第二章 基因的概念及发展
- 格式:pdf
- 大小:932.28 KB
- 文档页数:41
目录第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容第二章基因操作的主要技术原理第一节核酸的凝胶电泳第二节核酸分子杂交第三节细菌转化1.肺炎球菌的转化2.大肠杆菌的转化3.细菌转化频率第四节DNA核苷酸序列分析第五节基因的化学合成第六节基因定点突变第七节基因扩增第八节研究DNA与蛋白质相互作用的方法第三章基因克隆的酶学基础第一节核酸内切限制酶与DNA分子的体外切割1.寄主控制的限制与修饰现象2.核酸内切限制酶的类型3.I 型和III型核酸内切限制酶的基本特性4.II型核酸内切限制酶的基本特性[1].基本特性[2].同裂酶[3].同尾酶[4].限制片段末端的连接作用5.核酸内切限制酶的命名法6.影响核酸内切限制酶活性的因素[1].DNA的纯度[2].DNA的甲基化程度[3].酶切消化反应的温度[4].DNA分子的结构[5].核酸内切限制酶的缓冲液7.核酸内切限制酶对DNA的消化作用[1].核酸内切限制酶与靶DNA识别序列的结合模式[2].核酸内切限制酶对DNA分子的局部消化作用[3].核酸内切限制酶对真核基因组DNA的消化作用第二节DNA连接酶与DNA分子的体外连接1.DNA连接酶2.粘性末端DNA片段的连接3.平末端DNA片段的连接[1].同聚物加尾法[2].衔接物连接法[3].DNA接头连接法4.热稳定的DNA连接酶[1].寡核苷酸连接测定法[2].连接酶链式反应(LCR)第三节DNA聚合酶1.DNA聚合酶I与核酸杂交探针的制备[1].DNA聚合酶I[2].DNA缺口转移[3].DNA杂交探针的制备2.大肠杆菌DNA聚合酶I 的Klenow片段与DNA末端标记3.T4 DNA聚合酶和取代合成法标记DNA片段4.依赖于RNA的DNA聚合酶与互补DNA的合成5.T7 DNA聚合酶6.修饰的T7 DNA聚合酶第四节DNA及RNA的修饰酶1.末端脱氧核苷酸转移酶与同聚物加尾2.T4多核苷酸激酶与DNA分子5’-末端的标记3.碱性磷酸酶与DNA脱磷酸作用第五节核酸外切酶1.核酸外切酶VII (exo VII)2.核酸外切酶III (exo III)3.λ核酸外切酶(λ exo)和T7基因6核酸外切酶第六节单链核酸内切酶1.S1核酸酶与RNA分子定位2.Bal1 核酸酶与限制位点的确定第四章基因克隆的质粒载体第一节质粒的一般生物学特性1.质粒DNA2.质粒DNA编码的表型3.质粒DNA的转移[1].质粒的类型[2].F质粒[3].质粒DNA的接合作用4.质粒DNA的迁移作用5.质粒DNA的复制类型6.质粒DNA的不亲和性[1].质粒的不亲和性现象[2].质粒不亲和性的分子基础7.第二节质粒DNA的复制与拷贝数的控制1.质粒DNA复制的多样性2.ColE 1质粒DNA复制的启动3.质粒DNA拷贝数的控制[1].天然质粒拷贝数的控制[2].杂种质粒拷贝数的控制4.质粒复制控制的分子模型[1].抑制蛋白质稀释模型[2].自体阻遏蛋白质模型5.第三节质粒DNA的分离与纯化1.氯化铯密度梯度离心2.碱变性法3.微量碱变性法4.影响质粒DNA产量的因素[1].寄主菌株的遗传背景[2].质粒的拷贝数与分子大小5.第四节质粒载体的构建与类型1.天然质粒用作克隆载体的局限性2.质粒载体必须具备的基本条件3.质粒载体的选择记号[1].高拷贝数的质粒载体[2].低拷贝数的质粒载体[3].失控的质粒载体[4].插入失活型的质粒载体[5].正选择的质粒载体[6].表达型的质粒载体4.第五节重要的大肠杆菌质粒载体1.pSC101 质粒载体[1].应用pSC101 质粒作基因克隆载体的实例一---葡萄球菌质粒基因在大肠杆菌中的表达[2].应用pSC101 质粒作基因克隆载体的实例二---在大肠杆菌中克隆非洲爪蟾2.Col 1质粒载体3.pBR322质粒载体[1].pBR322质粒载体的构建[2].pBR322质粒载体的优点[3].pBR322质粒载体的改良[4].