纳米材料的自组装研究进展_刘欢
- 格式:pdf
- 大小:2.67 MB
- 文档页数:13
纳米材料自组装技术纳米材料自组装技术是指利用纳米颗粒和分子之间的相互作用力,在特定外界条件下实现纳米材料自组装、自排列的一种技术。
在纳米领域中,纳米材料自组装技术具有许多优势,如可控性强、成本低、工艺简单等,因此在纳米技术研究和应用中得到广泛关注。
纳米材料自组装技术的基本原理是通过调节纳米颗粒和分子之间的相互作用力,使其按照设计的结构和排列方式进行自组装。
这种相互作用力可以是静电力、范德华力、磁性力、亲疏水力等。
在纳米颗粒之间的相互作用力中,范德华力是最常用的一种,通过调节范德华力的大小和方向,可以控制纳米颗粒的组装方式和排列方式。
纳米材料自组装技术有多种方法,其中较常见的方法包括溶液中的自组装、表面吸附的自组装和气-液界面的自组装等。
在溶液中的自组装中,纳米颗粒通过溶剂的挥发、溶液的浓缩等方式进行组装,形成二维或三维结构。
表面吸附的自组装是将纳米颗粒吸附到固体表面上,通过控制吸附位置和相互作用力,实现纳米颗粒的有序排列。
气-液界面的自组装是将纳米颗粒悬浮在液体中,然后通过气体的吹扫或挥发,使纳米颗粒在液体表面上组装成膜或排列成有序结构。
纳米材料自组装技术的应用范围非常广泛。
在材料科学中,可以利用纳米材料自组装技术制备具有特定结构和性能的材料,如纳米线阵列、纳米薄膜、纳米孔等。
这些材料具有许多独特的性能,如光学性能、电学性能、磁学性能等,有广泛的应用潜力。
此外,纳米材料自组装技术还可用于制备纳米器件、生物传感器、纳米催化剂等领域。
在生物医学中,纳米材料自组装技术可以用于制备纳米药物载体、纳米图案和纳米结构等,用于癌症治疗、疾病诊断和生物传感等应用。
纳米材料自组装技术的发展还面临一些挑战和难题。
首先,纳米颗粒之间的相互作用力非常微弱,容易受到外界环境的影响,导致组装结果不稳定。
其次,纳米颗粒的组装工艺复杂,需要精确控制多个参数,如温度、浓度、pH值等。
此外,纳米材料自组装技术在大规模制备和商业化应用方面还存在一些问题,如成本高、工艺不稳定等。
纳米材料的组装与自组装近年来,纳米材料的研究越来越受到了重视。
纳米材料是指晶粒大小在1~100纳米之间的材料,由于其特殊的表面化学、机械和物理性质,对于材料科学、生命科学、环境科学等领域都有着广泛的应用。
然而,纳米材料制备的过程中常常面临组装和自组装问题。
本文将从这两个方面探讨纳米材料的组装与自组装,旨在为纳米材料研究和应用提供参考。
一、纳米材料的组装纳米材料的组装可以指材料的单个纳米颗粒的组装,也可以指将多个纳米颗粒组成的纳米体系的组装。
纳米材料的组装是纳米科技研究中不可或缺的一部分。
下面就针对性地介绍几种纳米材料的组装方法。
1.1 化学制备法化学制备法是指通过合成化学反应将纳米颗粒组装成具有特定形态和尺寸的结构的方法。
在这种方法中,通常使用化学反应的方法来控制纳米颗粒的大小和形状,并通过表面修饰实现组装。
例如,通过调节表面修饰剂的链长控制纳米颗粒之间的距离,从而组装成不同的结构。
1.2 模板法模板法是指利用介孔或微孔材料作为模板,将纳米颗粒沉积在孔隙中,以实现纳米材料的组装。
例如,将纳米材料溶液浸泡在具有一定孔径的硅胶模板中,通过自组装或化学反应控制纳米颗粒的大小和形态,最终将纳米颗粒沉积在孔隙中。
1.3 电化学制备法电化学制备法是指通过电化学还原或氧化,将纳米颗粒组装成具有特定形态和尺寸的结构的方法。
在这种方法中,利用电极为媒介,在电场作用下控制纳米颗粒的组装方向和排布,最终实现纳米材料的组装。
二、纳米材料的自组装在纳米领域中,自组装技术是非常重要的一种材料组装方式。
自组装是指在适当的条件下,纳米结构自发地组装成具有规则结构的过程。
自组装具有很多优点,例如高效、低成本、易于控制等,因此受到了广泛的关注和研究。
下面将介绍几种常见的自组装方法。
2.1 Langmuir-Blodgett自组装法Langmuir-Blodgett自组装法是将具有功能性基团的分子或聚合物分子溶解于有机溶剂中,形成薄膜的过程。
