72定义与命题(一)
- 格式:ppt
- 大小:450.00 KB
- 文档页数:25
7.2定义与命题导学案引入:生活中的笑话笑话(一)宋丹丹:他就是一~主动和我接近没事儿和我唠嗑,不是给我割草就是给我朗诵诗歌,还总找机会向我暗送秋波呢!赵本山:别瞎说,我记着我给你送过笔,送过桌,还给你家送一口大黑锅,我啥时给你送秋波了?秋波是啥玩意?宋丹丹:秋波是啥玩意你咋都不懂呢,这么没文化.赵本山:啥呀?宋丹丹:秋波就是秋天的菠菜。
笑话(二)、定义的概念: _________________ 叫做该名称或术语的定 义.如:连接平面上两个点之间的线段的长度,叫做 ____________________________ 。
在同一平面内不相交的两条直线叫做 _________________ O1 •下列说法中属于定义的是()A.同角的补角相等B.两点之间线段最短C.同位角相等,两直线平行D.在一个方程中,只含有一个未知数,并且未知数的指数1,这样的方程叫做一元一次方程 考考你请说岀下列名词的定义:(1)无理数: ______________________________________________________________ 。
(2 )直角三角形: ______________________________________________________________ o (3 ) 一次函数: ________________________________________________________________ o 法律就是法 法盲就是法 国的盲人爸爸,什么叫 法律? 那么什么是 法盲?、命题比较下列句子在表述形式上,哪些对事情作了判断?哪些没有对事情作了判断?(1、)父母是我们人生的第一位教师。
(2、)延长线段AB 。
(3、)“非典”是不可以战胜的。
(一)命题的概念: 概念判断一件事情的句子叫做命题。
)1 $当男官下列句子中,哪些是命题?哪些不是命题?⑴ 对顶角相等。
7.2.1定义与命题(教案)教学目标知识与技能:1.理解定义与命题的概念.2.分清命题的条件和结论,并能判断命题的真假.过程与方法:在实例中体会定义、命题的含义,通过举反例判断一个命题是假命题.情感态度与价值观:通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.教学重难点【重点】理解命题的概念,找出命题的条件和结论.【难点】正确找出命题的条件和结论.教学准备【教师准备】预想学生在学习本课时中会遇到的困难.【学生准备】复习最近学过的几个重要概念.教学过程一、导入新课上节课我们研究了命题,那么什么叫命题呢?下面大家来想一想:(出示投影片)观察下列命题,你能发现这些命题有什么共同的结构特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(3)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(4)如果一个四边形的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.今天我们就来学习“定义与命题”.二、新知构建(1)定义与命题[过渡语]任何学科知识的构建,都离不开用概念表述相关的内容.本课时我们就要从数学的角度认识定义、命题等相关的概念.大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.条件是已知的事项,结论是由已知事项推断出的事项.一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.师:很好,同学们能举出学过的一些定义吗?生1:“含有未知数的等式叫做方程”是“方程”的定义.生2:“有两边相等的三角形叫做等腰三角形”是“等腰三角形”的定义.生3:“在一个方程中,只含有一个未知数,并且未知数的次数是1,这样的整式方程叫做一元一次方程”是“一元一次方程”的定义.生4:“具有中华人民共和国国籍的人叫做中华人民共和国公民”是“中华人民共和国公民”的定义.师:看来同学们对定义已经有了认识,你能发现“定义”的基本形式是怎样的吗?生:定义的基本形式都是:“……叫做……”.[设计意图]通过学生对定义的举例,加强学生对“什么是定义”的理解.