关于汽车空调的选型计算
- 格式:doc
- 大小:404.50 KB
- 文档页数:20
汽车空调性能需求计算公式随着汽车行业的不断发展,汽车空调系统已经成为了现代汽车的标配之一。
在炎热的夏季,汽车空调系统可以为驾驶者和乘客提供舒适的驾驶环境,而在寒冷的冬季,汽车空调系统也可以为车内提供温暖的环境。
因此,汽车空调系统的性能需求计算就显得尤为重要。
汽车空调系统的性能需求计算公式可以帮助汽车制造商和设计师确定汽车空调系统的制冷和制热能力,从而确保汽车空调系统能够在各种气候条件下为车内提供舒适的环境。
下面我们将介绍汽车空调性能需求计算公式的相关内容。
汽车空调系统的性能需求计算公式主要包括以下几个方面,车内空间的体积、车内的人数、车辆在不同气候条件下的工作环境、汽车空调系统的制冷和制热能力等。
首先,我们需要考虑车内空间的体积。
车内空间的体积将直接影响汽车空调系统的制冷和制热能力。
一般来说,车内空间的体积越大,汽车空调系统的制冷和制热能力也需要越强。
因此,我们可以使用以下公式来计算车内空间的体积:V = L × W × H。
其中,V表示车内空间的体积,L表示车内空间的长度,W表示车内空间的宽度,H表示车内空间的高度。
其次,我们需要考虑车内的人数。
车内的人数将直接影响汽车空调系统的制冷和制热负荷。
一般来说,车内的人数越多,汽车空调系统的制冷和制热负荷也需要越大。
因此,我们可以使用以下公式来计算车内的人数:N = S / A。
其中,N表示车内的人数,S表示车内空间的总面积,A表示每个人所需的平均面积。
然后,我们需要考虑车辆在不同气候条件下的工作环境。
汽车空调系统的制冷和制热能力将受到外部气温、湿度等气候条件的影响。
一般来说,车辆在高温高湿的气候条件下,汽车空调系统的制冷能力需要更强;而在低温低湿的气候条件下,汽车空调系统的制热能力需要更强。
因此,我们可以使用以下公式来计算车辆在不同气候条件下的工作环境:E = T × H。
其中,E表示车辆在不同气候条件下的工作环境,T表示外部气温,H表示外部湿度。
关于汽车空调的选型计算(二)来源:中国论文下载中心 [ 09-09-14 15:40:00 ] 作者:未知编辑:studa090420目前已知进口干度为0.3,出口过热,因此平均干度χdo=(0.3+1.0)/2=0.65由此,可计算其余参数的平均值。
动力黏度μcore的平均值为μcore=[χ/μr+(1-χ)/μ1]-1=[0.65/11.446+(1-0.65)/266.78] -1=17.212 kg/(m·s)每一散热板制冷剂质量流量qmr,eq'= qmr/11=0.042/11=3.8182×10-3 kg/s散热板内孔的制冷剂质量流速qmr,A为qmr,A= qmr,eq'/(1/4·π·D2h,r)=0.0038182/[3.1416/4×(3.7265×10-3)2] kg/(m2·s)= 350.077kg/(m2·s)雷诺数Recore为Recore= qmr,A·Dh,r/μcore=350.077×3.7265×10-3/(17.212×10-6)=75794干度平均值为χdo=0.49+627 Recore-0.83=0.49+627×75794-0.83=0.54587由上面的计算可以看到,制冷剂干度从0.3~0.54587~1变化,后还有过热蒸气区。
因此很难准确估计每一阶段所占的百分比,只能凭经验估计。
在此,取过热蒸气区为20%,于是可以计算出干燥点之前的两相区约为28%,干燥点之后的两相区约占52%。
(1)干燥点之前的两相区,取χ=0.417,则在散热板内孔内,制冷剂气液两相均匀紊流工况的Lockhart-Martinelli数Xtt和关联系数F(Xtt)分别为Xtt =[(1-χ)/χ]1-W/2(ρl/ρv)0.5(μv/μl)n/2=[(1-0.417)/0.417]1-0.3/2(1285.86/15.712)0.5(11.446/266.78)0.3/2=7.5F(Xtt)=(1+2.30/ Xtt2)0.374=(1+2.30/7.5)0.374=1.0151制冷剂两相流折算成全液相时,在折算流速下的表面传热系数αl为αL=A[qmr,A(1-χ)Dh/μl]-hqmr,A(1-χ)cP1= 0.341[350.077(1-0.417)3.7265×10-3/266.78×10-6]-0.3×350.07×(1-0.417)13532.2 W/(m2·s)= 7966.028 W/(m2·s)制冷剂两相流的表面传热系数αr为αr=αLPRl0.296F(Xtt)=7966.028×3.9680.296×1.0151 W/(m2·s)=12160(2)过热区制冷剂侧的雷诺数Reeq,r,普朗特数Prv,努塞尔数Nu,表面传热系数av分别为Reeq,r= (qmr,ADh,r)/μv=(350.077×3.7265×10-3)/(11.446×10-6)=113950Prv=0.8471av=(Nu×λv)/Dh,r=(50722×12.034×10-3)W/(m3·k)=1638 W/(m3·k)(3)干燥点之后的两相区取χ=0.766,则把Xd0=0.5458带入干燥点之前的两相换热公式,计算得ad0=11165 W/(m2·s),于是ar为ar=av+{1-[(X-Xd0)/(1-Xd0)]1.5}×(ad0-av)= 1638+{1-[(0.766-0.54587)/(1-0.54587)]1.5}×(11165-1638)W/(m3·k)=7950 W/(m3·k)最后,平均表面传热系数可为ār =(12160×28%+7950×52%+1638×20%)W/(m3·k)=7866 W/(m3·k)5.3.7计算总传热系数及传热面积如忽略管壁热阻及接触热阻,忽略制冷剂侧污垢热阻取空气侧污垢热阻ra=0.0003(m3·k)/W,则传热系数k为k=1/[(1/ār)Aa/Ar+ra+1/aeq,a]= 1/[(1/7866)0.706555/0.113+0.0003+ 1/323.3] W/(m3·k)=238.777 W/(m3·k)对于对数平均温差为∆ tm=(Tal-Ta2)/ln{(Ta1-Te)/(Ta2-Te)}=(27-7.25)/ ln{(27-2)/(7.25-2)}℃=12.655℃由于板翅式蒸发器的流程较少,而且在流道转弯处制冷剂与空气成顺流流动形式,因此按纯逆流方式计算的对数平均温差偏大。
Example:一、M -Vehicle Key information Survey for Air conditionSheet 1: Vehicle Key information Survey1.Vehicle:Max Passenger (driver included) :5 personsInner volume space:3.8m32 GlassWindshield : Materials: White+PVB Width:4mm Areas:1.06m2 Conduction coefficient: 6.4 Transmission rate:0.7 L-front window: Materials: Green Width:3.2mm Areas:0.33m2 Conduction coefficient:6.4 Transmission rate:0.7 R-front window: Materials:Green Width: 3.2mm Areas:0.33m2 Conduction coefficient:6.4 Transmission rate:0.7 L-rear window: Materials:Green Width: 3.2mm