基变换与坐标变换
- 格式:ppt
- 大小:666.00 KB
- 文档页数:24
基变换与坐标变换
基变换和坐标变换都是数学涉及的重要概念,有助于理解数学的精确分析和结论。
一、基变换是什么?
1. 定义:基变换是将一组向量从一种坐标系表示成另一种坐标系表示的过程。
2. 作用:基变换能够方便地从旧的坐标系转换到新的坐标系,以对对象进行更加精确的分析,节省计算资源和时间,更加有效地实现数学目标。
3. 应用:基变换通常应用在几何、微分几何和物理等多个领域。
二、坐标变换是什么?
1. 定义:坐标变换是指将一个点的坐标空间从一种(源)坐标系表示到另一种(目标)坐标系中的过程。
2. 作用:坐标变换减少了坐标转换的复杂性,帮助人们更容易理解空间坐标系统,有利于数学分析以及各种空间系统建模。
3. 应用:坐标变换广泛应用于航海、航空、地理信息系统、图形学等多种领域。
总结:基变换和坐标变换是数学中十分重要的概念,他们试图从一种坐标表示到另一种坐标表示,节省一些计算资源和时间,有利于更准
确的数学分析,并在几何、微分几何、物理、航海、航空、地理信息系统、图形学等领域得到广泛的应用。
§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。
基变换和坐标变换例题在线性代数中,基变换和坐标变换是非常重要的概念,它们在向量空间中的表示和描述中起着至关重要的作用。
这里将通过一些例题来详细解释和展示基变换和坐标变换的过程。
例题一假设存在一个二维向量v,其坐标表示为(3, 4),现有两个基底b1 = (1, 1)和b2 = (-1, 1)。
求向量v在基底b1和b2下的坐标表示。
解答:首先,我们需要确定向量v在基底b1和b2下的坐标表示。
对于向量v(3, 4),我们可以表示为v = 3 * b1 + 2 * b2。
这是因为v = x * b1 + y * b2,其中x和y分别是v在基底b1和b2下的坐标表示。
代入已知的b1 = (1, 1)和b2 = (-1, 1),我们可以得到: v = 3 * (1, 1) + 2 * (-1, 1) = (3, 3) + (-2, 2) = (1, 5)。
所以,向量v在基底b1和b2下的坐标表示分别为(1, 1)和(5, 1)。
例题二现在考虑一个三维向量v = (2, 1, -3),在标准基底下的坐标表示。
此外,有一个由向量a = (1, 1, 1),b = (0, 1, 1)和c = (1, 2, 3)组成的基底B。
求向量v在基底B下的坐标表示。
解答:首先,我们需要确定向量v在基底B下的坐标表示。
同样地,我们可以表示v = x * a + y * b + z * c,其中x、y和z分别是v在基底B下的坐标表示。
代入已知的a、b和c,我们可以得到: v = 2 * (1, 1, 1) + 1 * (0, 1, 1) + (-3) * (1, 2, 3) = (2, 2, 2) + (0, 1, 1) + (-3, -6, -9) = (-1, -3, -6)。
所以,向量v在基底B下的坐标表示为(-1, -3, -6)。
总结基变换和坐标变换是线性代数中的重要内容,它们帮助我们在不同基底之间转换向量的坐标表示。