2.[2017·宿迁]小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2 min,校车行驶途中始终保持匀速,当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早 1 min 到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(km)与行驶时间x(min)之间的函数图象如图Z5-3所示.图Z5-3(1)求点A的纵坐标m的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.解:(1)校车的速度为3÷4=0.75(km/min),点A的纵坐标m的值为3+0.75×(8-6)=4.5.答:点A的纵坐标m的值为4.5;(2)校车到达学校站点所需时间为9÷0.75+4=16(min),出租车到达学校站点所需时间为16-9-1=6(min),出租车的速度为9÷6=1.5(km/min),两车相遇时出租车出发时间为0.75×(9-4)÷(1.5-0.75)=5(min),相遇地点离学校站点的路程为9-1.5×5=1.5(km).答:小刚乘坐出租车出发后经过5 min追到小强所乘坐的校车,此时他们距学校站点的路程为1.5 km.3.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N 地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图Z5-4①所示.方成思考后发现了图①的部分信息:乙先出发1 h;甲出发0.5 h 与乙相遇…请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程s甲,s乙与时间t的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?图Z5-4解:(1)设直线BC 的函数表达式为y =kt +b ,把⎝ ⎛⎭⎪⎫32,0,⎝ ⎛⎭⎪⎫73,1003分别代入,得⎩⎪⎨⎪⎧0=32k +b ,1003=73k +b ,解得⎩⎨⎧k =40,b =-60, ∴直线BC 的表达式为y =40t -60.设直线CD 的函数表达式为y 1=k 1t +b 1,把⎝ ⎛⎭⎪⎫73,1003,(4,0)分别代入,得⎩⎨⎧1003=73k 1+b 1,0=4k 1+b 1, 解得⎩⎨⎧k 1=-20,b 1=80,∴直线CD 的函数表达式为y 1=-20t +80; (2)设甲的速度为a km/h ,乙的速度为b km/h ,根据题意,得⎩⎨⎧0.5a =1.5b ,a ⎝ ⎛⎭⎪⎫73-1=73b +1003,解得⎩⎨⎧a =60,b =20, ∴甲的速度为60 km/h ,乙的速度为20 km/h ,∴OA 的函数表达式为y =20t (0≤t ≤1),∴点A 的纵坐标为20,OA 段,AB 段没有符合条件的t 值;当20<y <30时,即20<40t -60<30或20<-20t +80<30,解得2<t <94或52<t <3;(3)根据题意,得s 甲=60t -60⎝ ⎛⎭⎪⎫1≤t ≤73, s 乙=20t (0≤t ≤4),所画图象如答图所示;中考变形3答图(4)当t =43时,s 乙=803,此时丙距M 地的路程s 丙与时间t 的函数表达式为s 丙=-40t +80(0≤t ≤2),当-40t +80=60t -60时,解得t =75, 答:丙出发75h 与甲相遇. 【中考预测】[2017·义乌模拟]甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y (件)与时间x (h)的函数图象如图Z5-5所示.图Z5-5(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式__y=60x(0<x≤6)__;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?解:(1)∵图象经过原点及(6,360),∴设表达式为y=kx,∴6k=360,解得k=60,∴y=60x(0<x≤6);(2)乙2 h加工100件,∴乙的加工速度是每小时50件,∴更换设备后,乙组的工作速度是每小时加工100件,a=100+100×(4.8-2.8)=300;(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为y=100+100(x-2.8)=100x-180,当0<x≤2时,60x+50x=300,解得x=3011(不合题意,舍去);当2<x≤2.8时,100+60x=300,解得x=103(不合题意,舍去);当2.8<x≤4.8时,60x+100x-180=300,解得x=3,符合题意.答:经过3 h恰好装满第1箱.类型之二一次函数的性质的应用【经典母题】某商场要印制商品宣传材料,甲印刷厂的收费标准是:每份材料收1元印制费,另收1 500元制版费;乙印刷厂的收费标准是:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式;。
2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何1.如图,点 A , B 在 x 轴上,以 AB 为边的正方形 ABCD 在 x 轴上方,点 C 的坐标为 (1,4) ,反比例函数 y =kx(k ≠0) 的图象经过 CD 的中点 E , F 是 AD 上的一个动点,将 △DEF 沿 EF 所在直线折叠得到 △GEF .(1)求反比例函数 y =kx(k ≠0) 的表达式;(2)若点 G 落在 y 轴上,求线段 OG 的长及点 F 的坐标.2.如图,反比例函数y =mx 的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数和一次函数的解析式;(2)结合图象,直接写出不等式mx <kx +b 的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,试求点E 的坐标.3.在矩形AOBC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数y =kx (x >0)的图象与AC 边交于点E ,连接OE ,OF ,作直线EF .(1)若CF =2,求反比例函数解新式; (2)在(1)的条件下求出△EOF 的面积; (3)在点F 的运动过程中,试说明EC FC是定值.4.如图,在平面直角坐标系中,一次函数 y 1=−x +2 与反比例函数 y 2=k x(x <0) 相交于点B ,与 x 轴相交于点 A ,点 B 的横坐标为-2.