Areas:0.28m2 Conduction coefficient:6.4 Transmission rate:0.7 R-rear window: Materials:Green Width: 3.2mm Areas:0.28m2 Conduction coefficient:6.4 Transmission rate:0.7 Black window : Materials:Green Width: 3.2mm Areas:0.78m2 Conduction coefficient:6.4 Transmission rate:0.7 3 Roof panelRoof outside: Materials: DC04 Width: 0.7mm Areas: 1.85m2 Conduction coefficient:484 RoofRoof inside: Materials: PE+PU Width: 2mm Areas:1.85m2 Conduction coefficient:0.045Base : Materials: PU+GF Width:4.7mm Areas:1.85m2 Conduction coefficient:0.05Roof Back: Materials: PET Width:0.5mm Areas:1.85m2 Conduction coefficient:0.055 FloorFront floor: Materials: DC04 Width: 0.8mm Areas:0.949m2 Conduction coefficient:48Middle floor: Materials: DC04 Width: 0.7mm Areas:0.921m2 Conduction coefficient:48Rear floor: Materials: DC04 Width: 0.7mm Areas:1.322m2 Conduction coefficient:48Central floor: Materials: DC04 Width: 1.2mm Areas:0.688m2 Conduction coefficient:48Damper cushion: Materials: spin felt Width: 20mm Areas: 2.26m2 Conduction coefficient:0.05Carpet: Materials:PET+EVA Width: 5mm Areas: 2.26m2 Conduction coefficient:0.056 FirewallDash panel Materials: B180H1 Width:1.2mm Areas: 1.17m2 Conduction coefficient:48Outside damper Materials:Al-foil+PETGF+PET Width:25mm Areas:0.75 m2 Conduction coefficient:0.045Inside damper Materials: EVA+PU Width:25mm Areas:0.295m2 Conduction coefficient:0.05In- down damper Materials: EVA+PU Width:25mm Areas:0.737 m2 Conduction coefficient:0.057Side bodyOutside Materials: DC04 Width: 0.7 mm Areas:1.4m2 Conduction coefficient:48Inside Materials:B340/590DP/B340LA Width: 1.5 mm Areas:1.4m2 Conduction coefficient:48Inside trim Materials: PP-T20 Width: 2.5 mm Areas:1.4m2 Conduction coefficient:0.058.DoorOutside Materials:B180H1 Width: 0.7 mm Areas:2.81m2 Conduction coefficient:48Inside Materials: DC04 Width: 0.8 mm Areas:2.81m2 Conduction coefficient:48Inside trim Materials:ABS+PVC+PP+EPDM-T20 Width:3mm Areas:2.81m2 Conduction coefficient:0.05备注:Conduction coefficient单位为:w/m2.k二、Air Conditioning Performance Setting2.1 Test procedure: 4 person, 40km/h(60min)-idle(20min)-90km/h(20min),Other specification can refer to standards2.2 AC target setting according to SOR,Sheet2三、Refrigerant Heat load Computation3.1 Some data needed in computation3.1.1、Surface area,sheet 3:No. Items Surface(m2)NotesFront 1.061 Glass Rear 0.78Side 1.222 Roof 1.853 Side body 1.44 door 2.815 cowl 1.173.1.2、Conditions for Air condition:Outside Temp:40℃( Test procedure)Target Average breath level:22℃(Items included in SOR)Vehicle speed:40km/h3.2 Calculation stepsAir condition refrigerant Heat load can be divided into two parts, one is Temperature difference load ,the other one is humidity load.3.2.1 Temperature difference load1、Sun loadIn the presence of Solar radiation, part of the heat is absorbed by the glass, part of the solar radiation transmitted through the glass, and the rest of them is be reflected. The glass absorbs the solar heat and heat transfer from the outside high air temperature, All these will results in glass Temperature heat transfer. And the heat transmission through the glass will be storage in vehicle body or trims ,it will transfer the heat in a slow way .In this calculation, all that solar radiation heat transfer into vehicle is assumed to be quick