风速与风荷载的换算公式
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
垂直于建筑物表面上的风荷载标准值,应按下述公式计算:
当计算主要承重结构时,按式:wk=βzμsμzWo
当计算围护结构时,按式:wk=βgzμslμzWo
风荷载也称风的动压力,是空气流动对工程结构所产生的压力。
风荷载与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。
中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。
台风造成的风灾事故较多,影响范围也较大。
雷暴大风可能引起小范围内的风灾事故。
中国规定的基本风压0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速(即年最大风速分布的96.67%分位值,并按0= 2/2确定。
式中ρ为空气质量密度;v为风速)。
根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I型考虑。
基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。
东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。
青藏高原为风压较大区,主要由海拔高度较高所造成。
其他内陆地区风压都较小。
风速风速随时间不断变化(图1),在一定的时距Δt
内将风速分解为两部分:一部分是平均风速的稳定部分;另一部分是指风速的脉动部分。
为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。
风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。
脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。
脉动风的作用就是引起高层建筑的振动(简称风振)。
以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风.平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力.阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。
注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。
从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。
平均风相当于静力,不引起振动。
阵风相当于动力,引起振动但是引起的是一种随机振动。
也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。
横风向,既有周期性振动又有随机振动。
换句话说就是既有周期性风力又有脉动风.反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。
有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。
由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。
您好,根据相关标准,56.1m/s及以上的风统一划为17级风,因为诸如72m/s的风速事实上是极其罕见的了,并没有进一步分级;至于台风的分级,目前最高级别也就是超强台风,指的是中心附近最大风力大于16级(51m/s)的台风。
基本风压值与风力简单换算基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地0.35 7 10米0.40 8 10米0.50 9 10米0.60 10 10米0.70 11 10米0.85 12 10米我们知道,风压就是垂直于气流方向的平面所受到的风的压力。
根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v² (1)其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。
由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。
在(1)中使用这一关系,得到wp=0.5·r·v²/g (2)此式为标准风压公式。
在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m³]。
纬度为45°处的重力加速度g=9.8[m/s²], 我们得到wp=v²/1600 (3)此式为用风速估计风压的通用公式。
应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。
一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。
