09级矩阵与数值分析试题
- 格式:pdf
- 大小:161.54 KB
- 文档页数:7
姓名学号评分时间120分钟石家庄铁道学院 2009 级硕士研究生考试试卷参考答案及评分标准课程名称 数值分析 任课教师 王亚红一.(1-6题 2分/空;7-10题 3分/空)1. 3,32. 43. -34. )()(max x P x f bx a -≤≤5. )2)(1(!4)(),2(2)4(2--+-x x x f x x ξ 6. 33,3321=-=x x 7. 21<a8.Λ,2,1,0,211721=--=+k x x x x kkk k 9. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=323/22/3212L 10.1,...,2,1,1--=⎩⎨⎧-==+n n k x d x d x k k k kn n β 二(16分).1. 解 :⎢⎢⎢⎣⎡221213112⎥⎥⎥⎦⎤ =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-32/12/1112132/112/31------8分解,b Ly =得⎪⎪⎪⎭⎫⎝⎛=304y解,y Ux =得⎪⎪⎪⎭⎫ ⎝⎛=111x . -----------------------------------------------12分2.Jacobi 迭代法计算公式:初始向量)0(x⎪⎩⎪⎨⎧--=--=--=+++2/)25()236(2/)4()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x , Λ,2,1,0=k ------------------------------16分-----------------------------------7分)2)(1)(1(245)1)(1(65)1(233))()(](,,,[))(](,,[)](,[)()(21032101021001003--+--++++-=---+--+-+=x x x x x x x x x x x x x x x x f x x x x x x x f x x x x f x f x N--------------------10分2.(10分)根据最小二乘原理∑=--=302))((i i i y b ax I 最小,----2分有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00aI bI即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑i i i ii i x y y a b xxx 24----------------------8分即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛36915554a b ,解得b =1.2857,a =2.8286 拟合曲线2857.18286.2+=x y ----------------------10分 四(16分)解: 1.+----=))(())(()()(2010210x x x x x x x x x f x L ))(())(()(2101201x x x x x x x x x f ----+))(())(()(1202102x x x x x x x x x f ---- ------------------------------6分计算=)(0'x L ()()()()2104321x f x f x f h-+- ----------------9分 )()(0'0'x L x f ≈=()()()()2104321x f x f x f h-+- ------------------------------------------12分2.)()(),,(210x L x f x x x ≈∈,))()!1()(()()(1)1(2'++'='++x n f x L x f n n ωξ, x x n f n n 与ξωξ,))()!1()((1)1('+++有关, )()(),,(210x L x f x x x '≈'∈无法估计. )(,2x L x '不是插值节点时当的值不能作为)('x f 的近似值.-----------------16分 五. 解 1.(8分)Λ004.041.10=-I 21021-⨯≤------------------2分 2000011102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I ------------------------4分22111122102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I类推有 8210999910101021102110~10)1~10(110~--⨯=⨯⨯≤-=---=-I I I I I I-----------6分计算到10I 时,误差限为初始0I 的误差限的1010倍,每递推一次误差扩大10倍, 所以这个计算过程是不稳定的。
大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2005 年 12 月 12 日 试卷共 7 页一二三四五 六 七 总分 标准分 得 分装 一、填空(共30分,每空1.5分)(1)误差的来源主要有 、 、 、 .(2)要使 7459666.760=的近似值a 的相对误差限不超过310-,应至少取 位有效数字, 此时的近似值a = .订 (3)设⎪⎪⎭⎫⎝⎛--=4224A , 则1A = , 2A = , ∞A = , F A = ,谱半径)(A ρ= , 2-条件数)(2A cond = , 奇异值为 .线 (4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=-]1,0,1[f ,=-]3,1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:,其收敛阶 . (7)计算u u 5-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 . 为使计算保持绝对稳定性, 步长h 的取值范围 .二、(12分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解,并求解⎪⎪⎪⎭⎫ ⎝⎛=1085Ax .