transient load .So ,Q Glass=A △Tk+MAC(μqb)and:A-All glass surface area,take it as 3.06 m2△T-tb-ti ( tb is the synthesis temperature of glass,considering the poor heat storage of the glassWe can take the transfer coefficient as G(Z)=1, so we can take tb as 40℃;ti is Average target breath levelTemp in cabin .ti=22℃)K-synthesis heat transfer coefficient,we can take it as 6.4w/m2.k ,μ-Non single glass adjust number,we choose 1.0C-Solar shelter adjust number,we take 1.0M-Glass Area Coefficient ,consider the Angle we will take it as 0.8 for front and back window, and side window take it as 0.5qb- Solar intense transfers into monolayer glassqb=τg I g +τs I sI g, specular solar load, take it as1000w;I s,Diffuse solar load ,take it as 100wτg -specular solar load transmitted rate, take it as 0.7;τs-Diffuse solar load transmitted rate,take it as 0.08Q solar=A △T*k+M*A*C(μq b)=3.06*(40-22)*6.4+{0.8*(1.06+0.78)+0.5*1.22}*1.0*(1000*0.70+100*0.08)=352.5+1474.1=1826.6(w)2、Air leakage heat load (fresh air)Q new air= l0* n*ρ*(h0 -h i)n -persons,n=5l0-New air volume for one person per hour,we can set it as 11m3/h per person(Should more than 10 m3/(h.person) in A/C Guideline manual)ρ-Air density,取1.14kg/m3h 0 -Outside Air enthalpy h i -Cabin air Average enthalpyIf we assume the humidity is both 50% of inside air and of outside air ,then using Graph H-D ,we can geth i =43kJ/kg ,h 0=99kJ/kg, Actually we can use any humidity number ,just for simple calculation . so ,Q new air =l 0* n*ρ*( h 0 -h i )=11*5/3600*1.14*(99-43)*1000=975.3w 3、Body heat load Q 车身=KF(tm-ti)K -Vehicle body synthesis heat transfer coefficient ,it is decided by next:K =11a0+∑δiλi +1ai(Notes :Besides firewall and floor other body ‘s tm can be taken as body Temp ) t m , t i -t m The equivalent Temp of exterior body ,t i Air Temp in cabin∑δiλi-Sum of conduction heat transfer for all layer (δi width for layers ,λi conduction for layer )ai -cabin convection heat transfer coefficient ,when the velocity is less than 3m/s .we can take it as 29 w/m2.ka0-Outside convection heat transfer coefficient ,a0=1.163(12×υ0.5 + 4),υ is air velocity outside of the vehicle ,if υ =40 km/h ,then a0=51.2w/m 2.k(1) RoofK a - roof heat transfer coefficient Roof -layers Outside layer Air layer surfacebase back Width(mm) 0.7 20 2 4.7 0.5 Conduction coefficient w/m 2.K 48 0.11 0.045 0.05 0.05∑δi λi=0.000748+0.020.11+0.0020.045+0.00470.05+0.00050.05=0.33Ka =11a0+∑δi λi +1ai=1151.2+129+0.33=2.604F a - Surface of Roof it is 1.85m 2t m- Equivalent Temp of Roof ,According to our Experience ,we can take it as 80 ℃ t i Temp.of cabin Air flowQ Roof =KaF(t m -t i ) =2.604*1.85*(80-22)=279.41(2) Side bodyK b - Side body heat transfer coefficient Side -layers Outside layer Air layer Inner layerInner trim Width(mm) 0.7 70 1.5 2.5 Conduction coefficient w/m 2.K 48 0.4 48 0.05∑δi λi=0.000748+0.070.4+0.00150.048+0.00250.05=0.23Kb =11a0+∑δi λi +1ai=1151.2+129+0.23=3.52F b - Surface of side body it is 1.4m 2t m- Equivalent Temp of Side Body,According to our Experience ,we can take it as 60 ℃ t i Temp.of cabin Air flow Q side =K b F b △t=3.52×1.4×(60-22) =187.3(w )(3) DoorK c - Door heat transfer coefficient Door -layers Outside layer Air layer Inner layer Inner trim Width(mm) 0.7 110 0.8 3 Conduction coefficient w/m 2.K48 0.63 48 0.05∑δi