应用pBR322质粒作为基因克隆载体的实例---水稻夜绿体光诱导基因psbA的结构分析4.pUC 质粒载体[1].pUC 质粒载体的结构[2].pUC 质粒载体的优点5.其他重要的质粒载体[1].丧失迁移功能的的质粒载体[2].能在体外转录克隆基因的质粒载体[3].穿梭质粒载体第六节质粒载体的稳定性问题1.质粒载体不稳定性的类型[1].结构的不稳定性[2].分离的不稳定性2.影响质粒载体稳定性的主要因素[1].新陈代谢负荷对质粒载体稳定性的效应[2].拷贝数差度对质粒载体稳定性的影响[3].寄主重组体系对质粒载体稳定性的效应3.随机分配的分子机理[1].通过精巧的控制环路使质粒拷贝数的差度限制在最低的水平[2].通过位点特异的重组作用消除天然质粒的寡聚体[3].通过调节细胞的分裂活动阻止无质粒细胞的产生[4].大肠杆菌素的合成增进了质粒的稳定性4.主动分配的分子机理[1].分配区的结构与功能[2].预配对模型[3].二聚体的解离有助于质粒的主动分配[4].寄主致死功能对质粒稳定性的效应5.第五章噬菌体载体和柯斯载体第一节噬菌体的一般生物学特性第二节λ噬菌体载体第三节柯斯质粒载体第四节单链DNA噬菌体载体第五节噬菌体载体第六章基因的分离与鉴定第一节DNA克隆片段的产生与分离1.基因组DNA克隆片段的产生与分离2.DNA片段的大小分部3.编码目的基因的克隆片段的富集第二节重组体DNA分子的构建及导入受体细胞1.外源DNA片段同载体分子的重组[1].外源DNA片段定向插入载体分子[2].非互补粘性末端DNA分子间的连接[3].最佳连接反应2.重组体分子导入受体细胞的途径[1].重组体DNA分子的转化或转染[2].体外包装的λ噬菌体的转导第三节基因克隆的实验方案1.互补作用基因克隆2.cDNA基因克隆[1].cDNA文库的建立[2].不同丰度mRNA的cDNA克隆[3].全长cDNA的合成[4].cDNA克隆的优越性3.基因组DNA克隆[1].应用 噬菌体载体构建基因组文库[2].应用柯斯质粒载体构建基因组文库4.基因定位克隆[1].拟南芥菜简介[2].RFLP分子标记[3].RFLP作图的原理与步骤[4].染色体步移[5].大尺度基因组物理图谱的构建第四节克隆基因的分离1.应用核酸探针分离克隆的目的基因[1].核酸探针的来源[2].寡核酸探针的的人工合成[3].假阳性克隆的克服2.应用差别杂交或扣除杂交法分离克隆的目的基因[1].差别杂交[2].差别杂交的局限性[3].扣除杂交3.应用mRNA差别显示技术分离克隆的目的基因[1].mRNA差别显示的原理[2].mRNA差别显示的基本过程[3].mRNA差别显示的局限性4.引用表达文库分离克隆的目的基因5.酵母双杂交体系[1].酵母双杂交体系的基本原理[2].酵母双杂交体系的寄主菌株[3].酵母双杂交体系的实验程序第五节重组体分子的选择与鉴定1.遗传检测法[1].根据载体表型特征选择重组体分子的直接选择法[2].根据插入序列的表型特征选择重组体分子的直接选择法2.物理检测法[1].凝胶电泳检测法[2].R-检测环法3.菌落或噬菌斑杂交筛选法4.免疫化学检测法[1].放射性抗体检测法[2].免疫沉淀检测法[3].表达载体产物之免疫化学检测法5.DNA蛋白筛选法6.转译筛选法[1].杂交抑制的转译[2].杂交选择的转译第七章基因的表达与调节第八章真核基因在大肠杆菌中的表达第一节真核基因的大肠杆菌表达体系第二节大肠杆菌的表达载体第三节克隆的真核基因在大肠杆菌中的表达第四节影响克隆基因在大肠杆菌中表达效率的因素第九章植物基因工程第十章哺乳动物基因工程第一节哺乳动物基因转移的遗传选择标记第二节外源DNA导入哺乳动物细胞的方法第三节SV 40病毒载体第四节反转录病毒载体第五节其他的病毒载体第十一章重组DNA与现代生物技术第十二章重组DNA与医学研究第一章基因与基因工程第一节基因研究的发展第二节基因的现代概念第三节基因工程的诞生及其主要的研究内容1.质的新组合,并使之参与到原先没有这类分子的寄主细胞内,而能够持续稳定的繁殖。