三、(6分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=622292221A 的QR 分解(Q 可表示为两个矩阵的乘积).四、(12分)根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则Jacobi 法和G-S 法均收敛.五、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数.27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .六、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法,1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.七、(18分)求]1,1[-上以1)(≡x ρ为权函数的标准正交多项式系)(0x ψ, )(1x ψ, )(2x ψ, 并由此求3x ])1,1[(-∈x 的二次最佳平方逼近多项式, 构造Gauss 型求积公式⎰-+≈111100)()()(x f A x f A dx x f , 并验证其代数精度.大 连 理 工 大 学课 程 名 称: 计算方法 试卷: A 考试形式: 闭卷 授课院(系): 数学系 考试日期: 2006 年 12 月 11 日 试卷共 8 页一二三四五 六 七 八 总分 标准分 得 分装订 一、填空(共30分,每空2分)线 (1)误差的来源主要有 .(2)按四舍五入的原则,取 69041575.422= 具有四位有效数字的近似值 a = ,则绝对误差界为 ,相对误差界为 .(3)矩阵算子范数M A ||||和谱半径)(A ρ的关系为: ,和 .(4)设44⨯∈CA ,特征值3,24321====λλλλ,特征值2是半单的,而特征值3是亏损的,则A 的Jordan 标准型=J.(5)已知x x x f 3)(2-=,则=]1,0[f ,=-]1,0,1[f .(6)求01)(3=-+=x x x f 在5.0=x 附近的根α的Newton 迭代公式是:.(7)使用Aitken 加速迭代格式)(1-=k k x x ϕ得到的Steffensen 迭代格式为:,对幂法数列}{k m 的加速公式为:.(8)1+n 点的Newton-Cotes 求积公式∑==nk k k n x f A f I 0)()(的最高代数精度为.(9)计算u u 7-=')10(≤≤t , 1)0(=u 的数值解的Euler 求解公式为 ,为使计算保持绝对稳定性, 步长h 的取值范围 .二、(10分) 设⎪⎪⎭⎫ ⎝⎛--=4224A , 计算1A ,2A ,∞A ,F A , 谱半径)(A ρ, 2-条件数)(2A cond , 和奇异值.三、(10分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=820251014A 的Doolittle 分解和Cholesky 分解.四、(4分)求Householder 变换矩阵将向量⎪⎪⎪⎭⎫ ⎝⎛=221x 化为向量⎪⎪⎪⎭⎫ ⎝⎛=003y .五、(12分)写出解线性方程组的Jacobi 法,G-S 法和超松弛(SOR )法的矩阵表示形式,并根据迭代法f Bx x k k +=+)()1(对任意)0(x 和f 均收敛的充要条件为1)(<B ρ, 证明若线性方程组b Ax =中的A 为严格对角占优矩阵, 则超松弛(SOR )法当松弛因子]1,0(∈ω时收敛.六、(12分)求满足下列插值条件的分段三次多项式(]0,3[-和]1,0[), 并验证它是不是三次样条函数. 27)3(-=-f , 8)2(-=-f , 1)1(-=-f , 0)0(=f , ]0,3[-∈x ;0)0(=f , 0)0(='f , 0)1(=f , 1)1(='f , ]1,0[∈x .七、(12分)证明区间],[b a 上关于权函数)(x ρ的Gauss 型求积公式∑==nk k k n x f A f I 0)()(中的系数⎰=bak k dx x l x A )()(ρ,其中)(x l k 为关于求积节点n x x x ,,10的n 次Lagrange 插值基函数,n k ,1,0=. 另求]1,1[-上以1)(≡x ρ为权函数的二次正交多项式)(2x ψ, 并由此构造Gauss型求积公式⎰-+≈111100)()()(x f A x f A dx x f .八、(10分)证明线性二步法])13()3[(4)1(212n n n n n f b f b hbu u b u +++=--++++, 当1-≠b 时为二阶方法, 1-=b 时为三阶方法, 并给出1-=b 时的局部截断误差主项.大连理工大学应用数学系数学与应用数学专业2005级试A 卷答案课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页一 二 三 四 五 六 七 八 九 十 总分标准分 42 8 15 15 15 5 / / / / 100 得 分一、填空(每一空2分,共42分)1.为了减少运算次数,应将表达式.543242161718141311681x x x x x x x x -+---++- 改写为()()()()()()()1816011314181716-+++---+-x x x x x x x x x ;2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dxe x ⎰-12求得的近似值为()15.02141--++e e , 用Simpson 公式求得的近似值为()15.04161--++e e 。
1)1)已知近似值246.00a =有5位有效数字,则a 的绝对误差界为 ,a 的相对误差界为 ;2)于0,2π⎡⎤⎢⎥⎣⎦,用y=a+bx 做()sin f x x =最佳平方逼近,则法方程组为: ;3)设71057⎛⎫= ⎪⎝⎭A ,1=A ,()1cond =A ;4)为了减少运算次数,应将表达式.425432168116171814131x x x x x x x x ++--+---改写为_ ______;5)已知(0)1,(1)3,(2)5,f f f ===则均差[0,1,2]f = ,对应于x 0=0插值基函数()0l x = ;6)此数值求积公式2110116x e dx e --⎛⎫≈ ⎪⎝⎭⎰的代数精度为: ;7) 求解1u u t e -'=-+-的隐式Euler 公式: ; 8) 用二分法求方程3()2510f x x x =--=在区间[1,3]内的根,进行一步后根所在区间为___ ___。