自组装纳米材料的制备和应用随着科技的发展,纳米技术越来越成为研究热点,而纳米材料中的自组装纳米材料更是备受关注。
自组装纳米材料是指在一定条件下,由于自身的特殊性质而能够自我组装成结构复杂且功能独特的材料。
本篇文章将从自组装纳米材料的制备和应用方面进行讨论。
自组装纳米材料的制备常见的自组装纳米材料包括纳米颗粒、纳米结构、纳米片、纳米晶等等。
在制备过程中,常用的技术包括溶液法、界面法、化学合成等等。
以下重点介绍其中几种比较常见的制备方法:1. 溶液法溶液法是自组装纳米材料制备的常见方式。
通过选择适当的溶剂,对称等离子体、微乳液等等,可以实现自组装纳米材料的制备。
以适当的溶剂混合物为例,当混合物制备达到所需的浓度和温度时,过饱和度会达到一定的程度,此时就可以开始自组装纳米材料。
2. 界面法界面法是指利用两种相互不溶的液体界面上的物理、化学作用来制备自组装纳米材料的方法。
其中,正交自组装技术阻止了电子进入,因此界面法可以制备大约1到100 nm的自组装金属纳米材料。
3. 化学合成法化学合成法是指利用化学反应进行自组装纳米材料的制备。
在此过程中,通过调节反应的参数,不断地制备新的型号的自组装纳米材料。
化学合成法的优点在于可以控制所得自组装纳米材料的粒径、形态、组成等物理化学性质。
自组装纳米材料的应用自组装纳米材料由于其具有独特的电学、光学、磁学等物理特性,在化学、生物、材料科学等众多方面得到了广泛应用。
以下就举出几个例子来说明:1. 拓扑结构材料由于自组装材料具有独特的拓扑结构,因此可以用于其设计新型的拓扑结构材料。
例如,在某些条件下,通过二维反硅高分子薄膜自组装可以实现均一、可控的孔径,从而为电荷和超分子合成等方面的应用提供了很好的基础。
2. 生物传感器在生物领域中,自组装纳米材料可以用于制备生物传感器,从而能够实现高分辨率的生物检测。
例如,自组装纳米材料可以用于改进磁性共振成像(MRI)的高灵敏度探测器,有助于生物学和医学等领域的实用和应用。
纳米生物学中的自组装和自组装体引言纳米技术的快速发展使得人们对于纳米材料的应用和研究越来越感兴趣。
纳米生物学是纳米科技中的一项重要研究领域,它研究的是生物系统和生物分子的纳米级别结构、性质和功能。
自组装和自组装体是纳米生物学研究的重点之一,是研究纳米生物学的基础。
本文将详细介绍纳米生物学中的自组装和自组装体的相关内容。
一、自组装自组装是指无需外部控制,由分子间的相互作用而形成有序的结构过程。
自组装是一种普遍存在于生物体系和物质界中的现象。
在纳米生物学中,自组装是指利用生物大分子本身的特性,通过相互作用,形成一些具有自组装性质的生物大分子材料,主要包括蛋白质、核酸和多糖等高分子化合物。
自组装体是指由自组装形成的二维或三维有序结构,可以简单地理解为一种“自然组装”的化合物。
二、自组装体自组装体是一种复杂的纳米结构,由分子、聚集体或磁性粒子等成分组成。
在纳米生物学中,自组装体是一种非常重要的生物材料,被广泛应用于生物学、医学以及生物传感器、先进电子学和纳米器件等领域。
生物纳米颗粒是一种常见的自组装体,由生物大分子作为建筑单位组成,具有多种异构体形态。
例如,蛋白质自组装体可以形成纳米片、纳米管、纳米球等形状。
核酸自组装体可以形成G四方体、DNA纳米结、DNA纳米三角等形状。
三、自组装体在医学中的应用自组装体在医学中具有广泛的应用前景。
由于自组装体具有高度的特异性和可控性,能够对生物环境产生极小影响,因此在药物传输、肿瘤治疗和医学检测等方面具有独特的优势。
例如,在肿瘤治疗方面,自组装体能够具有高度选择性地靶向肿瘤细胞,并释放药物。
自组装体在药物传输中的应用也被广泛关注。
脂质体、聚合物自组装体、核酸自组装体等都有可能成为制备高效药物输送系统的新型载体。
四、自组装体在传感技术中的应用自组装体在传感技术领域中的应用受到了广泛的关注。
自组装体在传感技术中的应用主要基于其特殊的结构和性质。
例如,在DNA分子上修饰了纳米金颗粒,可以用于制备高灵敏的DNA传感器。
自组装制备纳米材料的研究现状摘要文章综述了纳米材料各种制备方法,提出了应用自组装技术制备纳米材料。
评述了其在制备纳米材料时的机理、优缺点。