λi=0.000748+0.110.63+0.000848+0.0030.05=0.24Kc =11a0+∑δi λi +1ai =1151.2+129+0.24=3.4F c - Surface of side body it is 2.81m 2t m- Equivalent Temp of Door,According to our Experience ,we can take it as 60 ℃ t i Temp.of cabin Air flowQ side =K c F c △t=3.4×2.81×(60-22) =363.1(w ) (4) Floor∑δi λi=0.000748+0.020.05+0.00050.05=0.5Kd =11a0+∑δi λi +1ai=1151.2+129+0.5=1.81F d - Surface of Floor it is 3.88m 2t m- Equivalent Temp of Floor, According to our Experience ,we can compute by a formula t i Temp.of cabin Air flow t m= t 0+ε(a0+k )(I floor ) =40+ 0.9(51.2+1.53)∗400=46.83℃ Q floor =K d F d △t=1.81×3.88×(48.33-22) =174.38(w )Considering the exhaust pipes heat radiation, we will take extra 200w for the influence.Q ’ floor =374.38w(5) Firewall∑λi=0.045+48+0.05=1.05 Ke =11a0+∑δi λi +1ai=1151.2+129+1.05=0.91t m- Equivalent Temp of Firewall, According to our Experience ,we can take it equal 90℃ t i Temp.of cabin Air flowAs considering the different K values in upper and down side of the firewall .we may need to divided into two parts one is upper firewall. the other one is down firewall. F e - upper Surface of firewall is 0.75m 2 F e ’- lower Surface of firewall is 0.42m 2Ke - upper heat transfer of the firewall is 0.91w/m 2’k Ke′- lower heat transfer of the firewall is 1.87w/m 2’kQ upper =K e F e △t=0.91×0.75×(90-22) =46.41(w ) Q lower =K e’F e’△t=1.87×0.42×(90-22)=53.4Q firewall=Q upper+ Q lower=99.81(w)So. All the heat which has been transferred from body isQ body=Q roof+Q side+Q door+Q floor+Q firewall=279.4+187.3+363.1+374.38+99.81=1303.99(w)=1304(w)4、Human heat load5 persons, 1 driver,4 passengers ,we can refer to the A/C guide manualQ drive=170w, Q passenger=108W, And the crowded code ρ=0.89故Q human=Q dirver+n *Q passenger*ρ=170+4×0.89×108=554.5(w)5、Heat load from Equipment, illuminationQ Equipment =100w3.2.2 Air conditioning humidity heat load(1) when the cabin temperature has reached into 22℃,And human’s humidity loss rate is about d0=45g/h ,so ,all together all humidity loss is D0=n*d0=5×45=225g/h(2)Vehicle inner cabin volume is setting to 3.8m3, SO , All air in cabin is aboutm=ρair*v=1.14×3.8=4.3(kg)(3)if we assume our blower volume L0 is 450m3/h, then ,we can get the number for the percentage humidity in aird= D0×(V/ L0)÷m=225×(3.8/450)÷4.3=0.44(g/kg)Refer to H-D Drawing,△H=1.35KJ/kgQ humidity =1.35×103×(450*1.14/3600)=192(w)3.2.3 Air conditioning heat load (All-together)Q= Q solar+Q new air+ Q body+ Q person+ Q equipment+ Q humidity=1826.6+975.3+1304+554.5+100+192=4952.4(W)Considering the 10% discount for A/C Design Margin,so,Q’=4952.4×1.1=5447.64(w)≈5.45(kw)。
汽车空调的技术参数汽车空调的技术参数第一段:汽车空调的工作原理和基本参数汽车空调作为现代汽车的一个重要配置,为驾驶员和乘客提供了更加舒适的驾乘环境。
它的工作原理主要包括制冷循环和换热循环两个过程。
制冷循环通过压缩制冷剂实现降温,而换热循环则通过冷凝器和蒸发器的热交换来调节空气温度。
为了评估汽车空调的性能,在选择和使用空调时,我们需要关注一些基本参数。
首先是制冷量,它衡量了空调系统在单位时间内能够从车内抽取多少热量。
制冷量一般以英制单位的BTU(英热单位)或者国际单位制的千瓦(KW)表示。
较大的制冷量意味着空调系统有更强的冷却能力,适用于更大的车辆或者高温环境。
我们还需要关注空调的制冷剂种类和压缩机功率等参数,它们对空调的性能和效率也有一定影响。
第二段:汽车空调的舒适性参数和节能性能除了基本的制冷参数,汽车空调的舒适性和节能性能也是我们需要关注的。
舒适性参数包括空调系统的噪音水平、空气循环方式以及空气质量控制等。
较低的噪音水平可以提供更为静谧的驾乘环境,而合理的空气循环方式则可以让车内空气均匀分布,进一步提升舒适度。
一些高级空调系统还可以提供HEPA过滤功能,过滤掉细微颗粒物,保障空气质量。
在节能方面,汽车空调的耗电量是一个重要指标。
由于空调系统需要通过车载发电机提供电力,过高的耗电量会加重发动机负担,导致油耗增加。
高效的空调系统应该同时具备较低的耗电量和较高的制冷量。
一些先进的空调系统采用了变频技术,可以根据需要调节制冷剂的流量和压缩机的转速,以实现更节能的运行。