9)1225⎛⎫=⎪⎝⎭A 的TLL 分解为: ; 10) [0,1]上以1()lnx xρ=权函数的正交多项式()0x φ= ,()1x φ= 。
11)0=x 是()10x f x x e =--=的根,则具有平方收敛的迭代公式为: 。
12)将向量=x 221⎛⎫⎪⎪ ⎪⎝⎭变换为向量=y ⎪⎪⎪⎭⎫ ⎝⎛003的正交矩阵H 为 ;姓名: 学号: 院系: 级 班装订线二、计算题1.(15分)如下求解初值问题00)(),,(u t u u t f u =='的线性二步法21(3)2n n n n hu u f f ++=++①确定出它的阶p 、局部截断误差主项和收敛性,求出其绝对稳定区间; ②给出上述方法求解方程:40u u '=-,1)0(=u ,的步长h 的取值范围。
2.(15分)确定0x ,0A ,1x ,1A 使得求积公式()()()1200111x f x dx A f x A f x -≈+⎰的代数精度m 达到最高,试问m 是多少?取()2xf x e -=,利用所求得的公式计算出数值解。
2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈ 6.016.044.001.0)412(01.0)448(=+=⨯++⨯-= 0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f ,0!4)(]4,3,2,1,0[)4(==ξff 三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰的代数精度.解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++= 1)(=x f 时:1110==⎰dx I1]00[121]2[21=-+=n I x x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I 4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ 52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛154153234520320320320221a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H ,解得 5,3=-=b a 因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈110)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -=得得Gauss 点: ,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A 解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈ Newton 迭代公式为1ln 112ln 1-+=----=+k k k k kk k k k x x x x x x x x x令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解. 解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛135152121137253125121211113112即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y 令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n nn n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。
姓名学号评分时间120分钟石家庄铁道学院 2009 级硕士研究生考试试卷参考答案及评分标准课程名称 数值分析 任课教师 王亚红一.(1-6题 2分/空;7-10题 3分/空)1. 3,32. 43. -34. )()(max x P x f bx a -≤≤5. )2)(1(!4)(),2(2)4(2--+-x x x f x x ξ 6. 33,3321=-=x x 7. 21<a8.Λ,2,1,0,211721=--=+k x x x x kkk k 9. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=323/22/3212L 10.1,...,2,1,1--=⎩⎨⎧-==+n n k x d x d x k k k kn n β 二(16分).1. 解 :⎢⎢⎢⎣⎡221213112⎥⎥⎥⎦⎤ =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-32/12/1112132/112/31------8分解,b Ly =得⎪⎪⎪⎭⎫⎝⎛=304y解,y Ux =得⎪⎪⎪⎭⎫ ⎝⎛=111x . -----------------------------------------------12分2.Jacobi 迭代法计算公式:初始向量)0(x⎪⎩⎪⎨⎧--=--=--=+++2/)25()236(2/)4()(2)(1)1(3)(3)(1)1(2)(3)(2)1(1k k k k k k k k k x x x x x x x x x , Λ,2,1,0=k ------------------------------16分-----------------------------------7分)2)(1)(1(245)1)(1(65)1(233))()(](,,,[))(](,,[)](,[)()(21032101021001003--+--++++-=---+--+-+=x x x x x x x x x x x x x x x x f x x x x x x x f x x x x f x f x N--------------------10分2.(10分)根据最小二乘原理∑=--=302))((i i i y b ax I 最小,----2分有⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00aI bI即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛∑∑∑∑∑i i i ii i x y y a b xxx 24----------------------8分即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛36915554a b ,解得b =1.2857,a =2.8286 拟合曲线2857.18286.2+=x y ----------------------10分 四(16分)解: 1.