综述了纳米材抖的各种制备方法,提出了应用自组装技术制备纳米材料。
并对国内外应用自组装技术制备纳米材料(如纳米团簇、纳米管、纳米膜等)的研究现状进行了综述。
关键字:纳米材料自组装纳米团簇纳米薄膜前言纳米材料是20世纪80年代中期发展起来的一种具有全新结构的材料,它所具有的独特性质,使它在磁学、电学、光学、催化以及化学传感等方面具有广阔的应用前景。
自组装技术从纳米材料出现开始就一直应用于纳米材料的制备,只不过当时没有明确地将其作为一种方法提出。
到目前为止,自组装技术已能用来制备纳米结构材料,如纳米团簇、纳米管、纳米环、纳米线、多孔纳米材料、功能化纳米材料、功能化纳米级膜及有机/无机纳米复合材料。
纳米科学生命科学技术、信息科学技术和纳米科学技术是本世纪科技发展的主流方向。
纳米科学技术是在纳米空间对原子、分子及其他类型物质的运动与变化规律进行研究,同时在纳米尺度范围内对原子、分子等物质结构单元进行操纵、加工的一个新兴科学领域。
著名物理学家诺贝尔奖获得者Richmd P.Feynman在1959年l2月指出”There is a plenty of room at the bottom”,并预言,如果人类按照自己的意志去安排一个个原子,将得到具有独特性质的物质。
1981年G.Binning教授和H.Rohrer 博士发明了扫描隧道显微镜(scanning tunneling microscopy,STM),使人类首次能够直接观察原子,并能通过STM对原子、分子进行操纵。
1990年7月,在美国巴尔的摩召开了第一届国际纳米科学技术学术会议,这标志着纳米科学技术作为一个新兴的领域正式形成,纳米材料学成为材料科学的一个新分支。
2000年7月美国国家科学技术委员会宣布实施纳米技术创新工程,并将纳米计划视为下一次工业革命的核心。
自组装技术在纳米材料合成中的应用随着科学技术的不断发展,人们对于更加精细化、高科技化的材料需求也日益增加。
在这一过程中,纳米技术逐渐成为了一种大势所趋。
纳米技术是一种能够控制物质结构在尺寸和性能等方面具有极高精度的技术,能够将材料的部分属性进行微观调整,从而制备出高性能、高可靠性、高抗冲击性、高热稳定性等各种材料。
而自组装技术则是纳米材料合成中的重要技术手段之一,可以使得不同类型、不同形态的纳米材料进行高效且精准的组装,最终实现了新材料的合成。
本文将重点探讨自组装技术在纳米材料合成中的应用。
一、自组装技术的基本原理自组装技术是指将材料的基本单元——分子、微粒子、纳米粒子、高分子等框架化功能单元在体系内自发组装为更大的结构形态的一种方法。
自组装技术能够将纳米材料进行精准合成,精益求精,通常是通过“两步法”来实现。
首先是选择合适的单元:在实际操作中,需要进行单元的筛选、择优等过程,选出最合适进行自组装的单元。
其次是设计合适的自组装方案:一方面,需要考虑单元从自己组装之后要达到的结构形态,另一方面,需要考虑形态组装的稳定性、可控性等影响因素。
当这些问题解决后,再对单元进行组装,即可得到所需要的新材料。
二、自组装技术的应用范围非常广泛,其中纳米材料合成是自组装技术的常见应用之一。
1、自组装技术在纳米材料的表面修饰中的应用纳米材料因其表面活性大、晶格缺陷多等特点,表面的化学修饰通常是将纳米材料应用在实际中的前提,通过化学修饰来改善纳米材料的使用性能和稳定性。
自组装技术可以将不同材料的化学单元组装成为表面修饰分子,将其固定在纳米材料表面,从而获得了一种新型的纳米修饰材料。
例如,自组装法可以修饰金属纳米粒子表面,例如原子层细分修饰,水相修饰,有机物基表面修饰等,也可以将自组装单元封装在纳米粒子中。
这些修饰材料具有良好的生物相容性、可溶性、可稳定性等特点,能够在纳米分析、纳米制药等多方面产生巨大的应用价值。
2、自组装技术在纳米材料的制备中的应用纳米材料在结构、形态、物理性质等方面都具有特殊的性质,利用自组装技术进行修饰和改变,能够得到新的性能更好的纳米材料。
纳米材料的自组装综述纳米材料的自组装是一种具有巨大潜力的新兴领域,通过利用分子间的相互作用和动力学行为来自组装出具有特殊结构和性质的纳米材料。
