磨削裂纹的产生与防止
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
中频淬火凸轮轴磨削裂纹产生原因及对策林柏春魏国芳【摘要】对球墨铸铁中频淬火凸轮轴磨削裂纹产生的原因进行了分析。
认为磨削工艺不当,产生了过高的磨削热,使凸轮浅表层组织回火过度,硬度大幅下降,从而产生极大的拉应力是磨削裂纹产生的主要原因。
采取对策后取得了较满意的效果。
关键词:凸轮轴磨削热回火过度残余应力磨削裂纹Cause of Grinding Cracks on Medium FrequencyInduction Hardened Cam Shaft and CountermeasureLin Baichum,Wei Guofang (Changzhou Diesel Co.,Ltd.,Changzhou213002)【Abstract】The cause of the grinding crack on medium frequency induction hardened cam shaft made of spheroidal cast iron was analyzed.It was found that the grinding process was unsuitable,thus too much grinding heat was produced and near surface zone of the cam shaft was overtempered,which resulted in very high residual tensile stress and drop in hardness in this zone.Those are the main causes of the grindi gcracks.Proper countermeasures were adopted and quite satisfying effects were obtained.Key words:cam shaft,grinding heat,overtempering,residual stress,grinding cracks1 前言我厂S195柴油机凸轮轴材料为QT600-3(稀土-镁球墨铸铁),热处理技术要求:正火后珠光体量≥75%,碳化物+磷共晶总量<5%,凸轮表面中频淬火后硬度达到45~50HRC,淬硬层深度1.5~4.5mm,淬硬层表面组织3~6级。
磨床磨削裂纹的产生原因分析与对策分析磨削裂纹的产生原因,与磨削前各加工过程所产生的缺陷,如材料表层中存在网状碳化物、非金属夹杂、组织疏松、成分偏析、晶界上的淬火变形等有关;裂纹通常与烧伤同时出现。
当工件表层的残余拉应力超过材料的抗拉强度时,就会产生磨削裂纹。
磨削裂纹的产生原因和减小磨削裂纹的方法如下:1、正确选用砂轮,例如可采用颗粒较粗、较软、组织较疏松的砂轮;保证修整后砂轮的锋利。
2、保证磨削时的冷却条件,设法使冷却液能有效地渗透到工件的磨削区中。
3、合理选择磨削用量,例如提高工件的转速,采用较小的径向进给量等。
磨削时如果磨削工艺参数选择或操作不当,工件表面温度达到150~200度时表面因马氏体分解,体积缩小,而中心马氏体不收缩,使表层承受拉应力而开裂,产生的裂纹会与磨削方向垂直,裂纹相互平行。
当磨削温度在200度以上时,表面由于产生索氏体或托氏体,这时表层发生体积收缩,而中心则不收缩,使表层拉应力超过脆断抗力而出现龟裂现象。
4、工件表面渗层碳浓度过高,会使工件表面产生过多的残余奥氏体.从而容易导致产生烧伤和裂纹。
因此,表面碳浓度增加,则降低了磨削性能,一般表面碳浓度应控制在0.75%-0.95%范围以内。
5、碳化物分布应均匀,粒度平均直径不大于0.001m;碳化物形态应为球状、粉状或细点状沿网分布,不允许有网状或角状碳化物。
6、热处理时.表面或环境保护不当会产生表面氧化,这样在工件上就会产生一层薄的脱碳层,这层软的脱碳层会引起砂轮过载或过热,从而造成表面回火,工件磨削时容易出现裂纹。