基本风压值与风力简单换算基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地0.35 7 10米0.40 8 10米0.50 9 10米0.60 10 10米0.70 11 10米0.85 12 10米* 以上换算数值根据国家建筑荷载规范进行计算,因风压换算需要空气密度、水汽压等数据,故此值仅供参考例题:根据气象部门资料计算基本风压。
如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。
[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。
这种压力的强度就是风荷载。
风的影响取决于建筑物的大小和形状。
为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。
方法1用通用公式计算风荷载1 了解通用公式。
风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。
[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。
2 得出受力面积 A。
它是承受风吹的二维面面积。
[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。
比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。
计算面积的公式取决于面的形状。
计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。
公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。
使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。
使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。
3 计算风压。
使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。
[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。
[5]这个公式是基于美国土木工程师协会的规范。
系数0.00256是根据空气密度和重力加速度的典型值计算得出的。
[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。
你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。
如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。
比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。
风荷载标准值计算公式风荷载标准值计算公式是指在建筑工程中,根据建筑物所在地的气象条件和建筑结构的特点,计算出建筑物所需承受的风荷载标准值的公式。
风荷载标准值是指建筑物在受到风力作用时所承受的最大风荷载,是设计和施工时必须考虑的重要参数之一。
风荷载标准值的准确计算对于保证建筑物的结构安全和稳定起着至关重要的作用。
在进行风荷载标准值的计算时,首先需要考虑的是建筑物所在地的气象条件。
气象条件包括当地的风速、风向、气压等因素。
这些因素将直接影响到建筑物所受到的风力作用,因此需要根据当地的气象数据来确定风荷载标准值的计算参数。
其次,需要考虑建筑物的结构特点。
建筑物的结构特点包括建筑物的高度、形状、材料等因素。
这些因素将决定建筑物在受到风力作用时所承受的风荷载的分布情况,因此需要根据建筑物的结构特点来确定风荷载标准值的计算公式。
一般来说,风荷载标准值的计算公式可以通过以下步骤来确定:1. 确定气象条件参数。
根据当地的气象数据,确定风速、风向、气压等参数。
2. 确定建筑物结构参数。
根据建筑物的高度、形状、材料等参数,确定建筑物在受到风力作用时的结构特点。
3. 计算风荷载标准值。
根据气象条件参数和建筑物结构参数,利用相应的风荷载标准值计算公式,计算出建筑物所需承受的风荷载标准值。
风荷载标准值计算公式的准确性和合理性对于建筑物的结构设计和施工具有重要的影响。
因此,在确定风荷载标准值计算公式时,需要充分考虑当地的气象条件和建筑物的结构特点,确保计算结果的准确性和可靠性。
在实际工程中,工程师通常会根据建筑物的具体情况和当地的气象条件,选择合适的风荷载标准值计算公式进行计算。
同时,还需要考虑到安全系数等因素,确保建筑物在受到风力作用时能够保持结构的稳定和安全。
总之,风荷载标准值计算公式是建筑工程中不可或缺的重要参数之一,其准确计算对于保证建筑物的结构安全和稳定具有至关重要的意义。