自组装方法不仅能够制备出高度有序的纳米结构,还能够在纳米尺度上控制物质的形貌、结构和性能,因此被广泛应用于纳米科学、纳米技术和材料科学等领域。
自发性自组装是指纳米材料在适当条件下,由于分子间的相互作用和动力学行为,自行组装形成特定的纳米结构。
自发性自组装方法包括溶液中的自组装、蒸发结晶法、自组装膜的自发生成等。
其中,溶液中的自组装是一种常见的方法,通过溶液中的分子之间的静电相互作用、范德华力、水合作用等力来实现自组装。
在适当的溶剂和浓度条件下,纳米材料可以通过纳米粒子的互相吸引和排斥形成特定结构。
蒸发结晶法是一种将溶液中的纳米材料通过蒸发水分使其自行形成纳米结构的方法。
自组装膜的自发生成是指将自组装分子散布在固体基底上,通过控制其组装行为,使其在固体基底上形成自组装膜。
外界控制下的自组装是指通过外界参数的调控来实现纳米材料的自组装。
外界控制下的自组装方法包括利用电场、磁场、光场、温度等外界参数的调控来实现纳米材料的组装行为。
例如,电场可以通过调控分子之间的电荷来实现纳米材料的组装行为;磁场可以通过控制磁性纳米材料的相互作用来实现纳米材料的组装行为;光场可以通过控制光的强度、波长和方向来实现纳米材料的组装行为;温度可以通过调控纳米材料的热运动来实现纳米材料的组装行为。
纳米材料的自组装不仅能够制备出具有特殊结构和性能的纳米材料,还能够为纳米技术和材料科学的发展提供新的方法和途径。
自组装方法可以实现纳米材料的可控制备和自组装膜的可控形成,为纳米技术的实现和材料科学的发展提供了重要的基础。
此外,纳米材料的自组装还具有很多独特的优势,例如可以在大面积上实现纳米尺度的组装、可以制备出高度有序的纳米结构、可以通过改变组装条件来调控纳米材料的性能等。
总之,纳米材料的自组装是一种具有巨大潜力的新兴领域,通过自发性自组装和外界控制下的自组装方法,可以实现纳米材料的有序组装和控制形貌、结构和性能。
!!!"!"!!!"!"综述收稿日期:2006-02-21。
收修改稿日期:2006-03-16。
国家自然科学基金资助项目(No.90306011,20341003)。
*通讯联系人。
E-mail:jianglei@iccas.ac.cn第一作者:刘欢,女,29岁,博士;研究方向:无机纳米材料。
纳米材料的自组装研究进展刘欢1翟锦2江雷*,2,1(1国家纳米科学中心,北京100080)(2中国科学院化学研究所,北京100080)摘要:本文主要评述了近年来纳米材料自组装的研究进展,即对以纳米材料(包括零维的纳米粒子和一维的纳米管/线)为单元而开展的自组装方面的工作进行了介绍。
将纳米材料自组装为各种尺度的有序结构会产生更优异的整体的协同性质,这对于以纳米材料为基础而构筑的微纳米器件有着重要的意义。
由于目前纳米材料的研究主要集中在零维和一维体系,因此,本文分别就此两种体系的自组装行为进行了评述。
具体内容包括:单分子层薄膜修饰的无机纳米粒子的自组装、大分子修饰的无机纳米粒子的自组装、未被修饰的无机纳米粒子的自组装;表面张力及毛细管力诱导的一维纳米材料的自组装、模板诱导的一维纳米材料的自组装、静电力诱导的一维纳米材料的自组装。
关键词:自组装;纳米粒子;纳米线;纳米管;图案化表面中图分类号:O611.4文献标识码:A文章编号:1001-4861(2006)04-0585-13TheResearchProgressinSelf-AssemblyofNano-MaterialsLIUHuan1ZHAIJin2JIANGLei*,2,1(1NationalCenterforNanoscienceandTechnology,Beijing100080)(2InstituteofChemistry,ChineseAcademyofSciences,Beijing100080)Abstract:Onthebasisofintroductionoftherecentprogressinself-assemblyofnano-materialsfromourresearchgroup,areviewhasbeenmainlygiventotheself-assemblyofnano-materials