半导体物理学第一章1
- 格式:pdf
- 大小:1.22 MB
- 文档页数:39
第一章 1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。
答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。
当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。
组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。
2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。
答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。
4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。
5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。
6.从能带底到能带顶,晶体中电子的有效质量将如何变化?外场对电子的作用效果有什么不同;答:在能带底附近,电子的有效质量是正值,在能带顶附近,电子的有效质量是负值。
理论体系半导体物理学是固体物理学的一个分支固体物理学的理论基础:(1) 晶体学: 晶体周期结构的确定1669: 晶面角守恒律(Steno)1784: 有理指数定律和晶胞学说(Hauy)1848: 空间点阵学说(Bravais)1889-1891: 空间群理论(Federov和Schvenflies) 1912: 晶体X射线衍射实验(Laue)(2) 固体比热的理论: 初步的晶格动力学理论1907: 独立振子的量子理论(Einstein)1912: 连续介质中的弹性波的量子理论(Debye)1912: 周期结构中的弹性波(Born 和von Karman)(3) 金属导电的自由电子理论: Fermi 统计1897: 电子的发现(Thomson)1900: 金属电导和热传导的经典自由电子理论(Drude) 1924: 基于Fermi统计的自由电子理论(Pauli和Sommerfield) (4) 铁磁性研究:自旋量子理论1894: 测定铁磁--顺磁转变的临界温度(Curie)1907: 铁磁性相变的分子场理论(Weiss)1928: 基于局域电子自旋相互作用的铁磁性量子理论另外:电子衍射的动力学理论(Bethe)金属导电的能带理论(Bloch)基于能带理论的半导体物理(Wilson)标志: 1940年Seitz “固体的现代理论”凝聚态物理学凝聚态物理从微观角度出发,研究相互作用多粒子系统组成的凝聚态物质(固体和液体)的结构和动力学过程, 及其与宏观物理性质之间关系的一门科学.和固体物理相比, 凝聚态物理:(1) 研究对象日益扩大和复杂;(2) 基本概念和理论工具已大为丰富;(3) 作为固体物理学分支的金属物理, 半导体物理, 磁学, 低温物理, 电介质物理之间交叉日益密切;(4) 一些新的分支如无序系统物理学, 准晶物理学, 介观系统物理学, 团簇物理学被开拓和建立起来。
要讲授的内容:半导体的晶格结构和电子状态(第一章)杂质和缺陷能级(第二章)载流子的统计分布(第三章)载流子的散射及电导问题(第四章)非平衡载流子产生、复合及其运动规律(第五章)半导体的表面和界面-包括p-n结、金属和半导体的接触、半导体表面及MIS结构、异质结(第六~九章)第一章半导体中的电子状态§1.1 半导体的晶体结构和结合性质一、金刚石型结构和共价键硅和锗属于Ⅳ族元素(元素周期表)。