7、如果冷却不充分,磨削时零件表面温度有时可能高达820~840度或更高,则由于磨削形成的热量足以使表面薄层重新奥氏体化,并再次淬火而形成淬火马氏体,表面形成二次淬火的金相组织。
此外,磨削形成的热量使零件表面温度升高极快,这种组织应力和热应力导致磨削表面出现磨削裂纹。
8、使用金刚滚轮修整砂轮的内滚道磨床加工的零件有裂纹,还与配置的金刚滚转速、转向、金刚石的粒度、磨损情况、修砂轮时电主轴的转速、修砂轮时与滚轮磨合停留的时间等因素有关。
技术讲座二磨削裂纹产生机理与防止措施1 磨削裂纹的特征磨削裂纹形状特别,仅发生在磨削面上,与淬火裂纹在宏观上观察明显不同,且磨削裂纹深度较浅。
较轻的磨削裂纹垂直于或接近垂直于磨削方向呈平行分布,称之为第Ⅰ类裂纹。
较严重的裂纹呈龟甲状,称之为第Ⅱ类裂纹,习惯上叫做龟裂。
其深度大致为0.03-0.20mm。
用酸浸蚀后裂纹更加明显易见。
2 磨削裂纹的产生机理磨削裂纹的产生皆由内部应力诱发所致,磨削裂纹产生的主要原因是磨削热引起的。
工件磨削时磨削接触区温度高达400℃,磨削接触点的温度更是高达800℃以上。
磨削热导致工件表面产生热应力和组织相变而引起体积变化的相变应力。
渗碳淬火钢的表面组织是高碳马氏体和一定数量的残余奥氏体,处于膨胀状态(未经回火处理尤为严重);磨削热尤其是砂轮和工件接触区的高热会迅速使接触区表面温度升高,当表面温度升高到100℃~200℃左右离开接触区被冷却液迅速冷却时,必然将产生收缩,这是第一次收缩。
这种收缩仅发生在表面,由于其基体马氏体仍处于膨胀状态,从而使表面层承受拉应力而产生微裂纹,这就是第Ⅰ类裂纹。
随着磨削加工的继续当表面温度升至300℃~400℃时,表面层发生相引起变体积缩小,导致表面再次产生收缩,从而产生第Ⅱ类裂纹。
由于马氏体的膨胀收缩是随着钢中含碳量的增加而增大,故渗碳淬火钢(高碳工具钢)表面产生磨削裂纹尤为严重和常见。
渗碳淬火工件表面的残余奥氏体,在磨削时受磨削热的影响即发生分解,逐渐转变为马氏体,这种新生的马氏体集中于表面,引起零件局部体积膨胀,加大了零件表面应力,导致磨削应力集中,继续磨削则容易加速磨削裂纹的产生;此外,新生的马氏体脆性较大,继续磨削也容易加速磨削裂纹的产生。
另一方面,在磨床上磨削工件时,对工件既是压力,又是拉力,助长了磨削裂纹的形成。
如果在磨削时冷却不充分,则由于磨削而产生的热量,足以使磨削表面薄层重新奥氏体化(727℃以上),随后再次淬火转变为淬火马氏体。
万方数据第5期周志雄等:陶瓷材料磨削裂纹成因分析一109一区时,作用其上的载荷也逐渐减少,在这个显微塑变及其产生的残余应力的作用下,沿径向裂纹的横向出现横向裂纹,并延伸至材料表面形成裂纹区的断裂从基本剥落【2]。
2.3疲劳裂纹的扩展动力对于弹塑性陶瓷材料而言,疲劳裂纹的扩展不是一个连续过程,而是一个钝化启裂与稳定扩展交替进行的过程。
疲劳裂纹的扩展,实际上是裂尖局部区域即断裂过程区内材料的不断分离。
因此,它首先必须满足切断裂尖原子或分子结合的条件,另外,裂纹的稳定扩展除受裂尖前缘局部条件控制外,还受裂尖前端耗散区能流的全局状态控制。
随着裂纹的扩展,一些输入能量转变成储存在弹性卸载区内的残余应力能;一些因发热和材料的再组织而被耗散;其余则转变为材料的表面能。
2.4磨削热裂纹的扩展动力由于陶瓷的散热能力差,即使磨削时使用冷却液进行冷却;磨削区的显微塑变和摩擦会在磨削表面引起很高的磨削温度。
由此在表面产生的热压应力为毋,,且有毋,=竺{掣。
当这p部分热影响区的表面冷却,不可恢复的表面塑性变形将产生残余拉应力∞r,以rm盯sr如果达到材料的断裂极限,磨削表面就产生热裂纹。
该微裂纹与磨痕方向没有确定的取向关系。
裂纹的主要形式有:表面尺寸较小,向次表面延伸较深的压痕效应;表面尺寸较大的细长网状热裂纹;沿晶粒扩展的晶界间隙裂纹;不连续显微塑变裂纹。
