2.2.1综合法与分析法 (5)
- 格式:doc
- 大小:165.50 KB
- 文档页数:5
选修2-2 第二章 2.2 2.2.11.(2013·江西理,3)等比数列x,3x +3,6x +6,…的第四项等于( )A .-24B .0C .12D .24 [答案] A[解析] 由等比中项公式(3x +3)2=x (6x +6),即x 2+4x +3=0.∴x =-1(舍去) x =-3.∴数列为-3,-6,-12,-24.故选A.2.若a 、b 、c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A .a 2+b 2+c 2≥2B .(a +b +c )2≥3C .1a +1b +1c≥23 D .abc (a +b +c )≤13[答案] B[解析] ∵a 、b 、c ∈R ,∴a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ac =1,又(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac=a 2+b 2+c 2+2≥3.3.已知a 、b 是不等正数,且a 3-b 3=a 2-b 2,求证:1<a +b <43. [证明] ∵a 3-b 3=a 2-b 2且a ≠b ,∴a 2+ab +b 2=a +b ,由(a +b )2=a 2+2ab +b 2>a 2+ab +b 2得(a +b )2>a +b ,又a +b >0,∴a +b >1,要证a +b <43,即证3(a +b )<4, ∵a +b >0,∴只需证明3(a +b )2<4(a +b ),又a +b =a 2+ab +b 2,即证:3(a +b )2<4(a 2+ab +b 2),也就是证明(a -b )2>0.因为a 、b 是不等正数,故(a -b )2>0成立.故a +b <43成立. 综上,得1<a +b <43.4.已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2. 求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.[证明] 欲证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22,即证12(tan x 1+tan x 2)>tan x 1+x 22, 只需证12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>sinx 1+x 22cos x 1+x 22, 即证12×sin (x 1+x 2)cos x 1cos x 2>sin (x 1+x 2)2cos 2⎝⎛⎭⎫x 1+x 22 =sin (x 1+x 2)1+cos (x 1+x 2). 因为x 1、x 2∈⎝⎛⎭⎫0,π2,所以x 1+x 2∈(0,π), 所以sin(x 1+x 2)>0,1+cos(x 1+x 2)>0,cos x 1cos x 2>0,所以只需证1+cos(x 1+x 2)>2cos x 1cos x 2,即证cos(x 1-x 2)<1.因为x 1、x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2, 所以cos(x 1-x 2)<1显然成立,所以原不等式成立.[点评] (1)本题主要考查了三角函数与不等式证明的综合应用,题目中的条件与结论之间的关系不明显,因此可以用分析法挖掘题目中的隐含条件,在证明过程中注意分析法的格式与步骤.对于与三角函数有关的证明题,在证明过程中注意角的取值范围及三角恒等变形公式的灵活应用.(2)本题的几何意义是见而易见的,如图A (x 1,tan x 1),B (x 2,tan x 2),AB 的中点,C x 1+x 22,tan x 1+tan x 22,D ⎝⎛⎭⎫x 1+x 22,tan x 1+x 22,则有tan x 1+tan x 22>tan x 1+x 22,其中x 1、x 2∈⎝⎛⎭⎫0,π2.。
2.2.1 综合法和分析法学习目标 1.理解综合法、分析法的意义,掌握综合法、分析法的思维特点.2.会用综合法、分析法解决问题.知识点一 综合法思考 阅读下列证明过程,总结此证明方法有何特点? 已知a ,b >0,求证:a (b 2+c 2)+b (c 2+a 2)≥4abc . 证明:因为b 2+c 2≥2bc ,a >0,所以a (b 2+c 2)≥2abc . 又因为c 2+a 2≥2ac ,b >0,所以b (c 2+a 2)≥2abc . 因此a (b 2+c 2)+b (c 2+a 2)≥4abc .答案 利用已知条件a >0,b >0和重要不等式,最后推导出所要证明的结论.梳理 (1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法. (2)综合法的框图表示P ⇒Q 1―→Q 1⇒Q 2―→Q 2⇒Q 3―→…―→Q n ⇒Q(P 表示已知条件、已有的定义、公理、定理等,Q 表示所要证明的结论)知识点二 分析法思考 阅读证明基本不等式的过程,试分析证明过程有何特点? 已知a ,b >0,求证:a +b 2≥ab .证明:要证a +b2≥ab ,只需证a +b ≥2ab , 只需证a +b -2ab ≥0, 只需证(a -b )2≥0,因为(a -b )2≥0显然成立,所以原不等式成立.