在实际工程中,工程师需要根据当地的气象条件和建筑物的结构特点,选择合适的计算公式进行计算,并确保计算结果的准确性和可靠性,以保证建筑物在受到风力作用时能够保持结构的稳定和安全。
美标风荷载计算一、引言风荷载是指风对建筑物或结构物产生的压力和力矩,是建筑设计中重要的考虑因素之一。
美国国家标准ANSI/ASCE 7-16《最小设计荷载标准》中对风荷载的计算方法进行了详细规定。
本文将介绍美标风荷载计算的相关内容。
二、风速区划根据ANSI/ASCE 7-16标准,美国境内被划分为多个风速区,每个区域的风速特征不同。
在进行风荷载计算时,首先需要确定所在区域的风速等级。
根据具体位置和地理特征,可以参考相关地方法规或地方气象局提供的数据,确定所在区域。
三、风荷载计算方法1. 风荷载的基本方程式风荷载计算的基本方程式为:F = 0.5 * ρ * V^2 * A,其中F为风荷载,ρ为空气密度,V为风速,A为受风面积。
2. 风荷载系数根据ANSI/ASCE 7-16标准,不同结构物有不同的风荷载系数。
常见的结构物包括建筑物、屋顶、桥梁等。
风荷载系数可以根据结构物的形状、高度、曝风程度等因素进行确定。
标准中提供了详细的计算方法和系数表格,可以根据具体情况进行选择和计算。
3. 风荷载的计算步骤(1) 确定设计基本风速(Vbasic)设计基本风速是根据地理位置和风速区划确定的。
可以参考地方法规或地方气象局提供的数据,或者使用相关的计算方法进行估算。
(2) 调整设计基本风速(Vz)设计基本风速需要根据所在高度进行修正。
标准中提供了修正系数表格,可以根据所在高度和地形条件进行修正。
(3) 计算设计风速(V)设计风速可以根据设计基本风速和风速增幅系数进行计算。
风速增幅系数考虑了地形条件、建筑物高度和结构物的类型等因素。
(4) 计算风荷载系数(C)风荷载系数根据结构物的形状、高度和曝风程度等因素进行选择和计算。
标准中提供了详细的系数表格和计算方法。
(5) 计算设计风荷载(F)根据风荷载的基本方程式以及设计风速和风荷载系数,可以计算出设计风荷载的大小。
四、风荷载的应用风荷载的计算结果可以用于建筑物的结构设计和材料选择,确保建筑物在风力作用下的安全性。
风速风压换算公式
风速和风压的定义
•风速是指单位时间内风通过某一点的速度,通常用米/秒(m/s)表示。
•风压是指单位面积上受到的气压,通常用帕斯卡(Pa)表示。
风速和风压的换算公式
1.风速转换为风压的公式为:
–风压(Pa)= × 空气密度(Kg/m³)× 风速²(m/s)2.风压转换为风速的公式为:
–风速(m/s)= √(2 × 风压(Pa) / 空气密度
(Kg/m³))
公式示例
示例1:风速转换为风压
假设空气密度为Kg/m³,风速为10 m/s,则根据公式可得:风压(Pa)= × × 10² = Pa
因此,风速为10 m/s时,风压为 Pa。
示例2:风压转换为风速
假设空气密度为Kg/m³,风压为100 Pa,则根据公式可得:风速(m/s)= √(2 × 100 / )≈ m/s
因此,风压为100 Pa时,风速约为 m/s。
总结
风速和风压之间可以通过公式进行换算。
风速转换为风压时,需要知道空气密度;风压转换为风速时,也需要知道空气密度。
根据给定的数据,可以利用相应的公式进行计算,得到风速和风压之间的对应关系。
这对于一些涉及风力学的工程设计和风洞实验等领域有着重要的应用价值。
风与我们的日常生活密不可分。
风荷载对工程建筑也影响巨大。
忽略了风,也就等于放弃了工程。
风压就是垂直于气流方向的平面所受到的风的压力风,是空气从气压大的地方向气压小的地方流动形成的。
从风的形成我们就可以看到风与压力是密不可分的!压力产生风,那么风压是什么呢?当风以一定的速度向前运动遇到阻塞时,将对阻塞物产生压力,即风压。
首先给出风压与风速的公式:W=-0.5pv2 +C 其中W:风压p空气质量密度V风速C常数。
当V=0时,W为最大风压,数值等于C。
日常生活中,我们所测得的风压为基本风压。
也就是按规定的地貌,高度,时距等量测量的风速所确定的风压为基本风压。
其中地貌为空旷平坦地貌,高度一般为10米,时距10分钟所测的风压为基本风压,风速即空气流动速度,单位一般为m/s;仅是某一位置的速度数值。
因为风速在不同位置数值可能有较大差异,且平均值难以计算。
摆放位置会影响他的风速,因为外界条件不同,风传播介质的粗糙程度不同。
距离不同距离测量到的风速也不会相同。
如果要全面了解风扇的性能,那么就要了解与风速密不可分的另一个因素风压。
风压即出风口与入风口间产生的压强差,单位一般为mm(cm)water column,即毫米(厘米)水柱(类似于衡量大气压的毫米汞柱,但由于压强差较小,一般以水柱为单位)。
风压是“强劲”程度的重要指标,如果将风量比作一把武器的挥击力量,那么风压就是这把武器的锋利程度。
风压直接的影响到送风距离。
我又想到了现在流行的流线型设计,很多交通工具都被设计成流线型,那么他的原理在哪呢?我查资料所得“流线型原是空气动力学名词,用来描述表面圆滑、线条流畅的物体形状,这种形状能减少物体在高速运动时的风阻。
但在工业设计中,它却成了一种象征速度和时代精神的造型语言而广为流传,冰箱、汽车的设计都受其影响。