第三段:对汽车空调技术参数的个人观点和总结作为驾车者,我们通常会面临各种环境温度变化和气候条件,而空调系统的性能和效率对我们的驾驶体验有着重要影响。
在选择汽车时,我们可以根据车辆的使用情况和地理环境选择合适的空调技术参数。
对于在高温环境下驾驶的用户来说,较大的制冷量和较低的耗电量是关注的重点。
而对于对空气质量和舒适性有更高要求的用户来说,可以选择一些附加功能较多的空调系统。
汽车空调功率计算公式汽车空调在夏季是我们出行的好帮手,它可以帮助我们在高温下保持车内的舒适度。
然而,很多人对汽车空调的功率计算并不了解,今天我们就来详细介绍一下汽车空调功率的计算公式。
汽车空调的功率计算公式可以通过以下步骤来进行推导和计算:1. 首先,我们需要了解汽车空调的制冷量。
制冷量通常用单位“W”(瓦特)来表示,它是空调系统在单位时间内从室内空气中吸收的热量。
制冷量的大小取决于空调系统的制冷能力,通常用“Q”来表示。
2. 其次,我们需要了解汽车空调的制冷效率。
制冷效率是指空调系统在单位时间内实际制冷量与理论制冷量的比值,通常用“ε”来表示。
制冷效率越高,空调系统的制冷能力就越强。
3. 最后,我们可以通过以下公式来计算汽车空调的功率:功率 = 制冷量 / 制冷效率。
根据这个公式,我们可以得出汽车空调的功率值,从而了解空调系统在工作时所需的能量。
汽车空调的功率计算对于车辆的设计和制造非常重要。
首先,汽车制造商需要根据车辆的大小和密封性来确定空调系统的制冷量;其次,制冷效率的提高可以减少空调系统的能耗,从而降低车辆的油耗。
因此,对汽车空调功率的准确计算可以帮助车辆制造商提高车辆的能效性能,减少对环境的影响。
在实际的汽车空调设计和制造过程中,制冷量和制冷效率通常是由空调系统的压缩机、蒸发器、冷凝器和膨胀阀等组件共同决定的。
压缩机负责将低温低压的蒸汽吸入,经过压缩后排出高温高压的气体;蒸发器负责将高温高压的气体冷却成低温低压的蒸汽;冷凝器负责将低温低压的蒸汽冷却成高温高压的气体;膨胀阀负责控制冷媒的流量和压力。
这些组件的性能和工作状态直接影响着空调系统的制冷量和制冷效率。
除了空调系统的组件,汽车空调的功率还受到外界环境和使用条件的影响。
例如,高温环境会降低空调系统的制冷效率;高速行驶会增加空调系统的工作负荷,从而提高功率需求。
因此,对汽车空调功率的准确计算需要考虑到各种因素的综合影响。
在实际的汽车使用过程中,为了减少空调系统的能耗,我们可以采取一些措施来提高空调系统的制冷效率。
汽车空空调匹数计算公式汽车空调匹数计算公式。
随着汽车的普及,汽车空调的作用也变得越来越重要。
在夏季高温天气下,汽车空调可以为驾驶者和乘客提供一个舒适的驾驶环境。
而对于汽车空调的性能,一个重要的指标就是空调的匹数。
那么,究竟如何计算汽车空调的匹数呢?下面我们就来详细介绍一下汽车空调匹数的计算公式。
首先,我们需要了解一下什么是匹数。
匹数是空调制冷量的单位,它表示空调每小时制冷的能力。
一般来说,匹数越大,空调的制冷能力就越强。
对于汽车空调来说,匹数的大小直接影响着汽车内部的温度调节效果。
因此,选择适合车辆的匹数是非常重要的。
汽车空调匹数的计算公式如下:匹数 = (车内空间体积× 35%)÷ 1000。
其中,车内空间体积指的是汽车内部的空间大小,一般以立方米(m³)为单位。
35%是一个经验值,表示汽车空调的制冷效率。
而1000则是一个换算单位,用来将立方米转换成千瓦。
通过这个计算公式,我们可以大致了解到汽车空调的匹数。
以一个小型轿车为例,如果车内空间体积为5m³,那么根据上面的公式,可以计算出汽车空调的匹数为:匹数 = (5 × 35%)÷ 1000 = 0.175。
这意味着,这辆小型轿车适合安装匹数为0.175的汽车空调。
当然,实际选择汽车空调的时候,还需要考虑到车辆的使用环境、气候条件、以及个人的使用习惯等因素。
除了匹数外,汽车空调的性能还与制冷剂的种类、压缩机的功率、以及散热器的大小等因素有关。
因此,在选择汽车空调的时候,最好还是咨询专业的汽车空调技师,根据车辆的具体情况来进行选择。
另外,随着汽车空调技术的不断发展,一些高端汽车空调还具备了多种智能化功能,如自动温控、空气净化、以及多段风速调节等。
这些功能不仅提升了汽车空调的舒适性,还提高了汽车空调的能效。
因此,在购买汽车空调的时候,也可以考虑选择一些具备智能功能的产品。
总的来说,汽车空调匹数的计算公式可以帮助我们初步了解汽车空调的制冷能力。
空调选型计算公式(实用)空调选型计算公式(实用)引言空调选型是为了确定适合特定空间的合适空调设备。
选型计算公式是一种可靠的方法,能够根据空间的尺寸和需求来确定所需的空调能力。
本文将介绍一种实用的空调选型计算公式,以帮助您选择合适的空调设备。
计算公式空调选型的计算公式一般包括以下几个参数:1.空间面积(以平方米为单位):用于确定所需的冷却能力。
2.人员数量:用于确定人体散热带来的热负荷。
3.设备功率:用于确定设备散热带来的热负荷。
4.外部温度:用于确定所需的制冷量。
下面是一个简单的实用空调选型计算公式:制冷量 = 空间面积 ×制冷能力系数 + 人员散热×人员数 + 设备散热 + (外部温度 - 室内温度) ×空气流通量参数说明1.空间面积:测量待冷却空间的面积,单位为平方米。
2.制冷能力系数:根据空间用途来确定,例如住宅一般为 120-150 W/㎡,办公室一般为 150-180 W/㎡。
3.人员散热:每位人员散发的热量,常量取决于活动强度和环境温度,一般可以取 80-100 W/人。
4.人员数:占据空间的人员数量。
5.设备散热:由设备产生的热量,参考设备的功率参数。
6.外部温度:空调需要处理的外部温度,单位为摄氏度。
7.室内温度:希望空调调节的室内温度,单位为摄氏度。
8.空气流通量:空气流通的速度,常量取决于空间的需求和设备参数,一般可以取 2-3 m^3/h。
结论通过使用上述空调选型计算公式,可以根据具体的场景和需求来确定适合的空调设备。
请根据实际情况准确测量各个参数,并进行计算,以获得最合适的空调选型。
注意:此文档提供了一种常见的空调选型计算公式,但在实际应用中仍需要根据具体情况进行调整和验证。
建议在选型过程中咨询专业人士以获得准确的建议。
空调车辆空调选型设计方案背景现代车辆的空调系统已经成为了标配,无论是私家车还是公共交通工具都需要配备空调系统。
而对于商用车辆来说,尤其是大型客车和货车,空调系统的选型和设计更是至关重要。
因为商用车辆需要在极端的环境条件下工作,例如高温、低温、高海拔等环境,因此需要选择更加适合的空调系统。
空调系统的选型制冷量的计算制冷量是空调系统选型的重要指标。
制冷量的计算需要考虑到车辆的大小、环境温度和车内人员的数量等因素。
通常情况下,商用车辆的制冷量需要在40,000BTU/h以上。
对于大型客车和货车来说,制冷量需要在60,000BTU/h以上。
压缩机的选型压缩机是空调系统的核心部件之一,其选型需要考虑到制冷量和车辆的功率。
对于商用车辆来说,需要选择功率适中的压缩机,以保证系统的稳定性和可靠性。
同时,需要注意压缩机的制造商和产品质量,以确保其长期使用的可靠性。
热交换器的选型热交换器是空调系统中的关键部件之一。
其选型需要考虑到制冷量、效率和耐用性等因素。
对于商用车辆来说,常见的热交换器有管式热交换器和板式热交换器两种。
管式热交换器适用于高制冷量的场合,但是耗能较高。
而板式热交换器则可以有效地提高空调系统的效率,但是需要注意其清洗和维护。
冷媒的选型冷媒是空调系统中的重要组成部分之一,其选型需要考虑到环保性、安全性和制冷效率等因素。
在商用车辆中,常见的冷媒有R134A和R407C等,这些冷媒具有良好的制冷效果和较高的环保性能。
空调系统的设计空调系统的布局商用车辆的空调系统布局需要根据车辆的大小和使用场景来进行设计。