让学生从句子特点与形式上观察,认识定义.2.认识命题思路一[处理方式]独立思考,仔细品味教材议一议的内容,理解什么是命题.下面的语句中,哪些语句对事情作出了判断?哪些没有?(多媒体出示)(1)任何一个三角形一定有一个角是直角;(2)对顶角相等;(3)无论n为怎样的自然数,式子n2-n+11的值都是质数;(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(5)你喜欢数学吗?(6)作线段AB=CD.生:(1)(2)(3)(4)四个句子作出了判断,(5)(6)两个句子没有作出判断.师:是的,前四个句子作出了判断.像这样的句子,叫做命题.你能否给“命题”下个定义呢?生:判断一件事情的句子,叫做命题.(教师板书:判断一件事情的句子,叫做命题)[设计意图]让学生初步认识命题,再引导学生以回答问题的形式对命题的定义进行总结,从感性思维上升到理性思维,培养学生自我学习的能力.思路二:师:给出命题的定义:命题是判断一件事情的句子.你能举出几个命题的例子吗?出示问题:(1)三条边对应相等的两个三角形一定全等;(2)锐角都小于直角;(3)美丽的天空;(4)所有的质数都是奇数;(5)过直线l外一点P作l的平行线;(6)如果明天是星期五,那么后天是星期六;(7)若a2=4,求a的值;(8)熊猫有翅膀.【学生活动】小组交流,对提出的问题作出判断,哪些是命题?哪些不是命题?展示交流:生1:(1)(2)(4)(6)都是命题,其余不是.生2:不对,(8)“熊猫有翅膀”也是命题.师:(质疑)你能说一说为什么吗?生:虽然这句话错了,但它作出了判断.只要是判断一件事情的句子就是命题,不论判断得对错.师:(给出肯定)说得好,谁还能列举出一些命题吗?生1:如果两条平行线被第三条直线所截,那么同位角相等.生2:我是一名学生.师:(作出判断)很好!想一想,定义是命题吗?任何一个命题都是定义吗?(学生思考一会儿,交流后回答)生:定义一定是命题,但命题不一定是定义.[设计意图]通过对命题与非命题的辨析,让学生理解命题的特点,进一步培养学生的能力.教师强化对命题特点的掌握,也为真、假命题的判断打下基础.最后老师提出的问题让学生将本课时所学的两个知识点进行联系与拓广.(2)条件与结论[过渡语]观察下列命题,这些命题有什么共同的结构特征?(1)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等;(2)如果a=b,那么a2=b2;(3)如果两个三角形中有两边和一角分别相等,那么这两个三角形全等.【学生活动】先独立思考,再结合教材第166页想一想的内容,小组内开展交流讨论“命题有什么结构特征”.展示交流成果:生1:都是用“如果……那么……”的形式叙述的.生2:每个命题都是由条件和结论两部分组成的.生3:条件是已知的事项,结论是由已知事项推断出的事项.生4:“如果”引出的部分是条件,“那么”引出的部分是结论.(教师板书:条件和结论)师:上题的条件、结论分别是什么?生1:(1)题的条件是一个三角形是等腰三角形,结论是这个三角形的两个底角相等.生2:(2)题的条件是a=b,结论是a2=b2.生3:(3)题的条件是两个三角形中有两边和一角分别相等,结论是这两个三角形全等.一般地,命题都可以写成“如果……那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.有些命题没有写成“如果……那么……”的形式,条件和结论不明显,如“同角的余角相等”.对于这样的命题,要经过分析才能找出条件和结论,也可以将它们改写成“如果……那么……”的形式.[设计意图]对命题的结构进行分析,让学生会区分一个命题的条件和结论.引导学生,当一个命题不好区分条件和结论时,可以先改写成“如果……那么……”的形式;但改写时不要机械地添上“如果”和“那么”,应适当地调整顺序或补充修饰词语,使改写后的语句通顺、完整.(3)、真命题与假命题[过渡语]命题的结论都是正确的吗?教师给出以下四个命题,并提问:(1)如果两个角相等,那么它们是对顶角;(2)如果a≠b,b≠c,那么a≠c;(3)全等三角形的面积相等;(4)三角形三个内角的和等于180°.【学生活动】(1)指出命题的条件和结论;(2)命题中哪些是正确的?哪些是不正确的?你怎么知道它们是不正确的?在学生回答的基础上进行总结,给出真命题、假命题的概念,以及如何判断一个命题是假命题的方法——举出反例.