答案 从结论出发开始证明,寻找使证明结论成立的充分条件,最终把要证明的结论变成一个明显成立的条件.梳理 (1)定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法. (2)分析法的框图表示Q ⇐P 1―→P 1⇐P 2―→P 2⇐P 3―→…―→得到一个明显成立的条件类型一 综合法命题角度1 用综合法证明不等式例1 (1)已知a ,b ,c ∈R ,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2), 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2. 又∵a ,b ,c 互不相等, ∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2C 2+c cos 2A 2≥32b .证明 因为a ,b ,c 成等比数列,所以b 2=ac . 因为左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12(a ·a 2+b 2-c22ab +c ·b 2+c 2-a 22bc) =12(a +c )+12b ≥ac +b 2 =b +b 2=32b =右边,所以a cos 2C 2+c cos 2A 2≥32b .反思与感悟 (1)用综合法证明有关角、边的不等式时,要分析不等式的结构,利用正弦定理、余弦定理将角化为边或边化为角.通过恒等变形、基本不等式等手段,可以从左证到右,也可以从右证到左,还可两边同时证到一个中间量,一般遵循“化繁为简”的原则. (2)用综合法证明不等式时常用的结论: ①ab ≤(a +b 2)2≤a 2+b 22(a ,b ∈R );②a +b ≥2ab (a ≥0,b ≥0).跟踪训练1 已知a ,b ,c 为不全相等的正实数.求证:b +c -a a +c +a -b b +a +b -cc >3.证明 因为b +c -a a +c +a -b b +a +b -cc=b a +a b +c b +b c +a c +ca -3, 又a ,b ,c 为不全相等的正实数, 而b a +a b ≥2,c b +b c ≥2,a c +ca ≥2, 且上述三式等号不能同时成立, 所以b a +a b +c b +b c +a c +ca -3>6-3=3,即b +c -a a +c +a -b b +a +b -cc>3. 命题角度2 用综合法证明等式例2 求证:sin(2α+β)=sin β+2sin αcos(α+β). 证明 因为sin(2α+β)-2sin αcos(α+β) =sin[(α+β)+α]-2sin αcos(α+β)=sin(α+β)cos α+cos(α+β)sin α-2sin αcos(α+β) =sin(α+β)cos α-cos(α+β)sin α =sin[(α+β)-α]=sin β, 所以原等式成立.反思与感悟 证明三角恒等式的主要依据(1)三角函数的定义、诱导公式及同角基本关系式. (2)和、差、倍角的三角函数公式.(3)三角形中的三角函数及三角形内角和定理. (4)正弦定理、余弦定理和三角形的面积公式. 跟踪训练2 在△ABC 中,AC AB =cos Bcos C,证明:B =C . 证明 在△ABC 中,由正弦定理及已知,得sin B sin C =cos Bcos C. 于是sin B cos C -cos B sin C =0, 即sin(B -C )=0.因为-π<B -C <π, 从而B -C =0,所以B =C .类型二 分析法例3 (1)已知a >0,求证:a 2+1a 2-2≥a +1a-2;(2)已知△ABC 三边a ,b ,c 的倒数成等差数列,求证:B 为锐角. 证明 (1)要证a 2+1a 2-2≥a +1a-2,只需要证a 2+1a 2+2≥a +1a+ 2.因为a >0,故只需要证( a 2+1a 2+2)2≥(a +1a+2)2,即a 2+1a 2+4a 2+1a 2+4≥a 2+2+1a 2+22(a +1a )+2,从而只需要证2a 2+1a 2≥2(a +1a),只需要证4(a 2+1a 2)≥2(a 2+2+1a2),即a 2+1a 2≥2,而上述不等式显然成立,故原不等式成立.(2)要证B 为锐角,根据余弦定理, 只需证明cos B =a 2+c 2-b 22ac >0,即证a 2+c 2-b 2>0. 由于a 2+c 2-b 2≥2ac -b 2, 要证a 2+c 2-b 2>0, 只需证2ac -b 2>0.∵a ,b ,c 的倒数成等差数列, ∴1a +1c =2b ,即2ac =b (a +c ). 要证2ac -b 2>0,只需证b (a +c )-b 2>0,即b (a +c -b )>0, 上述不等式显然成立,∴B 为锐角.反思与感悟分析法的应用范围及方法跟踪训练3(1)求证:a-a-1<a-2-a-3 (a≥3);(2)在锐角△ABC中,求证:tan A tan B>1.证明(1)方法一要证a-a-1<a-2-a-3,只需证a+a-3<a-2+a-1,只需证(a+a-3)2<(a-2+a-1)2,只需证2a-3+2a2-3a<2a-3+2a2-3a+2,只需证a2-3a<a2-3a+2,只需证0<2,而0<2显然成立,∴a-a-1<a-2-a-3(a≥3).方法二∵a+a-1>a-2+a-3,∴1a+a-1<1a-2+a-3,∴a-a-1<a-2-a-3.