了解人类的遗传和基因遗传学是一门研究基因传递和表现的学科,而基因是生命的基本单位。
人类的遗传和基因对于我们理解自身的健康,疾病的发生以及进化的过程都具有重要意义。
在这篇文章中,我将介绍人类遗传学的基本概念、遗传变异的来源以及对人类健康的影响。
一、基因、染色体和DNA基因是由DNA分子编码的遗传信息,它们是决定我们的生理和行为特征的基础。
人类细胞中的DNA分布在46条染色体上,其中23条来自于父亲,23条来自于母亲。
二、遗传信息的传递人类的大部分特征都是由遗传信息在代际间传递而来的。
当人类繁殖时,父母各自传递给后代一半的基因。
这个过程称为遗传。
有时,基因会发生变异,导致后代出现与父母不同的特征。
三、遗传变异的来源遗传变异可以是自然发生的,也可以是由外部因素引起的。
自然发生的变异称为突变,可通过DNA复制或外界辐射等因素引起。
外部因素,如环境、饮食和生活方式等也可能导致基因的改变。
四、遗传变异和人类健康遗传变异与人类健康密切相关。
一些突变可能导致遗传疾病的发生,如遗传性癌症、囊性纤维化等。
此外,人类的遗传背景也影响了我们对药物的反应,有些人可能因个体差异而对某些药物敏感或有抗药性。
五、遗传学的应用遗传学的发展使得我们能够更好地理解人类遗传和基因,也为相关疾病的诊断和治疗提供了新的方法。
通过遗传咨询和基因检测,我们可以了解个人携带的遗传风险,并采取相应的预防措施。
六、人类的进化人类的基因组在漫长的进化过程中经历了持续的改变与调整。
随着环境的变化,一些基因变异可以增加适应能力,而一些则可能对生存产生不利影响。
通过研究人类的遗传和基因,我们可以更好地理解人类的起源和进化历程。
总结人类的遗传和基因对于我们的生命和健康至关重要。
通过深入了解遗传学的基础知识,我们可以更好地理解自身以及与疾病、药物反应等相关的因素。
同时,人类的遗传研究也有助于我们更好地理解自己的起源和进化过程。
通过不断深入研究,遗传学将继续为人类的健康与福祉做出重要贡献。
基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主)内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。
2.基因工程概念的发展:遗传工程→DNA重组技术→分子/基因克隆(Molecular/Gene→基因工程→基因操作。
应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。
宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。
4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。
(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。
(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。
(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。
(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。
第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。
限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。
生物初中教材第二章遗传与进化遗传与进化生物是一门探索生命奥秘的学科,而遗传与进化是生物学中最为关键的内容之一。
本文将围绕生物初中教材第二章的遗传与进化展开,从单个细胞的遗传到物种的进化,探讨生物多样性背后的奥秘。
一、遗传与变异1. DNA与基因遗传与进化的基础离不开DNA,DNA是生物体内携带遗传信息的分子。
而基因则是DNA上的一段特定序列,它决定了生物体的遗传特征。