总结:正确的命题称为真命题,不正确的命题称为假命题.要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例.(教师板书:真命题、假命题、反例)[设计意图]学生在判断命题的正误时主要依据过去的经验,教师可进一步追问,对于一个不正确的命题,还能怎样判断其错误呢?教师应让学生充分表达自己的判断方法,进而引导学生体会:要说明一个命题是假命题,通常举出一个反例就可以了.[知识拓展]1.在定义中,要提示该事物与其他事物的本质属性的区别.2.根据命题的定义可知只要是对一件事情作出判断的句子都是命题,而不论这个判断正确与否.3.很多情况下,命题的形式并不是“如果……那么……”的形式,在把命题改写成“如果……那么……”的形式时,为保证语句的通畅和不改变原意,应对原句进行适当的修改或调整.三、课堂总结—四、课堂练习1.下列命题中,属于定义的是 ()A.两点确定一条直线B.同角或等角的余角相等C.两直线平行,内错角相等D.点到直线的距离是该点到这条直线的垂线段的长度解析:A,B,C分别是一个命题,但不是定义;D是一个定义.故选D.2.下列语句中,是命题的是()A.高高的山B.你好吗C.同位角相等D.在直线AB上取一点C解析:A,B,D只是对一件事情的叙述或询问,不是命题.故选C.3.下列语句中,不是命题的是 ()A.直角都相等B.如果ab=0,那么a=0C.不是对顶角的两个角相等D.连接两点A,B解析:A,B,C分别是命题;D不是命题,是描述性语言.故选D.4.下列命题是假命题的是 ()A.锐角小于90°B.平角等于两直角C.若a>b,则a2>b2D.若a2≠b2,则a≠b解析:A.根据锐角的定义,锐角小于90°,正确;B.平角等于180°,直角等于90°,因此平角等于两直角,正确;C.例如a=1,b=-3,1>-3,但12=1<(-3)2=9,错误;D.两个数的平方相等,则两个数相等或互为相反数,因此两个数的平方不相等,则这两个数既不相等也不互为相反数,正确.故选C.5.下列选项中,可以用来说明命题“若a2>1,则a>1”是假命题的反例是()A.a=-2B.a=-1C.a=1D.a=2解析:选项A,a=-2满足a2>1,而a=-2不满足a>1的要求,是原命题的反例;选项B和选项C,a=±1不满足a2>1,即不满足题设的条件,不是特例,故不是反例;选项D既满足a2>1,也满足a>1,不是反例.故选A.五、板书设计第1课时1.定义与命题2.条件和结论3.真命题、假命题、反例六、布置作业(1)、教材作业【必做题】教材随堂练习第2题.【选做题】教材习题7.2第3题.(2)、课后作业【基础巩固】1.下列语句中,是命题的为 ()A.延长线段CDB.相等的角是对顶角C.作平行线D.取线段AB的中点M2.命题“等角的补角相等”中的“等角的补角”是()A.条件部分B.是条件,也是结论C.结论部分D.不是条件,也不是结论3.下列说法不正确的是 ()A.“不等式2x>4的解集是x>2”的条件是“不等式2x>4”B.“如果x2=y2,那么x=y”的结论是“x=y”C.“平行四边形的对角线互相平分”的条件是“平行四边形”D.“对顶角相等”的条件是“对顶角相等”4.下列语句中:①平角都相等;②等于同一个角的两个角相等吗?③画两条相等的线段;④邻补角的平分线互相垂直;⑤两直线平行,同位角相等;⑥等腰三角形的两底角相等.其中是命题的有()A.3个B.4个C.5个D.6个5.下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短6.要说明命题“绝对值相等的两个实数相等”是假命题,你举的反例是.【能力提升】7.指出下列命题的条件和结论.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行;(3)等角的补角相等;(4)平行四边形的对边相等.【拓展探究】8.如图所示,下面有四个条件:(1)AE=AD,(2)AB=AC,(3)OB=OC,(4)∠B=∠C.请你写出一个由其中两个作为已知条件,另外两个中的一个作为结论的命题,并判断其真假.【答案与解析】1.B(解析:A.延长线段CD,是描述性语言,它不是命题,错误;B.相等的角是对顶角是命题,正确;C.作平行线,是描述性语言,它不是命题,错误;D.取线段AB的中点M,是描述性语言,它不是命题,错误.