,includingnanoparticlesandnanowires/tubes,intomulti-scaleregularpatternedstructures.Suchself-assemblystrategyhasparamountimpor-tanceforthepracticalapplicationofnano-materials-basedequipments.Theconcretecontentsmainlyinclude:self-assemblyofinorganicnanoparticlesfunctionalizedbyself-assembledmonolayer(SAM),self-assemblyofinor-ganicnanoparticlesfunctionalizedbymacro-molecular,self-assemblyofnakedinorganicnanoparticles;template-inducedself-assemblyofone-dimensionalnanomaterials,surfacetensionandcapillaryforceinducedself-assem-blyofone-dimensionalnanomaterials,electrostaticforceinducedself-assemblyofone-dimensionalnanomaterials.Keywords:self-assembly;nano-particle;nanowires;nanotubes;patternedsurface所谓自组装,是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术[1]。
生物大分子纳米材料的自组装在自然界中,生物大分子纳米材料的形成通常是通过自组装来实现的。
自组装指的是分子或分子组成的物质,在没有外力干扰的情况下,以一定规律结合在一起,形成一定形态或结构的过程。
自组装能够实现材料的高效合成和组装,而且通常不需要外部能量的参与,适用于生产纳米材料等领域。
生物大分子纳米材料自组装的过程由多个环节组成,包括局部浓度的调节、静电相互作用和氢键等。
下面将详细介绍这些环节。
一、局部浓度的调节局部浓度的调节是指在生物大分子纳米材料自组装的过程中,通过浓度梯度来促使分子之间结合或分离。
生物大分子通常呈现多角度、多面相互作用的结构,在高浓度处,多种分子容易相遇,形成一个大的聚集体,有着显著的相互作用,并且比低浓度处相互作用力更强,从而能够形成更为复杂的结构。
例如,蛋白质会在一定浓度下聚集成纤维或簇状结构,而在低浓度下则呈现单个分子形态。
这一过程中,受到分子之间静电相互作用和亲疏水性的影响,聚集体的比表面积减小,从而减少弹性变形能,并降低了系统的自由能,使得一个能量更低的状态的聚集体成为更为稳定的状态。
二、静电相互作用在自组装的过程中,静电相互作用是非常重要的因素之一。
大分子之间的相互作用力主要有伦敦分散力和静电相互作用。
伦敦分散力是由于分子在内容积中扭曲的极性相互抵消而产生的力,而静电相互作用是由于两个带有电荷的分子之间的电子静电相互作用引起的。
静电作用是由吸引和排斥作用组成的,在大分子纳米材料自组装的过程中起到重要作用。
例如,聚合物分子表面带有正电荷和负电荷的聚合物分子可以通过互相吸引进行相互作用,形成一定的空间结构。
三、氢键氢键是生物大分子自组装的另一个重要因素。
氢键是由于亲水性基团的电壓作用与相邻氢原子的静电积累之间相互作用引起的。
可以形成通过氢键连接的分子具有高度确定性的结构,这也导致了生物大分子纳米材料自组装的可控性和稳定性。
例如,多肽分子通过氢键相结合,在一定条件下,可以形成β-折叠结构、α-螺旋结构、β-螺旋结构等一部分二级结构,并通过相互作用形成更为复杂的三级结构。
自组装纳米材料的制备及其性能研究随着纳米技术的发展,纳米材料的制备技术也在不断地更新换代。
在纳米材料的制备过程中,自组装技术受到了广泛的关注。
自组装是指分子或化合物在特定条件下,通过非共价相互作用,自发地形成稳定的大分子或超分子结构。