对于大型客车和货车来说,空调系统通常需要分为前后两个区域,并采用多个出风口来保证整个车厢的制冷效果。
空调系统的控制商用车辆的空调系统需要采用智能化控制方式,以实现温度、湿度和风速等多种参数的调节。
对于大型客车和货车来说,需要选择具有多个控制区域的空调系统,以实现车辆内部不同区域的独立控制。
总结商用车辆的空调选型和设计需要考虑到车辆本身的特点和用户的需求,并结合现代化的制冷技术和控制技术。
摘要:在设计汽车空调系统前我们都会首先计算整车需要的制冷量,并以此作为汽车空调系统的设计依据。
由于微型车的特点,在空调系统的计算参数选择上与轿车等车型不一样,按常规计算过程通常比较繁琐,计算工作量大,下面介绍一种按照经验公式进行计算的方法,它能够大大简化计算过程,节省计算时间,实践证明按此方法计算出的制冷量和整车实际需要的制冷量差别并不大,有一定的实用价值。
主题词:微型汽车空调系统制冷量简化计算引言随着我国汽车工业的快速发展以及人民生活水平的不断提高,汽车空调已经越来越普及,在欧美普及率甚至达到90%以上,近年来我国的汽车空调配装率也在不断稳步提高。
现代汽车设计由于采用了先进的设计手段,开发周期越来越短,汽车空调系统作为汽车一个比较大而复杂的部件,与汽车的动力、底盘、车身结构、内饰、电控等都有关系,一般在基本确定汽车外形尺寸时就可以开始进行设计,这时就需要先计算其制冷量,因为制冷量的大小直接与空调系统的结构布置方式、空调两器总成的体积等有关,如果计算偏差过大,会造成空调系统与整车不匹配,需要进行多次试验改进,从而可能会影响到整车的开发进度,并增加开发成本。
微型汽车由于与其它车型相比一般动力富余功率都较少,而乘员空间又相对较大,车厢的隔热保温性能也相对差一些,整车价格也比较低廉,故从经济性、客户群等各方面考虑在空调系统计算参数的选择上与其它车型不一样。
我们一般常用的制冷量计算方法是通过分别计算影响整车的各热负荷之和,即整车的得热量,来求得整车所需要的制冷量,这个计算过程比较繁琐和复杂,也容易出错,而采用经验公式进行简化计算,就使得整个计算过程变得非常的简单了,计算结果与常规方法也差不多,它是结合我们的实际经验,通过分析计算和试验对乘员数、车内空间、车窗玻璃面积等之间的关系及主要所需(所得)制冷量(热负荷)应占整车制冷量的百分比,通过经验公式来求得整车制冷量,用此方法得出的制冷量与实际需求制冷量差别并不大。
蒸汽压缩式制冷循环的热力计算在进行制冷循环的热力计算之前,首先需要了解系统中各设备内功和热量的变化情况,然后再对循环的性能指标进行分析和计算。
当完成一个蒸汽压缩循环时,在压缩机中外界对制冷剂作功。
而热量的传递情况则因设备而异,在冷凝器中热量由制冷剂传给外界冷却介质,在蒸发器中热量由被冷却物体传给制冷剂。
蒸发器中单位时间内向制冷剂传递的热量称为循环的制冷量,用符号Q0表示。
压缩机中因压缩制冷剂所消耗的功率用符号N0表示,它是保持循环运动所必须付出的代价。
这两者的比?0 = Q0 / N0定义为制冷系数。
根据热力学第一定理,如果忽略位能和动能的变化,稳定流动的能量方程可表示为Q + N = m ( h2 - h1 ) (1-1)式中:Q---单位时间内加给系统的热量(kW);N---单位时间内加给系统的功(kW);m---流进或流出该系统的稳定质量流量(kg/s);h---比焓(kj/kg);下标1、2---流体流进系统和离开系统的状态点。
当热量和功朝向系统时,Q和N取正值。
该方程可单独适用于制冷系统的每一个设备。
①节流机构制冷剂液体通过节流孔口时绝热膨胀,对外不作功,Q = 0,N = 0。
故方程(1-1)变为0 = m ( h3 - h4 )h3 = h4因此,可以认为节流前后其焓值不变。
节流阀出口处(点4)为两相混合物,它的焓值也可由下式表示:h4=(1- x4)hf0 + x4 hg0 (1-2)式中:hf0---蒸发压力p0下的饱和液体焓值;hg0---蒸发压力p0下的饱和蒸汽的焓值。
将上式移项并整理,得到x4=(h4 - hf0)/(h g0- hf0)(1-3)点4的比容为:v4 = (1-x4) vf0 + x4 vg0 (1-4)式中:vf0---蒸发温度t0下饱和液体的比容(m3/kg);vg0---蒸发温度t0下饱和蒸汽的比容(m3/kg);②压缩机如果忽略压缩机与外界环境所交换的热量,由式(1-1)得N0 = m ( h2 - h1) (kW)(1-5)式中:( h2 - h1)表示压缩机每压缩并输送1kg 制冷剂所消耗的功,称为理论比功,用w0表示。
车辆空调蒸发器、冷凝器的计算方法摘要:本文件对某动车客室空调机组的制冷系统进行设计计算,对压缩机、蒸发器、冷凝器选型提供参考。
关键字:压缩机、蒸发器、冷凝器一、前言依托我司轨道空调制造行业的依托,加之多年对轨道空调设计和制造的研究,以及CRH2和谐号动车组车辆的空调及换气装置的供货配套经验,选用某动车组客室空调机组的项目作为实例,探讨轨道交通车辆空调系统中压缩机、蒸发器、冷凝器的设计计算方法。
二、制冷系统确定及压缩机选型压缩机是制冷系统的核心部件,决定制冷系统的最大制冷能力。
根据制冷系统的制冷量22 kW×(2个系统)=44kW,设计1.05倍的冗余,则选择的压缩机制冷量≥22×1.05=23.1 kW即可,压缩机选型结果如表1所示。
根据TB 1804中5.1.1对额定制冷工况的规定,室内外温度如表2所示。
空调送风温度较室内温度低8~10℃,送风温度较蒸发器出口冷媒温度高2~3℃,因此,蒸发器出口冷媒温度约为16~19℃。
我们设定蒸发器出口冷媒温度为16℃。
结合压缩机的温度参数,分别考虑到额定工况和超负荷工况,制冷系统温度参数设定为表3所示。
制冷系统示意如图2所示,根据制冷系统温度参数可确定各节点制冷剂状态参数,如表4所示。
制冷剂标况及超负荷的制冷剂状态分别如图。
制冷的热力循环过程用压焓图表示为图3。
5,6点之间的焓值差为单位流量的制冷量。
由此可知,制冷量为45kW时,制冷剂的流量44.9 m3/h。
即单台压缩机排气量应>22.45m3/h,压缩机排气量25.7 m3/h满足制冷循环要求。
根据客室空调室内、外机的外形结构,初步确定表5中冷凝器和蒸发器的结构参数,使用Coildesigenr软件对冷凝器和蒸发器的换热量进行计算。
三、冷凝器计算标况下冷凝器的最大散热量的目标值为:散热量≥30.25 kW(22.5+7.75),匹配不同风机的冷凝风量,达到目标值。
图4 冷凝器计算界面图5 蒸发器计算界面将设定的2种工况分别计算,冷凝器的计算结果如表6。
常见汽车空调负荷经验估算常用汽车空调冷负荷经验估算1、汽车空调制冷负荷的估算选配空调装置时,应以车身热负荷为基础确定所需制冷机的能力。
但实际工作时,往往因时间不允许,未能作仔细计算;或因汽车制造质量等因素,使计算结果与实际情况相差较多。
因而在新车设计时,往往只能根据经验估算。
我国交通行业标准JT/T216-95 “客车空调系统技术条件”中规定:客车空调设备的最大标定值应符合人均装机制冷量应不小于1880KJ/h。
这一规定可能是考虑到了目前市场上供应的部分客车用空调机的标定制冷量有一定的商业余量,或标定工况有较大伏笔。
空调机组的制冷量应是指在某一工况下(一般应在标准名义工况下)所具有的制冷能力。
不同国家或不同厂家,往往所规定的标准工况不相同,因而即使是结构、性能完全相同的机组,它们的名义制冷量也往往是不相同的,在选择机组时,要特别加以注意,以免误解。
日本和我国都规定空调机组的名义制冷量是在下列工况条件下给出的:环境空气干球温度35±1℃;车内空气干球温度27±1℃、湿球温度19.5±0.5℃;压缩机转速1800r/min。
(实际上有些日本客车的制冷量是在室内温度30℃条件下定出的。