故选B.)2.A(解析:把命题“等角的补角相等”改写成“如果两个角是等角的补角,那么这两个角相等”.“等角的补角”是条件部分.故选A.)3.D(解析:“对顶角相等”的条件是“两个角是对顶角”,而不是“对顶角相等”,故D选项错误.故选D.)4.B(解析:①④⑤⑥是命题;②③不是命题.所以命题有4个.故选B.)5.C6.|-3|=|3|,但-3≠3(答案不唯一)7.解析:对于条件和结论不十分分明的命题,我们可以先把其改写成“如果……那么……”的形式,再找出条件和结论.由于命题的改法不唯一,所以它的条件和结论也不唯一,如命题(3),还可以改写成“如果两个角相等,那么这两个角的补角相等”.解:(1)条件:两条直线相交;结论:它们只有一个交点. (2)条件:两条直线被第三条直线所截,同旁内角互补;结论:两直线平行. (3)这个命题可以改写成“如果两个角是等角的补角,那么这两个角相等”.条件:两个角是等角的补角;结论:这两个角相等. (4)这个命题可以改写成“如果一个四边形是平行四边形,那么它的对边相等”.条件:一个四边形是平行四边形;结论:它的对边相等.8.解析:如果AE=AD,AB=AC,那么∠B=∠C.根据SAS得ΔABE≌ΔACD,推出∠B=∠C即可.解:如果AE=AD,AB=AC,那么∠B=∠C.在ΔABE和ΔACD中,所以ΔABE≌ΔACD,所以∠B=∠C.所以这是真命题.(答案不唯一)。
7.2定义与命题(解析)知识精讲 命题 定义 判断一件事情的语句,叫做命题.常写成“如果……,那么……”的形式.组成 题设 已知事项.一般地,用“如果”开始的部分是题设结论 由已知事项推出的未知事项. 一般地,用“那么”开始的部分是结论.真命题 判断为正确的命题称为真命题假命题判断为错误的命题称为假命题 互逆命题 如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题. 定理 经过受逻辑限制的证明为真的陈述,一般来说,在数学中,只有重要或有趣的陈述才叫定理.二.易错点:1.命题的概念,关键是要注意两点,其一必须是一个语句,其二必须存在判断关系,即“是”或“不是”. 2.命题是判断一件事情的句子,这个判断可能是正确的也可能是错误的,而不做判断的句子肯定不是命题.三点剖析一.考点:命题的判断.二.重难点:命题的概念和命题的构成.三.易错点:1.命题的概念,关键是要注意两点,其一必须是一个语句,其二必须存在判断关系,即“是”或“不是”. 2.命题是判断一件事情的句子,这个判断可能是正确的也可能是错误的,而不做判断的句子肯定不是命题.命题、定理、证明例题1、 下列语句中,不是命题的是( )A.内错角相等B.如果0a b +=,那么a 、b 互为相反数C.已知24a =,求a 的值D.玫瑰花是红的【答案】 C【解析】 A ,B ,D 都是判断一件事情的语句,并且由题设和结论构成.C 不是判断一件事情的语句. 例题2、 定理“同位角相等,两直线平行”的逆定理是_________________________________【答案】 两直线平行,同位角相等【解析】 将该命题的条件和结论互换就得到它的逆命题.同位角相等,两直线平行的逆定理为:两直线平行,同位角相等.例题3、 把命题“平行于同一直线的两直线平行”改写成“如果……,那么……”的形式__________________.【答案】 如果两条直线都与第三条直线平行,那么这两条直线互相平行【解析】 该题考查的是命题的书写.把命题“平行于同一直线的两直线平行”改写成“如果……,那么……”的形式为,如果两条直线都与第三条直线平行,那么这两条直线互相平行.例题4、 下列选项中,可用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A.15B.24C.42D.2k【答案】C【解析】A、15不是偶数,故本选项错误;B、24是8的倍数,故本选项错误;C、42是偶数但不是8的倍数,故本选项正确;D、2k是偶数,但不一定是8的倍数,故本选项错误;例题5、对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=40°,∠2=40°D.∠1=45°,∠2=45°【答案】D【解析】对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是∠1=∠2=45°.