这种外形能够符合空气动力学的原理,呈现出一种流线型,在运动中能够得到更大的速度。
流线型设计最早是用在20 世纪交通技术上。
60m风荷载标准值计算方法公式
风荷载是指建筑物所承受的风力作用力,是建筑结构设计中非常重要的考虑因素之一。
对于设计建筑物的工程师而言,了解如何计算60m高度下的风荷载标准值是至关重要的。
风荷载标准值的计算方法使用的是以下公式:
F = 0.613 * K * V^2 * G
其中,
F表示风荷载标准值(单位:kN/m^2);
K是地面粗糙度系数;
V是设计基本风速(单位:m/s);
G是高度修正系数。
首先,我们需要确定地面粗糙度系数K。
根据建筑物所在地区的地面情况,可以在相应的技术规范中找到K值的表格。
选择与建筑物所在地区相匹配的K值。
然后,需要确定设计基本风速V。
这个数值可以根据建筑所在地区的气象数据和相关规范来确定。
通常情况下,气象部门会提供基本风速的统计数据,可以根据所选地点的特殊气象情况进行适当调整。
最后,高度修正系数G需要考虑建筑物的高度。
正常情况下,建筑物高度在60m之内的话,可以使用固定的修正系数。
在大多数规范中,当建筑物高度不超过60m时,修正系数G为1。
将以上数值代入公式进行计算,即可得到60m高度下的风荷载标准值。
需要注意的是,在实际工程设计中,风荷载标准值通常还需要考虑其他因素,
如特殊地理环境、建筑物形状等。
因此,在进行具体的结构设计时,建议根据相应的规范和标准来确保计算的准确性。
综上所述,根据给定的任务名称,我们可以使用上述的计算公式来计算60m高度下的风荷载标准值。
但需要根据实际情况中的K值、V值和G值进行具体计算,并参考相应的规范和标准来保证设计的准确性和安全性。
我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-
压关系,风的动压为
wp=0.5•ro•v² (1)
其中wp为风压[kN/m²],ro为空气密度[kg/m³],v为风速[m/s]。
由于空气密度(ro)和重度(r)的关系为 r=ro•g, 因此有 ro=r/g。在(1)中使用这一关系,得
到
wp=0.5•r•v²/g (2)
此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度
r=0.01225 [kN/m³]。纬度为45°处的重力加速度g=9.8[m/s²], 我们得到
wp=v²/1600 (3)
此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高
度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,
其产生的风压在高原上比在平原地区小。
现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得到风
压wp=0.5 [kN/m瞉, 相当于每平方米广告牌承受约51千克力。
风力是指风吹到物体上所表现出的力量的大小。一般根据风吹到地面或水面的物体上所产生
的各种现象,把风力的大小分为13个等级,最小是0级,最大为12级。其口诀:
0级静风,风平浪静,烟往上冲。 1级软风,烟示方向,斜指天空。
2级轻风,人有感觉,树叶微动。 3级微风,树叶摇动,旗展风中。
4级和风,灰尘四起,纸片风送。 5级清风,塘水起波,小树摇动。
6级强风,举伞困难,电线嗡嗡。 7级疾风,迎风难行,大树鞠躬。
8级大风,折断树枝,江湖浪猛。 9级烈风,屋顶受损,吹毁烟囱。
此外,根据需要还可以将风力换算成所对应的风速,也就是单位时间内空气流动的距离,用
米/秒表示,其换算口诀供参考:二是二来一是一,三级三上加个一。四到九级不难算,级
数减二乘个三。十到十二不多见,牢记十级就好办。十级风速二十七,每加四来多一级。
即:一级风的风速等于1米/秒,二级风的风速等于2米/秒。三级风的风级上加1,其风速
等于4米/秒。四到九级在级数上减去2再乘3,就得到相应级别的风速。十至十二级的风
速算法是一样的,十级风速是27米/秒,在此基础上加4得十一级风速31米/秒,再加4
得十二级风速35米/秒。
级 现象 米/秒
1 烟能表示风向。 0.3~1.5
2 人面感觉有风,树叶微动。 1.6~3.3
3 树叶及微技摇动不息,旌旗展开。 3.4~5.4
4 能吹起地面灰尘和纸张,树的小枝摇动。 5.5~7.9
5 有叶的小树摇摆,内陆的水面有小波。 8.0一10.7
6 大树枝摇动,电线呼呼有声,举伞困难。 10.8~13.8
7 全树动摇,迎风步行感觉不便。 13.9~17.l
8 微枝折毁,人向前行感觉阻力甚大。 17.2~20.7
9 草房遭受破坏,大树枝可折断。 20.8~24.4
10 树木可被吹倒,,一般建筑物遭破坏。 24.5~28.4
11 陆上少见,大树可被吹倒,一般建筑物遭严重破坏。 28.5~32.6
12 陆上绝少,其催毁力极大。 32.7~36.9
13 37.0~41.4
14 41.5~46.1
15 46.2—50.9
16 51.0~56.0
17 56.1—61.2