(2)要证tan A tan B>1,只需证sin A sin Bcos A cos B>1,∵A、B均为锐角,∴cos A>0,cos B>0.即证sin A sin B>cos A cos B,即cos A cos B-sin A sin B<0,只需证cos(A+B)<0.∵△ABC为锐角三角形,∴90°<A+B<180°,∴cos(A+B)<0,因此tan A tan B>1.1.设a=lg2+lg5,b=e x (x<0),则a与b的大小关系为() A.a>b B.a=bC.a<b D.无法确定答案 A解析 ∵a =lg2+lg5=lg10=1, b =e x <e 0=1,∴a >b .2.设0<x <1,则a =2x ,b =x +1,c =11-x 中最大的是( )A .cB .bC .aD .随x 取值不同而不同答案 A解析 ∵0<x <1,∴b =x +1>2x >2x =a , ∵11-x -(x +1)=1-(1-x 2)1-x =x 21-x >0,∴c >b >a . 3.欲证2-3<6-7成立,只需证( ) A .(2-3)2<(6-7)2 B .(2-6)2<(3-7)2 C .(2+7)2<(3+6)2 D .(2-3-6)2<(-7)2 答案 C解析 根据不等式性质,当a >b >0时,才有a 2>b 2, ∴只需证2+7<6+3, 即证(2+7)2<(3+6)2.4.3-2________2-1.(填“>”或“<”) 答案 <5.设x ,y 是正实数,且x +y =1,求证:(1+1x )(1+1y )≥9.证明 方法一 (综合法)左边=(1+x +y x )(1+x +y y )=(2+y x )(2+xy )=4+2(y x +xy )+1≥5+4=9=右边,原不等式得证. 方法二 (分析法)要证(1+1x )(1+1y)≥9成立,∵x ,y 是正实数,且x +y =1,∴y =1-x , 只需证明(1+1x )(1+11-x)≥9,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2, 即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立. ∴原不等式成立.1.综合法证题是从条件出发,由因导果;分析法是从结论出发,执果索因. 2.分析法证题时,一定要恰当地运用“要证”、“只需证”、“即证”等词语. 3.在解题时,往往把综合法和分析法结合起来使用.课时作业一、选择题1.若实数x ,y 满足不等式xy >1,x +y ≥0,则( ) A .x >0,y >0 B .x <0,y <0 C .x >0,y <0 D .x <0,y >0答案 A解析 ⎩⎪⎨⎪⎧ x +y ≥0,xy >1⇒⎩⎪⎨⎪⎧x >0,y >0.2.在非等边三角形ABC 中,A 为钝角,则三边a ,b ,c 满足的条件是( ) A .b 2+c 2≥a 2 B .b 2+c 2>a 2 C .b 2+c 2≤a 2 D .b 2+c 2<a 2答案 D解析 由余弦定理的推论,得cos A =b 2+c 2-a 22bc ,∵A 为钝角,∴cos A <0,则b 2+c 2<a 2.3.若P =a +a +7,Q =a +3+a +4 (a ≥0),则P 与Q 的大小关系为( ) A .P >Q B .P =QC .P <QD .由a 的取值确定 答案 C解析 ∵P 2=2a +7+2a 2+7a , Q 2=2a +7+2a 2+7a +12, ∴P 2<Q 2,即P <Q .4.若A、B为△ABC的内角,则A>B是sin A>sin B的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析由正弦定理知asin A=bsin B=2R,又A、B为三角形的内角,∴sin A>0,sin B>0,∴sin A>sin B⇔2R sin A>2R sin B⇔a>b⇔A>B.5.分析法又叫执果索因法,若使用分析法证明:设a>b>c,且a+b+c=0,求证:b2-ac <3a索的因应是()A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0答案 C解析要证b2-ac<3a,只需证b2-ac<3a2,只需证b2-ac-3a2<0.∵a+b+c=0,∴a+c=-b,∴只需证(a+c)2-ac-3a2<0,即(a-c)(2a+c)>0,即证(a-c)(a-b)>0.6.下列不等式不成立的是()A.a2+b2+c2≥ab+bc+caB.a+b>a+b(a>0,b>0)C.a+a+5<a+2+a+3(a≥0)D.2+10>2 6答案 D解析对A选项,要证a2+b2+c2≥ab+bc+ca,只需证2a2+2b2+2c2-2ab-2bc-2ac≥0,只需证(a-b)2+(b-c)2+(a-c)2≥0,显然成立,故A正确.对B选项,要证a+b>a+b(a>0,b>0),只需证(a+b)2>a+b,只需证2ab>0,显然成立,故B正确.对C选项,要证a+a+5<a+2+a+3,只需证(a+a+5)2<(a+2+a+3)2,只需证2a +5+2a (a +5)<2a +5+2a 2+5a +6, 只需证a (a +5)<a 2+5a +6, 显然a 2+5a <a 2+5a +6, 故C 正确. 二、填空题7.如果a a >b b ,则实数a ,b 应满足的条件是________. 