2. 遗传物质的转移遗传物质的转移是一种重要的遗传方式。
通过遗传物质的传递,个体能够将自己的遗传信息传给后代。
3. 变异与突变变异是指生物体内的基因发生了一定的改变,这种改变可以正面地影响生物的适应能力。
而突变则是指基因发生了突然的变异,可能导致个体的突变特征。
二、遗传的规律1. 孟德尔的遗传定律孟德尔是遗传学的奠基人之一,他通过对豌豆杂交实验的研究,发现了基因的遗传规律。
孟德尔的遗传定律揭示了基因在后代中的分离与组合规律。
2. 显性与隐性基因基因有显性基因和隐性基因之分。
显性基因在表现型中能够直接显示出来,而隐性基因则隐藏在后代的表现中,并不会表现在外。
3. 遗传的交叉与重组遗传的交叉与重组是指配子中的基因进行互换和重组。
通过交叉与重组,基因可以重新组合,增加了遗传的多样性。
三、进化的过程1. 进化的概念进化是物种在长期演化过程中逐步变化和发展的过程。
进化是一个长期的、渐变的过程,是由于环境适应的需要而逐步发展起来的。
2. 适应与生存进化过程中,生物体会通过适应环境来提高自己的生存能力。
适应是物种进化的重要推动力之一。
3. 自然选择与适者生存自然选择是进化过程中的关键机制之一,它是指适应环境的个体或种群具有更大的生存机会,而不适应环境的个体或种群则会被淘汰。
适者生存是自然选择的核心理念。
4. 物种的分化与形成进化过程中,物种会因为环境和适应的差异而发生分化,最终形成新的物种。
四、进化的证据1. 古生物学证据古生物学通过研究化石和岩石记录了地球上生物的进化历史,提供了进化的直接证据。
分子生物学电子教案第一章:分子生物学概述1.1 分子生物学的定义与发展历程1.2 分子生物学的研究内容与方法1.3 分子生物学在生物科学中的重要性第二章:DNA与基因2.1 DNA的结构与功能2.2 基因的概念与特性2.3 基因的表达与调控第三章:RNA与蛋白质3.1 RNA的结构与功能3.2 蛋白质的结构与功能3.3 蛋白质合成过程的调控第四章:酶与酶促反应4.1 酶的概念与特性4.2 酶的分类与命名4.3 酶促反应的原理与应用第五章:分子遗传学5.1 遗传信息的传递途径5.2 遗传密码与反密码子5.3 基因突变与遗传变异第六章:重组DNA技术6.1 重组DNA技术的基本原理6.2 重组DNA操作步骤与技术要点6.3 重组DNA技术在生物技术中的应用第七章:基因克隆与表达7.1 基因克隆的策略与方法7.2 基因表达载体的构建与转染7.3 目的基因的表达与检测第八章:基因编辑技术8.1 基因编辑技术的发展历程8.2 CRISPR/Cas9基因编辑系统8.3 基因编辑技术在生物科学研究中的应用第九章:蛋白质组学9.1 蛋白质组学的基本概念与技术9.2 蛋白质组学在生物科学研究中的应用9.3 蛋白质组学与系统生物学第十章:分子生物学实验技能10.1 分子生物学实验基本技能10.2 常见分子生物学实验操作流程10.3 实验数据处理与分析重点和难点解析一、分子生物学概述难点解析:分子生物学研究内容广泛,涉及分子遗传学、分子免疫学、蛋白质组学等多个领域,学生需理解各领域的相互联系及应用。
二、DNA与基因难点解析:DNA双螺旋结构的复杂性和基因表达调控机制的多样性,要求学生深入理解DNA复制、转录和翻译过程。
三、RNA与蛋白质难点解析:RNA种类繁多,功能各异,学生需掌握不同类型RNA的特点及其在生物过程中的作用;蛋白质结构与功能的关系,理解蛋白质折叠及降解过程。
四、酶与酶促反应难点解析:酶的特异性及酶促反应动力学,学生需理解酶活性的调节及酶在工业和医疗领域的应用。
一名词解释1.基因:产生一条多肽链或功能RNA 所必需的全部核苷酸序列。
2.断裂基因:在DNA 分子的结构基因内既含有能转录翻译的片段,也含有不转录翻译的片段,这类基因称断裂基因3.顺反子:由顺/反测验定义的遗传单位,与基因等同,都是代表一个蛋白质质的DNA 单位组成。
一个顺反子所包括的一段DNA 与一个多肽链的合成相对应。