3实验结果及分析王西彬等在常用磨削用量条件下得到以下SEM观测结果【4】:3.12Y—PSz的磨削热裂纹(如图2)部分稳定相变增韧z曲:陶瓷2Y—PSZ的晶粒细小,含有较高的亚稳态四方相t’(c+£’含量达45%),具有良好的增韧效果,在实验陶瓷中断裂韧性‰值较大,强度盯s较高,磨削表面平整光滑,为典型的显微塑变磨削特征。
没有发现明显的径向裂纹和不连续显微塑变裂纹。
当磨削速度提高到30m/s时。
磨削温度升高,在光整的磨痕周围会出现如图所示的裂纹,是一种典型的磨削热裂纹。
整体硬质合金刀具磨削裂纹的原因分析及其工艺改进1 引言整体硬质合金刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。
在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。
而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整体硬质合金刀具表面的质量情况越来越受到重视。
众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。
这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。
这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。
因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。
2 整体硬质合金刀具磨削裂纹的原因分析1.整体硬质合金刀具的磨削加工特点硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。
硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。
因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。
一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。
磨削裂纹产生机理与防止措施简介:磨削加工在机械制造行业中广泛地被应用,经热处理淬火的碳素工具钢和渗碳淬火钢零件,在磨削时与磨削方向基本垂直的表面常常显现大量的较规定排列的裂纹——磨削裂纹,它不但影响零件的外观,更紧要的是还直接影响零件的质量。
一、磨削裂纹的产生机理磨削裂纹的产生是磨削热引起的,磨削时零件表面的温度可能高达820~840℃或更高。
淬火钢的组织是马氏体和肯定数量的残余奥氏体,处于膨胀状态(未经回火处理尤为关键字:刀具夹具切削铣削车削机床测量磨削加工在机械制造行业中广泛地被应用,经热处理淬火的碳素工具钢和渗碳淬火钢零件,在磨削时与磨削方向基本垂直的表面常常显现大量的较规定排列的裂纹——磨削裂纹,它不但影响零件的外观,更紧要的是还直接影响零件的质量。
一、磨削裂纹的产生机理磨削裂纹的产生是磨削热引起的,磨削时零件表面的温度可能高达820~840℃或更高。
淬火钢的组织是马氏体和肯定数量的残余奥氏体,处于膨胀状态(未经回火处理尤为严重)。
假如将其表面快速加热至100℃左右并快速冷却时,必定将产生收缩,这是第一次收缩。
这种收缩仅发生在表面,其基体仍处于膨胀状态,从而使表面层承受拉应力而产生微裂纹,这是第一种裂纹。
当温度升至300℃时,表面再次产生收缩,从而产生第二种裂纹。
马氏体的膨胀收缩随着钢中含碳量的加添而增大,故碳素工具钢和渗碳淬火钢产生磨削裂纹尤为严重。
淬火钢中的残余奥氏体,在磨削时受磨削热的影响即发生分解,渐渐变化为马氏体,这种新生的马氏体集中于表面,引起零件局部体积膨胀,加大了零件表面应力,导致磨削应力集中,连续磨削则简单加速磨削裂纹的产生;此外,新生的马氏体脆性较大,磨削也简单加速磨削裂纹的产生。
另一方面,在磨床上磨削工件时,对工件既是压力,又是拉力,助长了磨削裂纹的形成。
假如在磨削时冷却不充分,则由于磨削而产生的热量,足以使磨削表面薄层重新奥氏体化,随后再次淬火成为淬火马氏体。