)不同工况的制冷量是不能简单地相互比较。
考虑到不同车型对空调效果的要求不同,以及目前有可能正常匹配的压缩机能力和发动机功率,给出下列数据供汽车厂选择空调机时参考。
表6-1 汽车空调机组的选配2、微型汽车空调制冷量的简化计算方法简化计算公式⑵是根据经验得出的,它是在实践工作中总结出来的,是一种较简单实用的汽车空调制冷量计算方法。
Q 0(= A 1 ·N·K 1 + A 2 ·V 1·K 2 + A 3 ·S·K 3)·A 4 ·A 5————⑵式中:Q 0———微型车空调计算制冷量,单位为W ;N ———额定乘员数;A 1———乘员制冷因素值,按额定乘员数N 乘以580~610W /人,按车辆规划的豪华程度取上限或下限值;A 2 ———车内空间制冷因素值,取450W /m 3;V 1 ———车内空间体积(内容积),单位m 3 ;A 3———太阳热辐射制冷因素值,对4m 以下车型≤900W /m 2,这里取900 W /m 2;S ———所有窗、门玻璃面积总和,单位为m 2 ;A 4 ———车型密封保温效果因素值,数值见表2,比照整车预计能够达到的保温效果取值;A 5———气候条件因素值,对湿热区、极热区、常热区取1.04;K 1、K 2、K 3———车内热负荷配比,经验得出的重要系数,分别取0.82、0.1、0.08;表2 车型密封保温效果因素值A 4故,根据《XXX项目驾驶室空调系统冷负荷计算》,驾驶室内体积约为V1=9.1 m 3,玻璃窗总面积为S =2.44 m 2。
汽车空调系统匹配计算(五篇范文)第一篇:汽车空调系统匹配计算摘要汽车空调的普及,是提高汽车竞争能力的重要手段之一。
随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。
国内近年来,汽车生产厂家越来越多,产量越来越大,大量中高档车需要安装空调。
因此,对汽车空调的研究开发特别重要。
本论文针对吉利LG—1空调系统匹配设计,对普通轿车空调系统的设计开发原理和特点进行了比较系统的阐述.第一章概论1.1 汽车空调的作用及其发展汽车工业是我国的支柱产业之一,其发展必然会带动汽车空调产业的发展。
汽车空调作为空调技术在汽车上的应用,它能创造车室内热微环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在热舒适的标准范围内,不仅有利于保护司乘人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行始安全性具有积极作用。
就世界上汽车空调技术发展的历史来看,其发展的速度也是惊人的。
1927年就诞生了较为简单的汽车空调装置,它只承担冬季向乘员供暖和为挡风玻璃除霜的任务。
直到1940年,由美国Packard公司生产出第一台装有制冷机的轿车。
1954年才真正将第一台冷暖一体化整体式设备安装在美国Nash牌小汽车上。
1964年,在Cadillac轿车中出现了第一台自动控温的汽车空调。
1979年,美国和日本共同推出了用微机控制的空调系统,实现了数字显示和最佳控制,标志着汽车空调已进入生产第四代产品的阶段。
汽车空调技术发展至今,其功能已日趋完善,能对车室进行制冷,采暖,通风换气,除霜(雾),空气净化等。
我国空调产业发长速度虽然较快,但是目前国内车用空调系统生产基本上仍是处于引进技术与开发、研究并举的阶段。
1.2 汽车空调的特点汽车空调使用的特殊性,决定了它在结构、材料、安装、布置、设计、技术要求等方面与普通空调,如建筑物空调,有着较大的差别:1)在动力源处理上,车用空调压缩机只能采用开启式的结构型式,这就带来空调系统轴封要求高,制冷剂容易泄漏的问题。
摘要????????????????????????????汽车空调的普及,是提高汽车竞争能力的重要手段之一。
随着汽车工业的发展和人们物质生活水平的提高,人们对舒适性,可靠性,安全性的要求愈来愈高。
国内近年来,汽车生产厂家越来越多,产量越来越大,大量中高档车需要安装空调。
因此,对汽车空调的研究开发特别重要。
本论文针对吉利LG—1空调系统匹配设计,对普通轿车空调系统的设计开发原理和特点进行了比较系统的阐述.第一章?概论1.1?汽车空调的作用及其发展汽车工业是我国的支柱产业之一,其发展必然会带动汽车空调产业的发展。
汽车空调作为空调技术在汽车上的应用,它能创造车室内热微环境的舒适性,保持车室内空气温度、湿度、流速、洁净度、噪声和余压等在热舒适的标准范围内,不仅有利于保护司乘人员的身心健康,提高其工作效率和生活质量,而且还对增加汽车行始安全性具有积极作用。
就世界上汽车空调技术发展的历史来看,其发展的速度也是惊人的。
1927年就诞生了较为简单的汽车空调装置,它只承担冬季向乘员供暖和为挡风玻璃除霜的任务。
直到1940年,由美国Packard公司生产出第一台装有制冷机的轿车。
1954年才真正将第一台冷暖一体化整体式设备安装在美国Nash牌小汽车上。
1964年,在Cadillac轿车中出现了第一台自动控温的汽车空调。
1979年,美国和日本共同推出了用微机控制的空调系统,实现了数字显示和最佳控制,标志着汽车空调已进入生产第四代产品的阶段。
汽车空调技术发展至今,其功能已日趋完善,能对车室进行制冷,采暖,通风换气,除霜(雾),空气净化等。
我国空调产业发长速度虽然较快,但是目前国内车用空调系统生产基本上仍是处于引进技术与开发、研究并举的阶段。
1.2?汽车空调的特点汽车空调使用的特殊性,决定了它在结构、材料、安装、布置、设计、技术要求等方面与普通空调,如建筑物空调,有着较大的差别:1)在动力源处理上,车用空调压缩机只能采用开启式的结构型式,这就带来空调系统轴封要求高,制冷剂容易泄漏的问题。
关于汽车空调的选型计算(二)来源:中国论文下载中心 [ 09-09-14 15:40:00 ] 作者:未知编辑:studa090420目前已知进口干度为0.3,出口过热,因此平均干度χdo=(0.3+1.0)/2=0.65由此,可计算其余参数的平均值。
动力黏度μcore的平均值为μcore=[χ/μr+(1-χ)/μ1]-1=[0.65/11.446+(1-0.65)/266.78] -1=17.212 kg/(m·s)每一散热板制冷剂质量流量qmr,eq'= qmr/11=0.042/11=3.8182×10-3 kg/s散热板内孔的制冷剂质量流速qmr,A为qmr,A= qmr,eq'/(1/4·π·D2h,r)=0.0038182/[3.1416/4×(3.7265×10-3)2] kg/(m2·s)= 350.077kg/(m2·s)雷诺数Recore为Recore= qmr,A·Dh,r/μcore=350.077×3.7265×10-3/(17.212×10-6)=75794干度平均值为χdo=0.49+627 Recore-0.83=0.49+627×75794-0.83=0.54587由上面的计算可以看到,制冷剂干度从0.3~0.54587~1变化,后还有过热蒸气区。
因此很难准确估计每一阶段所占的百分比,只能凭经验估计。
在此,取过热蒸气区为20%,于是可以计算出干燥点之前的两相区约为28%,干燥点之后的两相区约占52%。