答案 a >b >0解析 由a a >b b ,得a 3>b 3, 则a ,b 需满足a >b >0.8.已知函数f (x )=2x ,a ,b ∈(0,+∞).A =f (a +b 2),B =f (ab ),C =f (2aba +b ),且a ≠b ,则A ,B ,C 从小到大排列为______________. 答案 C <B <A解析 ∵a +b 2>ab >2aba +b,又∵f (x )=2x 在R 上为增函数,∴A >B >C .9.比较大小:设a >0,b >0,则lg(1+ab )____________12[lg(1+a )+lg(1+b )].答案 ≤解析 ∵(1+ab )2-(1+a )(1+b ) =2ab -(a +b )≤0, ∴(1+ab )2≤(1+a )(1+b ), 则lg(1+ab )2≤lg(1+a )(1+b ), 即lg(1+ab )≤12[lg(1+a )+lg(1+b )].10.在△ABC 中,∠C =60°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则a b +c +bc +a =________.答案 1解析 由余弦定理,c 2=a 2+b 2-2ab cos C , ∴c 2=a 2+b 2-ab ,①a b +c +ba +c =a 2+ac +b 2+bc (b +c )(a +c )=a 2+b 2+ac +bc ab +ac +bc +c 2, ② 将①式代入②式,得a b +c +b a +c=1.11.如图所示,在直四棱柱A 1B 1C 1D 1-ABCD 中,当底面四边形ABCD 满足条件________时,有A 1C ⊥B 1D 1(注:填上你认为正确的一个条件即可,不必考虑所有可能的情形).答案 对角线互相垂直(答案不唯一) 解析 要证A 1C ⊥B 1D 1,只需证B 1D 1垂直于A 1C 所在的平面A 1CC 1, 因为该四棱柱为直四棱柱,所以B 1D 1⊥CC 1, 故只需证B 1D 1⊥A 1C 1即可. 三、解答题12.已知a >0,b >0且a +b =1,求证:a +12+b +12≤2. 证明 要证a +12+b +12≤2, 只需证a +12+b +12+2(a +12)(b +12)≤4,又a +b =1, 即只需证明(a +12)(b +12)≤1.而(a +12)(b +12)≤(a +12)+(b +12)2=1+12+122=1成立,所以a +12+b +12≤2成立. 13.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形. 证明 由A ,B ,C 成等差数列,有2B =A +C . ① 由于A ,B ,C 为△ABC 的三个内角, ② 由①②,得B =π3.③ 由a ,b ,c 成等比数列,得b 2=ac ,④由余弦定理及③,可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c )2=0,从而a =c ,所以A =C .⑤由②③⑤,得A =B =C =π3, 所以△ABC 为等边三角形.四、探究与拓展14.对于30个互异的实数,可以排成m 行n 列的矩形数阵,如图所示的5行6列的矩形数阵就是其中之一.将30个互异的实数排成m 行n 列的矩形数阵后,把每行中最大的数选出,记为a 1,a 2,…,a m ,并设其中最小的数为a ;把每列中最小的数选出,记为b 1,b 2,…,b n ,并设其中最大的数为b ,两位同学通过各自的探究,分别得出两个结论如下:①a 和b 必相等;②a 和b 可能相等; ③a 可能大于b; ④b 可能大于a .以上四个结论中,正确结论的序号是________.(请写出所有正确结论的序号)答案 ②③解析 由题知,a =min{a 1,a 2,…,a m }=a i (1≤i ≤m ),b =max{b 1,b 2,…,b n }=b j (1≤j ≤n ),显然a i ≥b j ,当且仅当a i ,b j 在同一行同一列时,有a i =b j ,所以②③正确.15.设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. (1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74. (1)解 当n =1时,2S 11=2a 1=a 2-13-1-23=2, 解得a 2=4.(2)解 2S n =na n +1-13n 3-n 2-23n , ①当n ≥2时,2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),② ①-②得2a n =na n +1-(n -1)a n -n 2-n ,整理得na n +1=(n +1)a n +n (n +1),即a n +1n +1=a n n +1,a n +1n +1-a n n=1,当n =1时,a 22-a 11=2-1=1.所以数列⎩⎨⎧⎭⎬⎫a n n 是以1为首项,1为公差的等差数列, 所以a n n=n ,即a n =n 2. 所以数列{a n }的通项公式为a n =n 2,n ∈N *.(3)证明 因为1a n =1n 2<1(n -1)n =1n -1-1n(n ≥2), 所以1a 1+1a 2+…+1a n =112+122+132+…+1n 2 <1+14+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1-1n =1+14+12-1n =74-1n <74.。