因而使表面层产生附加的组织应力,再加上磨削所形成的热量使零件表面的温度上升极快,这种组织应力和热应力的迭加就可能导致磨削表面显现磨削裂纹。
轴承零件磨削烧伤和裂纹的鉴别、原因分析及预防一.概述轴承套圈在磨加工中,由于磨粒对工件的切削、刻划和摩擦作用,使金属表面产生塑性变形,由工件内部金属分子间相对位移产生内摩擦而发热;砂轮切削时,相对于工件的速度很高,与工件表面产生剧烈的外摩擦而发热,又因为每颗磨料的切削都是瞬间的,其热量生成也在瞬间,又不能及时传散,所以在磨削区域的瞬时温度较高,一般可达到500~1200℃,如果散热措施不好,很容易造成工件表面的烧伤,在工件的表层(一般有几十微米几百微米)出现变质层,破坏了工件表面的组织,甚至出现肉眼可见的严重的烧伤。
酸洗后烧伤呈黑色,这种烧伤产生的温度在回火温度以上到临界点Ac1之间,大约在200℃~740℃之间。
低于轴承钢的回火温度不会产生烧伤。
二次淬火烧伤又称“白烧伤”,冷酸洗后烧伤呈亮白色,这种烧伤产生的温度范围在钢的临界点Ac1以上。
磨削烧伤在金属表层会产生很大应力,因而在烧伤处有时会出现裂纹,这种裂纹成为磨削裂纹。
通常情况下,磨削裂纹非常细小,肉眼观察无法发现,必须采用专用仪器才能将其区分。
磨削烧伤对轴承寿命影响非常大,有数据表明,有烧伤的轴承工作寿命仅为几小时到几十小时,仅为设计寿命的10%左右。
所以鉴别烧伤和裂纹,并采取有效措施减少或避免磨削烧伤和裂纹就显得尤为重要。
1、磨削烧伤和磨削裂纹的几种鉴别方法1.1冷酸洗法鉴别磨削烧伤滚子磨削烧伤用冷酸洗法鉴别,见图1和图2。
由图1a)可见,滚子经冷酸洗后,外径有暗黑色宽带,这些宽带是由于工件在磨削时产生的高温回火烧伤,马氏体组织发生分解,析出碳化物,使金属表面不耐腐蚀。
图1b)是回火烧伤的金相图。
图2为滚子端面在磨削时产生的二次淬火烧伤(箭头所指的白亮区)。
这种烧伤温度已经超过钢的临界点Ac1,大约在800℃以上。
原来的马氏体组织被重新加热转变成奥氏体,随后快冷被淬火。
在白亮区边缘被黑色带包围,这层黑色区属于高温回火烧伤区。
a)滚子磨削高温回火烧伤b)套圈磨削高温烧伤组织图图1高温回火烧伤1.2用显组织和显微硬度鉴别磨削烧伤用显微组织鉴别磨削二次淬火烧伤见图3,。
钛合金的磨削烧伤和磨削裂纹钛合金的磨削烧伤是指在磨削过程中,钛合金材料表面出现的局部熔融、汽化或化学反应等现象。
这些烧伤不仅影响工件表面的完整性,还会降低其疲劳强度和耐腐蚀性能。
磨削烧伤的主要原因是磨削参数选择不当,如磨削速度过快、磨削力过大等。
工件材料表面存在杂质、锈蚀或氧化层等也会导致烧伤。
为了预防钛合金的磨削烧伤,可以采取以下措施:优化磨削参数:根据钛合金的特性和加工要求,合理选择磨削速度、进给速度和磨削深度等参数,以降低磨削热和磨削力。
加强工件前处理:去除工件表面杂质、锈蚀或氧化层,确保表面清洁度。
使用合适的磨料:选用具有高硬度、高热稳定性和优良磨削性能的磨料,以保证磨削效果和工件表面质量。
冷却液使用:采用有效的冷却液,降低磨削温度和减轻工件热损伤。
钛合金的磨削裂纹是指磨削过程中产生的微观裂纹。
这些裂纹通常在材料表层以下扩展,对其疲劳强度和耐腐蚀性能产生不利影响。
磨削裂纹的主要原因是磨削应力超过材料承受能力,导致微观结构发生变化或产生残余应力。
工件材料硬度不均、存在内应力或刀具材质不合适等因素也可能导致磨削裂纹。
为了预防钛合金的磨削裂纹,可以采取以下措施:选用合适的刀具材质:针对钛合金的特性,选用具有高硬度、高热稳定性和优良耐磨性的刀具材质,以减少刀具磨损和避免工件表面粗糙。
降低磨削应力:优化磨削参数,采用低磨削速度、小进给量和浅磨削深度等措施,减少磨削应力和工件热损伤。
工件装夹优化:确保工件装夹牢固、稳定,以减少加工过程中的振动和变形。
冷却液使用:采用有效的冷却液,降低磨削温度和减轻工件热损伤,避免因局部高温而产生的微观结构变化和残余应力。