+----=))(())(()()(2010210x x x x x x x x x f x L ))(())(()(2101201x x x x x x x x x f ----+))(())(()(1202102x x x x x x x x x f ---- ------------------------------6分计算=)(0'x L ()()()()2104321x f x f x f h-+- ----------------9分 )()(0'0'x L x f ≈=()()()()2104321x f x f x f h-+- ------------------------------------------12分2.)()(),,(210x L x f x x x ≈∈,))()!1()(()()(1)1(2'++'='++x n f x L x f n n ωξ, x x n f n n 与ξωξ,))()!1()((1)1('+++有关, )()(),,(210x L x f x x x '≈'∈无法估计. )(,2x L x '不是插值节点时当的值不能作为)('x f 的近似值.-----------------16分 五. 解 1.(8分)Λ004.041.10=-I 21021-⨯≤------------------2分 2000011102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I ------------------------4分22111122102110)~(10)1~10(110~-⨯⨯≤-=---=-I I I I I I类推有 8210999910101021102110~10)1~10(110~--⨯=⨯⨯≤-=---=-I I I I I I-----------6分计算到10I 时,误差限为初始0I 的误差限的1010倍,每递推一次误差扩大10倍, 所以这个计算过程是不稳定的。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
《数值分析》I课程试题参考答案及评分标准(中文试卷)( A卷)适用专业年级:信息与计算科学07级 考试时间: 100分钟命题人:吕勇一、解------------------------------------------------------5分则插值多项式。
---------------------------------------- -------10分二、 证明设,以为节点的Lagrange插值多项式为 --3分余项为-----------------------------------------------------6分由于为线性函数,当时,。
--------------------------------9分则:,所以结论得证-------------------------------------------------10分三、证明 ----------------------------------------------------5分-------------------------8分 ---------------------------------------------------10分四、证明设则根据插值多项式原理-------------------------------------------------------------------------------------6分两端在上积分-------------------------------------------------------------10分五、解设,。
--------------------------------------------------------------------3分,---------------------------------------------------------------6分,。
太原科技大学硕士研究生2008/2009学年第1学期《数值分析》课程试卷一、填空题(每空6分,共30分)1、已知a 是积分⎰-102dx e x 的近似值,并且有四位有效数字,则a 的绝对误差限=)(a ε 2、设n 阶矩阵)(ij a A =的对角元),,2,1(0n i a ii =≠,令),,,(2211nn a a a diag D =。
若将A 分裂成)(1A D I D D A ---=,以其构造解线性方程组b Ax =的迭代公式为 。
3、求解初值问题1)0(,112=+='y yy 的欧拉公式为 。
4、若⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31,)1()1()1(2110,,)(233x c x b x a x x x x s 是三次样条函数,则=b 。
5、已知函数)(x f y =在2,0,1210===x x x 处的值分别为,4,2,1210===y y y 则经过点)4,2(),2,0(),1,1(-的Lagrange 插值多项式为 。
二、(10分)设A 为n 阶非奇异的上三角阵,试导出计算1-A 的元素的递推公式。
三、(15分)证明下列迭代公式产生的序列{}k x 收敛于a (0>a )并具有三阶收敛速度,,1,0,3)3(221=++=+k a x a x x x k k k k其中0x 充分接近a 。
四、(15分)已知Legendre 正交多项式)(x L n 有三项递推关系式:⎪⎪⎩⎪⎪⎨⎧=+-++===-+,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 试推导两点Gauss-Legendre 求积公式)()()(221111x f A x f A dx x f +≈⎰- 的求积系数和节点,并用此公式计算下列积分的近似值。
⎰-=2242dx e I x五、(15分)在区间[-1,1]上给定函数122)(23-++=x x x x f ,求其在{}2,,1x x Span =Φ中关于权函数1)(=x ρ的最佳平方逼近多项式。
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。