(1)求 k 的值;(2)直接写出当 x <0 且 y 1<y 2 时, x 的取值范围;(3)设点 M 是直线AB 上的一点,过点 M 作 MN// x 轴,交反比例函数 y 2=k x (x <0) 的图象于点 N .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 M 的坐标.5.如图,在平面直角坐标系 xOy 中,一次函数 y =x +1 的图象与反比例函数 y =k x(k ≠0)的图象交于一、三象限内的 A 、B 两点,直线 AB 与 x 轴交于点 C ,点 B 的坐标为 (− 2,n) .(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.7.如图,在Rt△AOB中,△ABO=90°,OB=4,AB=8,且反比例函数y=k x在第一象限内的图象分别交OA,AB于点C和点D,连结OD,△BOD的面积是4.(1)求反比例函数解析式;(2)将△AOB沿x轴向左运动,运动速度是每秒钟3个单位长度,求△AOB与反比例函数图象没有交点时,运动时间t的取值范围.8.如图,在平面直角坐标系中,点A(2,m)在正比例函数y=32x(x>0)的图象上,反比例函数y=kx(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P作x轴的垂线,与正比例函数y=32x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,32x≤kx的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.9.已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图1,若n=−5,且函数y1,y2的图象都经过点A(3,4)①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2为的图象相交于点B,与反比例函数y3= nx(x>0)的图象相交于点C,①若k=3.直线l与函数y2的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m−n的值:②过点B作x轴的平行线与函数y1的图象相交于点E.当m−n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d10.如图,一次函数y1=k1x+4与反比例函数y2=k2x的图象交于点A(2,m)和B(−6,−2),与y轴交于点C.(1)k1=,k2=;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:SΔODE=4:1时,求点P的坐标.(3)点M是坐标轴上的一个动点,点N是平面内的任意一点,当四边形ABMN是矩形时,求出点M的坐标.11.已知:如图1,点A(4,n)是反比例函数y=8x(x>0)图象上的一点.(1)求n的值和直线OA的解析式;(2)如图2,将反比例函数y=8x(x>0)的图象绕原点O逆时针旋转45°后,与y轴交于点M,求线段OM的长度;(3)如图3,将直线OA绕原点O逆时针旋转45°,与反比例函数y=8x(x>0)的图象交于点B,求点B的坐标.12.如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=k x(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.13.如图,直线y=﹣x+2与反比例函数y=k x(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC△x轴于点C,过点B作BD△x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.14.如图1,在平面直角坐标系xOy中,函数y=mx(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD−∠POC时,求此时m的值:(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=mx(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.15.已知点A(3,2)、点B(m,n)在反比例函数y=k x(x>0)图象上,点C是x轴上的一个动点.(1)求k的值;(2)若m=1,C(﹣1,0),试判断△ABC的形状,并说明理由;(3)若点C在x轴正半轴上,当△ABC为等腰直角三角形时,求出点C的坐标.16.如图,一次函数y=kx+b的图象与反比例函数y= mx的图象交于点A(1,4)、B(4,n)。
九年级数学拔高训练(三)
1、在平面直角坐标系xOy 中,若将一个函数的自变量x 替换为x-h ,就能得到一个新函数。
当h>0(h<0)时,只需将原来函数的图象向右(左)平移|h|个单位,即可得到新函数的图象。
如:将抛物线2y x =向右平移2个单位,即可得到抛物线2(2)y x =-。
则函数11
y x =+的大致图象是 ( )
2、如图,矩形纸片ABCD 中,BC=4,AB=3,点P 是BC 边上的动点(点P 不与点B 、C 重合)。
先将[]'20,1//PC EDC y ax bx c DEC AC DE
O
∆∠==++∠⊗⊕Θ PCD ∆沿PD 翻折,得到'PC D ∆。
作'BPC ∠的平分线,交AB 于点E.设BP=x ,BE=y ,则下列图象中,能大致表示
y 与x 的函数关系是 ( )
3、函数123
y x x =-+
-的自变量x 的取值范围是 。
4、若【 x 】表示不超过x 的最大整数(如;【π】=3,【223-】=3-等),则【1212
-⨯】+【1323-⨯】+…+【1201220112012-⨯】= 5、如图,四边形ABCD是矩形,EDC CAB ∠=∠,DEC ∠=090。
(1)求证://AC DE ;
(2)过点B作BF AC ⊥于点F,连接EF,试判断四边形BCEF的形状,并说明理由。
6、如图,BD为O 的直线,AB=AC,AD交BC于点E,AE=2,ED=4.
(1)求AB的长;
(2)延长DB到F,使得BF=BO,连接FA,试判断直线FA与O 的位置关系。
并说明理由。
7、如图已知抛物线2(0)y ax bx c a =++≠的图象与x 轴的负半轴交于点A (—1,0),与y 轴的正半轴交于点B (0,3).抛物线的顶点P 的横坐标为1,若一次函数y=kx+b 的图象经过A 、P 两点。
(1)求抛物线的解析式及顶点P 的坐标;
(2)求k ,b 的值;
(3)设抛物线的对称轴交x 轴于点E 、一次函数y=kx+b 交y 轴于点D ,若点Q 为线段PE 上的动点,连接QD 、QO ,求QD+QO 的取值范围,并求出QD+QO 的值最小时点Q 的坐标。