它的原理是分子间存在的化学亲和性、堆积效应、极性、范德华力等相互作用力,从而形成三维的结构。
本文将详细介绍自组装纳米材料的制备方法及其性能研究。
1. 自组装纳米材料的制备方法1.1 薄膜自组装法薄膜自组装法是指将带有电荷的分子或化合物在固体表面进行自组装,形成具有多层交替排列的超分子薄膜。
该方法主要是利用有机物和离子表面活性剂,通过静电相互作用和范德华力的作用力,形成分子层和离子层的交替排列。
1.2 聚集诱导自组装法聚集诱导自组装法是指将分子或化合物在溶液中或液晶区域中通过水合作用、π-π作用、范德华力、静电作用、氢键等非共价相互作用,自发地形成稳定的聚集体结构,从而达到3D结构的自组装。
1.3 浸渍自组装法浸渍自组装法是指将无序的纳米粒子在液相中通过吸附或化学反应等方式,实现纳米材料的自组装制备。
该方法适用于无需组装很多层的热稳定材料,且制备过程简单,操作容易。
2. 自组装纳米材料的性能研究自组装纳米材料不仅具有超大的比表面积和高效的质量转移特性,还具有明显的结构可控性和形貌可调性,因此在吸附分离、催化、传感、药物释放和光催化等领域有着广泛的应用。
2.1 吸附分离自组装纳米材料可以通过调节不同组装的结构和形貌,以及表面活性剂的选择和浓度等因素,实现对不同体系物质的选择性吸附和分离。
例如,由于纳米材料显著的比表面积,可选择性吸附CO2、甲烷、乙烯等气体,并且具有重复使用的特性,因此在天然气/乙醇混合物的分离中具有广泛的应用前景。
2.2 催化自组装纳米材料不仅具有相应体系物质较大的比表面积和高效的传质特性,还能够控制纳米材料的晶体结构和物相,提高其催化性能。
例如,由于金属纳米材料具有丰富的表面反应活性位点,可以通过可控自组装,实现金属纳米颗粒的大小、形状、晶体结构等参数的控制调节,从而提高其催化性能。
!!!"!"!!!"!"综述收稿日期:2006-02-21。
收修改稿日期:2006-03-16。
国家自然科学基金资助项目(No.90306011,20341003)。
*通讯联系人。
E-mail:jianglei@iccas.ac.cn第一作者:刘欢,女,29岁,博士;研究方向:无机纳米材料。
纳米材料的自组装研究进展刘欢1翟锦2江雷*,2,1(1国家纳米科学中心,北京100080)(2中国科学院化学研究所,北京100080)摘要:本文主要评述了近年来纳米材料自组装的研究进展,即对以纳米材料(包括零维的纳米粒子和一维的纳米管/线)为单元而开展的自组装方面的工作进行了介绍。
将纳米材料自组装为各种尺度的有序结构会产生更优异的整体的协同性质,这对于以纳米材料为基础而构筑的微纳米器件有着重要的意义。
由于目前纳米材料的研究主要集中在零维和一维体系,因此,本文分别就此两种体系的自组装行为进行了评述。
具体内容包括:单分子层薄膜修饰的无机纳米粒子的自组装、大分子修饰的无机纳米粒子的自组装、未被修饰的无机纳米粒子的自组装;表面张力及毛细管力诱导的一维纳米材料的自组装、模板诱导的一维纳米材料的自组装、静电力诱导的一维纳米材料的自组装。
关键词:自组装;纳米粒子;纳米线;纳米管;图案化表面中图分类号:O611.4文献标识码:A文章编号:1001-4861(2006)04-0585-13TheResearchProgressinSelf-AssemblyofNano-MaterialsLIUHuan1ZHAIJin2JIANGLei*,2,1(1NationalCenterforNanoscienceandTechnology,Beijing100080)(2InstituteofChemistry,ChineseAcademyofSciences,Beijing100080)Abstract:Onthebasisofintroductionoftherecentprogressinself-assemblyofnano-materialsfromourresearchgroup,areviewhasbeenmainlygiventotheself-assemblyofnano-materials,includingnanoparticlesandnanowires/tubes,intomulti-scaleregularpatternedstructures.Suchself-assemblystrategyhasparamountimpor-tanceforthepracticalapplicationofnano-materials-basedequipments.Theconcretecontentsmainlyinclude:self-assemblyofinorganicnanoparticlesfunctionalizedbyself-assembledmonolayer(SAM),self-assemblyofinor-ganicnanoparticlesfunctionalizedbymacro-molecular,self-assemblyofnakedinorganicnanoparticles;template-inducedself-assemblyofone-dimensionalnanomaterials,surfacetensionandcapillaryforceinducedself-assem-blyofone-dimensionalnanomaterials,electrostaticforceinducedself-assemblyofone-dimensionalnanomaterials.Keywords:self-assembly;nano-particle;nanowires;nanotubes;patternedsurface所谓自组装,是指基本结构单元(分子,纳米材料,微米或更大尺度的物质)自发形成有序结构的一种技术[1]。
在自组装的过程中,基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一个稳定、具有一定规则几何外观的结构。
自组装过程并不是大量原子、离子、分子之间弱作用力的简单叠加,而是若干个体之间同时自发的发生关联并集合在一起形成一个紧密而又有序的整体,是一种整体的复第4期2006年4月Vol.22No.4Apr.,2006无机化学学报CHINESEJOURNALOFINORGANICCHEMISTRY第22卷无机化学学报杂的协同作用。
自组装过程中分子在界面的识别至关重要。
自组装能否实现取决于基本结构单元的特性,如表面形貌、形状、表面功能团和表面电势等,组装完成后其最终的结构具有最低的自由能。
研究表明,内部驱动力是实现自组装的关键,包括范德华力[2,3]、氢键[4,5]、静电力[6]等只能作用于分子水平的非共价键力和那些能作用于较大尺寸范围的力(forcesactonalargerlength-scale),如表面张力[7]、毛细管力[8]等。
从分子到宏观物体的各种不同尺度下的自组装体系,一直就是科学家研究的热点。
所谓分子自组装,即利用分子间的短程作用力将单个分子自组装为纳米或微米尺度的有序结构。
许多科学家在这一领域做出了杰出的工作[9 ̄13]。
以自组装单分子膜为代表,最典型的是在金或银的表面,将烷基硫醇自组装为稳定的单分子膜[14],实现对金属表面的化学改性。
有些分子可以通过分子间氢键自组装为超分子体系[15]。
对于嵌段共聚物[16,17]以及生物分子[18]的自组装体系,许多科学家也做出了很好的工作。
最近,一些研究小组以分子为单元,通过不同的途径自组装得到各种具有不同几何外观的纳米材料[19 ̄21]。
这是目前分子体系自组装研究中的一个热点。
通过这种方法,分子自下而上的自组装为各种不同规则外形的纳米材料,并表现出一些特殊的物理化学性质。
分子也可以在模板的诱导下自组装为规则有序的图案化表面。
以导电聚合物为例,我们小组以水滴为模板将导电聚苯胺分子组装为蜂房状的多孔薄膜[22],并对其微观的电学性质进行了研究。
在宏观物体的自组装方面,哈佛大学的White-sides带领的研究小组[23 ̄26]做了许多非常有代表性的工作。
他们选择微米或更大尺度的具有一定规则形状的物体为组装单元,通过选择性地修饰其特定的边缘,使的不同边缘具有不同的亲、疏水性。