(1)干燥点之前的两相区,取χ=0.417,则在散热板内孔内,制冷剂气液两相均匀紊流工况的Lockhart-Martinelli数Xtt和关联系数F(Xtt)分别为Xtt =[(1-χ)/χ]1-W/2(ρl/ρv)0.5(μv/μl)n/2=[(1-0.417)/0.417]1-0.3/2(1285.86/15.712)0.5(11.446/266.78)0.3/2=7.5F(Xtt)=(1+2.30/ Xtt2)0.374=(1+2.30/7.5)0.374=1.0151制冷剂两相流折算成全液相时,在折算流速下的表面传热系数αl为αL=A[qmr,A(1-χ)Dh/μl]-hqmr,A(1-χ)cP1= 0.341[350.077(1-0.417)3.7265×10-3/266.78×10-6]-0.3×350.07×(1-0.417)13532.2 W/(m2·s)= 7966.028 W/(m2·s)制冷剂两相流的表面传热系数αr为αr=αLPRl0.296F(Xtt)=7966.028×3.9680.296×1.0151 W/(m2·s)=12160(2)过热区制冷剂侧的雷诺数Reeq,r,普朗特数Prv,努塞尔数Nu,表面传热系数av分别为Reeq,r= (qmr,ADh,r)/μv=(350.077×3.7265×10-3)/(11.446×10-6)=113950Prv=0.8471av=(Nu×λv)/Dh,r=(50722×12.034×10-3)W/(m3·k)=1638 W/(m3·k)(3)干燥点之后的两相区取χ=0.766,则把Xd0=0.5458带入干燥点之前的两相换热公式,计算得ad0=11165 W/(m2·s),于是ar为ar=av+{1-[(X-Xd0)/(1-Xd0)]1.5}×(ad0-av)= 1638+{1-[(0.766-0.54587)/(1-0.54587)]1.5}×(11165-1638)W/(m3·k)=7950 W/(m3·k)最后,平均表面传热系数可为ār =(12160×28%+7950×52%+1638×20%)W/(m3·k)=7866 W/(m3·k)5.3.7计算总传热系数及传热面积如忽略管壁热阻及接触热阻,忽略制冷剂侧污垢热阻取空气侧污垢热阻ra=0.0003(m3·k)/W,则传热系数k为k=1/[(1/ār)Aa/Ar+ra+1/aeq,a]= 1/[(1/7866)0.706555/0.113+0.0003+ 1/323.3] W/(m3·k)=238.777 W/(m3·k)对于对数平均温差为∆ tm=(Tal-Ta2)/ln{(Ta1-Te)/(Ta2-Te)}=(27-7.25)/ ln{(27-2)/(7.25-2)}℃=12.655℃由于板翅式蒸发器的流程较少,而且在流道转弯处制冷剂与空气成顺流流动形式,因此按纯逆流方式计算的对数平均温差偏大。
另外,湿工况在增大空气侧表面传热系数的同时也增加了液膜热阻,因此空气侧的实际表面系数低于计算结果。
综合两个方面的考虑,传热系数与对数平均温差之积预乘上一个修整因子,ψ=0.65,则所需总传热面积(以外表面为基准)A0为A0=Qe/(4k)=29311/(4×238.777×12.6555)m2=14.9m2与前面计算出15.167m2的相对误差不大5.3.8计算空气侧阻力损失∆Pa空气侧摩擦阻力因子ƒ为ƒ=5.47RePL0.72hL0.37(lL/hF)0.89PL0.2hF0.23=5.47× 4300.72× 0.4144550.37×(6.8/7.9)0.891.10.27.90.23=71.98×10-3则空气侧阻力损失∆ Pa为∆ Pa=4 ƒ·WF/Dh,a·ρ·v2a,max=4×71.98×10-3×0.065/(2.792×10-3)×1.1025×5.872Pa=278.313 Pa最后根据空气阻力和风量选择风机。
5.4膨胀阀丹佛斯(DANFOSS)TDEN型膨胀阀适用于HFC134a制冷剂。
其选型方法是根据给定的工况,膨胀阀两端的压力降和蒸发器的负荷,经制冷剂液体过冷度修正后,查该型号的技术手册。
5.4.1确定TDEN型热力膨胀阀两端的压力降根据所给定的工况系统中制冷剂液体流经管路、管弯头、干燥过滤器、视液镜、电磁阀等部件,其压降之和设为∆ P1=66kPa多流程供液的蒸发器前需安装液体分配器,其压降设为∆ P2=65.67kPa。
由于整个系统压力平衡,则有Pe=Pc-∆ PTXV-∆ P1-∆ P2于是,热力膨胀阀端的压力降∆ PTXV为∆ PTXV= Pc- Pe-∆ P1-∆ P2=1681- 349.63-66-65.67=1200kPa=12bar5.4.2蒸发器负荷的过冷修正根据丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册规定,当热力膨胀阀前的制冷剂液体过冷度偏离4k时,蒸发器的制冷量必须进行修正。
修正方法是将所需制冷量除以下表所给的修正系数得到修正的蒸发器制冷量。
丹佛斯(DANFOSS)TDEN型膨胀阀的制冷剂液体过冷度修正系数在阀前的制冷剂液体过冷度为∆ tsc=5℃,修正系数为1.013,则修正蒸发器制冷量Qe,s'为Qe,s'=29.311kw/1.013=28.9kw则每只蒸发器的修正制冷量Qe,s″为Qe,s″=28.9kw/2=14.52kw5.4.3根据∆ PTXV、te、Qe,s″确定应匹配的热力膨胀阀容量由于热力膨胀阀的制冷量,必须等于或稍大于修正后的蒸发器制冷量,因而可按∆PTXV=12bar,te=5℃,Qe,s″=16.8kw>14.52kw,在丹佛斯(DANFOSS)TDEN型膨胀阀的技术手册的有关参数中,查到TDEN5.8 能够满足整个制冷系统匹配的要求,因此,选用两个TDEN5.8型。
第6章空调系统的性能匹配汽车空调系统的性能匹配所要解决的问题,是在成本经济预算与运行经济预算,以及汽车动力配置方案允许的条件下,如何使汽车空调系统各组成部件,特别是对系统性能起主要决定作用的压缩机,膨胀阀,冷凝器总成及管系等部件,在额定运行工况(设计工况)匹配得最合理,以使各部件性能以至系统性能,在该工况得以最大限度地发挥,工作最可靠,并且还具有一定的适应最大负荷工况和恶劣运行工况运行能力。
汽车空调系统图1压缩机;2高压软管;3冷凝器;4 冷却风扇;5 干燥储液器;6高压软管;7 膨胀阀;8蒸发器;9风机;10吸气管。
6.1压缩机的匹配从系统匹配和成本经济、运行经济角度考虑,车用空调系统在额定运行工况(通常把该工况作为设计工况)应选配多大容量,多少输入功率,多高转速的车用空调压缩机,这是汽车空调系统设计在完成空调负荷计算后首要解决的问题为此,必须进行车用空调压缩机的选型计算,包括设计工况计算和变负荷工况计算。
6.1.1车用空调压缩机选配的依据当车身结构确定后,车用空调系统设计的第一个任务,就是进行车厢空调负荷的设计计算。
一般空调负荷计算,包括额定工况和最大负荷工况的负荷计算空调负荷计算的结果是车用空调压缩机选配的依据。
额定工况是指有关行业标准所规定的车用空调系统运行工况。
如CJ/T134—2001《城市公交空调系统技术条件》规定,城市公交空调客车空调系统的额定运行条件是:冷凝器总成的环境温度为35℃,相对湿度为60%;蒸发器总成进风的干球温度为≤28℃,湿球温度为19.5℃。
有时,设计工况也可以按所设计车辆在当地经常运行的条件综合考虑来确定,但须按有关行业标准所规定的车用空调系统运行工况加以校核。
额定工况必须确定的参数有:冷凝器总成环境气象参数,蒸发器出口制冷剂过热度,压缩机吸气管路的压力降等。
最大负荷工况是指车用空调系统按额定工况设计好后,在特定运行条件下,所能达到的具有最大制冷能力的运行工况。
一般当汽车在环境温度较高的烈日下长时间暴晒后,车用空调系统刚起动时刻的运行工况,就属这一特定运行工况。
最大负荷工况的参数也包括上述额定工况的各项参数。
6.1.2压缩机与发动机的传动比及压缩机转速的确定在非独立式车用空调系统中,压缩机都是由主发动机通过离合器的吸合和带传动系统来驱动。
压缩机的转速与主发动机的直接有关,两者之间的传动比除与主发动机的转速有关外,主要取决于压缩机的最高连续转速。
传动比的确定,对于非独立式车用空调系统制冷性能的发挥和压缩机工作的可靠性至关重要。