数学:2.2.1《综合法和分析法》教案教学目标:<一)知识与技能:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
<二)过程与方法:培养学生的辨析能力和分析问题和解决问题的能力;<三)情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
第一课时 2.2.1 综合法和分析法<一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.tFAx82mkCG教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 已知“若,且,则”,试请此结论推广猜想.<答案:若,且,则)2. 已知,,求证:.先完成证明→ 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a, b, c是不全相等的正数,求证:a(b2 + c2> + b(c2 + a2> + c(a2 + b2> > 6abc.tFAx82mkCG分析:运用什么知识来解决?<基本不等式)→ 板演证明过程<注意等号的处理)→ 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.tFAx82mkCG框图表示:要点:顺推证法;由因导果.③ 练习:已知a,b,c是全不相等的正实数,求证.④ 出示例2:在△ABC中,三个内角A、B、C的对边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列. 求证:为△ABC 等边三角形.tFAx82mkCG分析:从哪些已知,可以得到什么结论?如何转化三角形中边角关系?→ 板演证明过程→ 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件<内角和)2. 练习:①为锐角,且,求证:. <提示:算)② 已知求证:3. 小结:综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q. 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.tFAx82mkCG三、巩固练习:1. 求证:对于任意角θ,. <教材P100 练习 1题)<两人板演→ 订正→ 小结:运用三角公式进行三角变换、思维过程)2. 的三个内角成等差数列,求证:.3. 作业:教材P102 A组 2、3题.第二课时 2.2.1 综合法和分析法<二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.tFAx82mkCG教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式.<讨论→ 板演→ 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证.讨论:能用综合法证明吗?→ 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 <注意格式)→ 再讨论:能用综合法证明吗?→ 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件<已知条件、定理、定义、公理等)为止.tFAx82mkCG框图表示:要点:逆推证法;执果索因.③ 练习:设x > 0,y > 0,证明不等式:.先讨论方法→ 分别运用分析法、综合法证明.④ 出示例2:见教材P97. 讨论:如何寻找证明思路?<从结论出发,逐步反推)⑤ 出示例3:见教材P99. 讨论:如何寻找证明思路?<从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面<指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.tFAx82mkCG提示:设截面周长为l,则周长为l的圆的半径为,截面积为,周长为l的正方形边长为,截面积为,问题只需证:> .tFAx82mkCG3. 小结:分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知,直到所有的已知P都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析>,从“已知”推“可知”<综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. <框图示意)tFAx82mkCG三、巩固练习:1. 设a, b, c是的△ABC三边,S是三角形的面积,求证:.略证:正弦、余弦定理代入得:,即证:,即:,即证:<成立).2. 作业:教材P100 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?<原因:偶次)2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C不能作圆”. 讨论如何证明这个命题?tFAx82mkCG3. 给出证法:先假设可以作一个⊙O过A、B、C三点,则O在AB的中垂线l上,O又在BC的中垂线m上,即O是l与m的交点。