随练1、下列句子中是命题的是()A.宽阔的大海B.美丽的天空C.负数都小于零D.你的作业做完了吗?【答案】C【解析】命题是判断一件事情的句子,这个判断可能是正确的也可能是错误的,而不做判断的句子肯定不是命题.A、B、D不是判断句,没有做出判断,因此不是命题.随练2、把命题“对顶角相等”写成“如果那么”的形式______________________________________【答案】如果两个角是对顶角,那么两个角相等【解析】先找到命题的题设和结论,再写成“如果那么”的形式.∵原命题的条件是:“两个角是对顶角”,结论是:“这两个角相等”,∴命题“对顶角相等”写成“如果那么”的形式为:“如果两个角是对顶角,那么两个角相等”.随练3、“直角三角形有两个角是锐角”这个命题的逆命题是_________________________________,它是一个________命题(填“真”或“假”)【答案】有两个锐角的三角形是直角三角形;假【解析】逆命题就是原来的命题的题设和结论互换.“直角三角形有两个角是锐角”这个命题的逆命题是“有两个锐角的三角形是直角三角形”假设三角形一个角是30°,一个角是45°,有两个角是锐角,但不是直角三角形.故是假命题.随练4、“直角三角形有两个角是锐角”这个命题的逆命题是______,它是一个______命题.【答案】有两个锐角的三角形是直角三角形;假【解析】“直角三角形有两个角是锐角”这个命题的逆命题是“有两个锐角的三角形是直角三角形”假设三角形一个角是30°,一个角是45°,有两个角是锐角,但不是直角三角形.故是假命题.随练5、说明“如果x<2,那么x2<4”是假命题,可以举一个反例x的值为()A.﹣1B.﹣3C.0D.1.5【答案】B【解析】如果x<2,那么x2<4”是假命题,可以举一个反例为x=﹣3.因为x=﹣3满足条件,不满足x2<4.随练6、下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果22=,那么a ba b=【答案】C【解析】A:逆命题是同旁内角互补,两直线平行,成立;B:逆命题是如果两个数也相等,那么这两个数的绝对值相等,成立;C:逆命题是相等的角是对顶角,不成立;D:逆命题是如果a b=,那么22=,成立a b随练7、下列命题中是假命题的是()A.过已知直线上一点及该直线外一点的直线与已知直线必是相交线B.直角的补角是直角C.同旁内角互补D.从直线外一点向直线作线段,垂线段最短【答案】C【解析】A、由题意,两直线有公共点且不重合,必是相交线,是真命题;B、直角与直角的和是180度,所以直角的补角是直角,是真命题;C、两直线平行时,同旁内角才互补,是假命题;D、从直线外一点向直线作线段,垂线段最短,是真命题.课后习题1、下列语句中,不是命题的是()A.对顶角相等B.直角的补角是直角C.过直线l外一点A作直线AB⊥l于点BD.两个锐角的和是钝角【答案】C【解析】该题考查的是命题的概念.在数学中,能够判断真假的陈述句叫做命题.A是为真的陈述句,是真命题;B是为真的陈述句,是真命题;C是不能判断真假的陈述句,不是命题;D是为假的陈述句,是假命题;所以该题的答案是C.2、命题“对顶角相等”的“条件”是____.【答案】【解析】“对顶角相等”的“条件”是两个角是对顶角.故答案为:两个角是对顶角.3、“对顶角相等”的逆命题是______________________________,它是一个_______命题(填“真”或“假”)【答案】相等的角是对顶角;假【解析】“对顶角相等”的条件是:两个角是对顶角,结论是:这两个角相等逆命题是:相等的角是对顶角,它是假命题4、下列命题中,是真命题的是()A.同位角相等B.同旁内角互补C.内错角相等D.对顶角相等【答案】D【解析】A:只有两条平行线形成的同位角才相等,错误;B:只有两条平行线形成的同旁内角才互补,错误;C:只有两条平行线形成的内错角才相等,错误;D:对顶角相等,正确.5、下列说法正确的是()A.每个命题都有逆命题B.每个定理都有逆定理C.真命题的逆命题也是真命题D.假命题的逆命题是假命题【答案】A【解析】A.命题一定有逆命题,此说法是正确的,因为把一个命题的条件和结论互换就得到它的逆命题.故此选项正确;B.定理不一定有逆定理,如:对顶角相等是定理,逆定理是相等的角是对顶角,此逆定理是错误的,故此选项错误;C.