4.变性:是DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
5.复性:热变性的DNA缓慢冷却,单链恢复成双链。
6.顺式作用元件:影响自身基因表达活性的非编码DNA序列。
例:启动子、增强子、弱化子等7.反式作用因子:能直接、间接辨认和结合转录上游区段DNA的蛋白质。
8.增强子:在启动区存在的能增强或促进转录的起始的DNA序列。
但不是启动子的一部分。
9.PCR:即聚合酶链式反应。
扩增样品中的DNA 量和富集众多DNA 分子中的一个特定的DNA 序列的一种技术。
在该反应中,使用与目的DNA 序列互补的寡核苷酸作为引物,进行多轮的DNA合成。
每一轮中都包括DNA 变性,引物退火和在Tap DNA 聚合酶催化下的DNA 合成反应。
10.SD 序列:原核生物起始密码AUG 上游7~12 个核苷酸处的一段保守序列,能与16S rRNA 3′端反向互补,被认为在核糖体-mRNA 的结合过程中起作用。
11.转录:生物体以DNA为模板合成RNA的过程。
12.操纵子:细菌基因表达和调控的单位,包括结构基因和能被调控基因产物识别的DNA 控制元件。
13.SSB:即单链结合蛋白,大肠杆菌中一种与单链DNA 结合的蛋白质14.启动子:DNA 模板上具有活化RNA 聚合酶、启动转录起始功能的特殊序列。
15.终止子:模板DNA 上的具有终止转录功能的特殊序列。
16.Tm值:增色效应达到最大值一半时的温度17.C值矛盾:C值与生物结构或组成的复杂性不一致的现象18.多顺反子:原核细胞中数个结构基因常串联为一个转录单位转录成的 mRNA 能编码几种功能相关的蛋白质。
《分子生物学》教案第一章:分子生物学概述1.1 分子生物学的定义和发展历程1.2 分子生物学的研究内容和方法1.3 分子生物学的重要性和应用领域第二章:DNA与基因2.1 DNA的结构和功能2.2 基因的概念和作用2.3 基因的表达和调控第三章:RNA与蛋白质3.1 RNA的结构和功能3.2 蛋白质的结构和功能3.3 蛋白质合成和调控第四章:酶与催化作用4.1 酶的定义和特性4.2 酶的分类和作用机制4.3 酶的研究方法和应用第五章:分子生物学实验技术5.1 分子克隆与基因工程5.2 PCR技术及其应用5.3 蛋白质分离和鉴定技术5.4 生物信息学在分子生物学中的应用第六章:基因表达调控6.1 基因表达的转录和翻译过程6.2 真核生物的转录调控机制6.3 翻译调控和后修饰机制第七章:蛋白质结构与功能7.1 蛋白质结构的基本层次7.2 蛋白质功能的多样性7.3 结构决定功能的原则第八章:信号传导与细胞代谢8.1 细胞信号传导的基本概念8.2 细胞信号传导的主要途径8.3 信号传导与细胞代谢的调控第九章:基因组学与遗传变异9.1 基因组学的基本概念和方法9.2 基因组结构和变异类型9.3 遗传变异在疾病和进化中的作用第十章:分子生物学在生物技术与医学中的应用10.1 基因克隆与基因治疗10.2 重组蛋白药物的开发与应用10.3 分子诊断与个性化医疗10.4 生物芯片技术及其应用第十一章:分子生物学实验设计与分析11.1 实验设计的原则和方法11.2 实验数据的收集与分析11.3 实验结果的验证与解释第十二章:蛋白质相互作用与网络12.1 蛋白质相互作用的机制12.2 蛋白质相互作用网络的构建与分析12.3 蛋白质相互作用在生物学中的意义第十三章:RNA干扰与基因沉默13.1 RNA干扰机制及其作用13.2 基因沉默技术在研究中的应用13.3 RNA干扰在医学和生物技术领域的应用第十四章:病毒分子生物学14.1 病毒的基本结构与生命周期14.2 病毒基因组的复制与表达14.3 病毒与宿主细胞的相互作用第十五章:分子生物学在生物技术与医学中的应用案例分析15.1 基因治疗与基因编辑技术的应用15.2 生物制药与重组蛋白的应用15.3 分子诊断与个性化医疗的实践案例重点和难点解析第一章:分子生物学概述重点:分子生物学的定义和发展历程,研究内容和方法,重要性和应难点:分子生物学研究方法的理解和应用。