去应力处理:通过适当的热处理或振动消除工件内部的残余应力,提高工件的抗裂性能。
在实际案例中,钛合金的磨削烧伤和磨削裂纹可能同时存在。
例如,某航空制造企业采用数控磨床加工钛合金叶片时,就曾遇到这两种问题。
通过分析症状、表现及诊断方法,工程师们发现磨削烧伤主要原因是磨削参数选择不当,而磨削裂纹主要是因为刀具材质不合适。
浅谈磨削裂纹的产生与防止
【摘要】淬火件尤其是渗碳淬火件磨削时常常出现磨削裂纹,它不但影响外观,还直接影响工件的质量。
通过长期的尝试与总结,本文将对磨削裂纹的产生及防止作出阐述,并对已出现的磨削裂纹提出行之有效的消除方法。
【关键词】淬火;磨削裂纹;预防措施
1.引言
磨削裂纹的形状很独特,一眼就可以看出,它与一般的淬火裂纹有明显不同,较轻的磨削裂纹呈垂直于磨削方向的平行线,称之为第一类裂纹。
较严重的磨削裂纹呈龟甲状,又叫龟裂或者第二类裂纹,其深度大致为0.05~0.2mm,当用酸腐蚀时,裂纹更明显可见,其另一个特点是,磨削时没有任何迹象,用磁力探伤也没有发现任何裂纹存在,它是在磨削过程结束以后才产生的。
2.正文
由于淬火钢的组织是马氏体+残余奥氏体,故处于膨胀状态(未经回火尤为严重),如果将其表面快速加热至100℃左右并迅速冷却时,必然将产生收缩,我们称之为第一次收缩,这种收缩只发生在表面,其基体仍处于原膨胀状态,从而使表面承受拉力而产生微裂纹,这就是第一类裂纹,当温度继续上升至约300℃时,表面再次产生收缩,从而产生第二类裂纹。
马氏体的膨胀收缩随着钢中含碳量的增加而增大,故碳素工具钢如t8~t12和渗碳淬火钢产生磨削裂纹尤为严重。
此外,淬火钢中
的残余奥氏体,因磨削热而马氏体化,而这种马氏体又集中于表面,从而加大了工件表面应力,由于继续对之进行磨削,故容易加速磨削裂纹的产生,这点应该注意。
再有,在磨床磨削时工件表面与砂轮接触,工件既受压力,又受拉力,使磨削表面上产生残余拉应力,这种应力也助长了磨削裂纹的产生。
3.防止措施
(1)热处理方面
从上面的分析可知,产生磨削裂纹的根源在于淬火的马氏体组织是一种膨胀状态,有应力存在,要减少和消除这种应力,应进行应力回火即淬火后应马上进行回火处理,为了防止第一类裂纹的产生,应在150℃~200℃左右回火,为了防止第二类磨削裂纹,则应在300℃左右回火,应该注意300℃的回火会使工件硬度下降。
回火时间必须在四小时以上,有时经一次回火后仍可能产生磨削裂纹,可进行二次回火或人工时效,这个方法非常有效。
如果零件硬度要求不高,建议在400℃以上回火,即调质处理,这时可不必担心出现磨削裂纹。
(2)磨削工艺方面
①磨削裂纹产生是因为磨削热所致,所以降低磨削热是解决磨削裂纹的关键,一般采用湿磨法。
但事实证明,无论如何注入冷却液都不可能同时进入磨削面,因而不能降低磨削热,习惯用的湿磨法,往往是出于安全感,便于强力磨削,但事实上却加大了磨削裂纹的
产生。
如果采用干磨,切削深度较浅(轻磨),可以减少磨削裂纹,这是因为磨削热较低而又无迅速冷却的缘故。
但应该指出,这种方法效果不十分明显,同时有粉灰飞扬,影响工作环境。
②为了降低磨削热,应选用粒度较粗、硬度较软的砂轮来磨削,如:gb36~46r2~r3a,但粒度太粗会影响工件得表面粗糙度,这点应注意。
③分粗精磨,即粗磨选用粒度较粗的软砂轮磨削,便于强力磨削,提高效率,然后再用粒度细的砂轮进行精磨(轻磨),也可以在一台磨床上实现粗精磨,这是一种比较理想的方法。
④刚出炉的工件,必须待工件自然冷却至常温后才能进行磨削,如果时间允许的情况下工件最好让其自然时效一至二个月,消除应力后再进行磨削,这也会收到良好的效果。
4.消除措施
因为磨削裂纹深度大致为0.05~0.2mm,当磨削裂纹产生时,我们可以进行如下措施补救:
第一步:数控铣床(数控车床)对裂纹所在表面精加工去量0.2mm (外圆单边0.1mm)
第二步:磨床继续加工,轻磨见光,再经探伤确认裂纹是否彻底去除。
5.结论
通过应用以上方法,我车间在加工剪刃等淬火件时,较为明显的加少了淬火裂纹的产生,降低了企业损失,提高了磨削效率。