真命题的逆命题不一定是真命题,如:对顶角相等,逆命题是相等的角是对顶角,此逆命题是错误的,故此选项错误;D.假命题的逆命题不一定是假命题,比如:相等的角是对顶角是假命题,但是其逆命题对顶角相等是真命题,故此选项错误.6、下列命题中,正确的命题有几个()①对顶角相等②相等的角是对顶角③不是对顶角的两个角就不相等④不相等的角不是对顶角A.1个B.2个C.3个D.0个【答案】B【解析】①符合对顶角的性质,故正确;②如等腰三角形的两底角相等但不是对顶角,故不正确;③如等腰三角形的两底角相等但不是对顶角,故不正确;④因为对顶角相等,所以不相等的角不是对顶角,故正确;7、对于命题“若a2=b2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3B.a=-3,b=-3C.a=3,b=-3D.a=-3,b=-2【答案】C【解析】当a=3,b=3时,a2=b2,而a=b成立,故A选项不符合题意;当a=-3,b=-3时,a2=b2,而a=b成立,故B选项不符合题意;当a=3,b=-3时,a2=b2,但a=b不成立,故C选项符合题意;当a=-3,b=-2时,a2=b2不成立,故D选项不符合题意;8、下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【答案】A【解析】A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.9、两个锐角之和是钝角,其条件是,结论是,这是一个命题(填“真”或“假”)【答案】两个锐角之和;钝角;假.【解析】两个锐角之和是钝角,其条件是两个锐角之和,结论是钝角,这是一个假命题;故答案为:两个锐角之和;钝角;假.10、命题“如果两个实数的平方相等,那么这两个实数相等”,其逆命题是.逆命题是命题(填“真”或“假”).【答案】“如果这两个实数相等,那么这两个实数的平方相等”;真.【解析】“如果两个实数的平方相等,那么这两个实数相等”,其逆命题是“如果这两个实数相等,那么这两个实数的平方相等”.逆命题是真命题;。
【关键字】八年级第2节定义与命题第1课时【学习目标】1、了解定义与命题的含义,会区分某些语句是不是命题。
2、能将命题改写成“如果……那么……”的形式。
【学习重点】判断某些语句是不是命题。
【学习过程】模块一预习反馈一、知识回顾1、概念:人类在认识过程中,把所感觉到的事物的一般的、本质的特征加以概括,就形成了概念。
2、判断有的判断和的判断。
2、自主学习1、阅读教材:第2节定义与命题(P165-P166)2、定义就是对和的含义加以描述,作出明确的规定。
3、如图,某地区境内有一条大河,大河的水流入许多小河中,图中A、B、C、D、E、F、G、H、I、J、K处均有一个化工厂,如果它们向河中排放污水,下游河流便会受到污染.(1)如果B处工厂排放污水,那么__________处便会受到污染;如果C处受到污染,那么__________处便受到污染;如果D处受到污染,那么__________处便受到污染。
(2)请你自编自练:如果____处水流受到污染,那么____处水流便受到污染.(3)如果环保人员在H处测得水质受到污染,那么你认为哪个工厂排放了污水?你是怎么想的?与同伴交流.4、判断下列语句是否是命题:①动物都需要水;②猴子是动物的一种;③玫瑰花是动物;④美丽的天空;⑤对应角都相等的两个三角形一定全等;⑥负数都小于零;⑦你的作业做完了吗?⑧所有的质数都是奇数;⑨作线段AB;⑩如果a>b,a>c,那么b=c。
命题有:。
方法归纳:判断一个语句是否为命题应抓住两点:①命题是叙述某件事情的句子;②必须对该件事情作出判断。
通常不完整的句子、祈使句、疑问句、感叹句、陈述句都不是命题。
【我的疑惑】模块二合作探究探究1:将下列命题写成“如果……,那么……”的形式。
(1)相等的两个角是对顶角;(2)不相交的两条直线是平行线;(3)经过一点有且只有一条直线垂直于已知直线;(4)直角都相等。
探究2:判断下列语句是否是命题:①熊猫没有翅膀;②对顶角相等;③两直线平行,内错角相等;④无论n为任意的自然数,式子n2-n+11的值都是质数;⑤任意一个三角形都有一个直角;⑥如果两条直线都和第三条直线平行,那么这两条直线也互相平行;⑦画线段AB=;⑧两条直线相交,有几个交点?⑨等于同一个角的两个角相等吗?⑩在射线OA上,任取两点B、C。