当把这些物体在液体表面分散开来时,在界面自由能最小化规律的支配下,这些物体之间通过疏水-疏水、亲水-亲水的相互作用自组装成各种宏观的三维有序结构。
这种在液体界面实现的自组装同时受组装单元与液体之间的毛细管力的驱动。
这一研究为构筑微米、厘米乃至更大尺度的、具有规则几何外观的聚集体提供了一种非常简单而有效的方法。
介于分子与宏观物体之间,除了纳米材料,还有一类非常重要的物质,即尺寸分布在亚微米尺度上的物体。
其中一个典型的代表是粒径分布在200 ̄400nm的胶体颗粒小球。
很多研究小组已经通过各种途径成功地将这种具有单一直径的胶体小球自组装为大面积规则排列的图案化表面[27 ̄29]。
例如,XiaYounan利用模板辅助的自组装技术[30],通过液体在特殊装置中的定向流动,将小球排列在预先刻蚀好的基片上的凹槽内。
美国的Brueck等人[31]将硅纳米小球通过旋涂的方法直接组装为图案化表面。
以纳米材料为单元,将其自组装为各种分级有序结构是近年来刚刚兴起的研究热点。
纳米尺度(0.1 ̄100nm)是介于宏观物体与微观分子之间的介观层次,具有超乎寻常的光学、电学、磁学、力学的性质。
研究者们一直期望能够像操纵分子一样操纵纳米结构单元。
通过自组装技术,以纳米材料为单元,能有效地构筑纳米或微米尺度上的有序结构。
也就是说,在没有外界干扰的情况下,通过非共价键力能将纳米结构单元自组装为多级有序结构。
在以纳米材料为单元,构筑不同规则阵列结构方面,相比较于传统的刻蚀技术,这种技术实现了最大的简化,同时使得大面积制备变为现实。
这为我们将功能材料按照理想方式组装成高度有序的结构提供了一条有效的途径,并且为微器件的研究提供了新的机遇[32,33]。
本文就这一方面,结合我们研究小组的近期工作,总结与评述了近年来国际上将自组装技术应用在纳米材料领域的一些进展和主要研究成果。
目前对于纳米材料的自组装,主要集中在两个领域,即零维的纳米粒子和一维的纳米管/线的自组装。
以下分两个方面分别进行评述。
1纳米粒子的自组装纳米粒子所具有的优异性质可以通过简单的操纵或调节其尺度和几何外观来得到调节[34]。
因此,功能性纳米粒子的可控分级有序自组装是目前乃至将来很长一段时间里纳米科技发展的重要方向。
将纳米粒子自组装为一维、二维或三维有序结构后可以获得新颖的整体协同特性,并且可以通过控制纳米粒子间的相互作用来调节它们的性质。
目前,化学修饰是实现纳米粒子自组装的一个十分重要的前提。
包覆在外层的有机分子同时扮演了稳定纳米粒子和提供粒子间相互作用[35]的双重角色。
通过这些有机分子之间的相互作用,纳米粒子很容易被化学组装成为具有新结构的聚集体。
因此,准确的设计和选择用来修饰纳米粒子的有机分子就显得尤为重要。
586・・第4期刘欢等:纳米材料的自组装研究进展1.1单分子层薄膜修饰的无机纳米粒子的自组装以单分子层薄膜稳定的胶体纳米粒子(金属、非金属)是用来自组装制备各种分级有序结构的理想研究对象。
这些纳米粒子本身具有光学、电学和磁学的特殊性质,而表面的单分子层则提供和限制了粒子与周围环境间的作用方式。
通过这些表面分子之间的相互作用,可以有效的实现对纳米粒子的自组装[36,37]。
比如,单分子层保护的纳米粒子在一定条件下可以在基底上通过体系溶剂的挥发[38,39]或者在水/空气界面通过Langmuir-Blodgett技术[40]自组装形成高度有序的二维/三维超晶格。
最典型的代表是在金或银纳米粒子的表面用硫醇进行单分子层修饰[41,42],通过硫醇分子间氢键来诱导自组装。
最近有报道表明二硫化物[43]和硫醚[44]也可以有效的在金纳米粒子外层形成单分子层的化学包覆。
Zhong等人[45]实现了一种利用四齿的硫醚小分子来导向金纳米粒子自组装成为球形聚集体,组装模型见图1。
该方法的优越之处在于组装得到的球形聚集体可以通过长链硫醇的加入,而在疏水的表面被再次分散。
Wei等[40]报道了在一特殊的硫醇分子(resorcinarenetetrathiol)修饰下的金纳米粒子在溶液中自组装形成均一的球形聚集,并实现了球形聚集体的2D阵列[46]。