平均变化率公式
- 格式:docx
- 大小:70.09 KB
- 文档页数:1
导数的概念及运算知识点一:函数的平均变化率(1)概念:函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x0+△x)-f(x0),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从到的平均变化率。
注意:①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,。
作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念:1.导数的定义:对函数,在点处给自变量x以增量,函数y相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)注意:①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数:如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数。
注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。
3.导数几何意义:(1)曲线的切线曲线上一点P(x0,y0)及其附近一点Q(x0+△x,y0+△y),经过点P、Q作曲线的割线PQ,其倾斜角为当点Q(x0+△x,y0+△y)沿曲线无限接近于点P(x0,y0),即△x→0时,割线PQ的极限位置直线PT叫做曲线在点P处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
即:。
导数的概念及运算1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义,会求曲线的切线方程. 3.能根据导数的定义,求一些简单函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.知识梳理 1.导数的概念(1)平均变化率: 函数y =f (x )从x 0到x 0+Δx 的平均变化率ΔyΔx= f x0+Δx -f x 0Δx.(2)函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率 li m Δx →0 ΔyΔx 通常称为f (x )在x =x 0处的导数,并记作f ′(x 0),即 f ′(x 0)=li m Δx →0f x 0+Δx -f x 0Δx.(3)函数f (x )的导函数如果函数y =f (x )在开区间(a ,b )内每一点都是可导的,就说f (x )在开区间(a ,b )内可导,其导数也是开区间(a ,b )内的函数,称作f (x )的导函数,记作 y ′或f ′(x ) .2. 导数的几何意义函数y =f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的 切线的斜率 .曲线在点P (x 0,f (x 0))处的切线方程是 y -f (x 0)=f ′(x 0)(x -x 0) . 3.导数的运算(1)基本初等函数的导数公式 ①C ′= 0 (C 为常数); ②(x n)′= nxn -1(n ∈Q );③(sin x )′= cos x ; ④(cos x )′= -sin x ; ⑤(a x)′= a xln a (a >0且a ≠1);⑥(e x )′= e x; ⑦(log a x )′=1x ln a(a >0且a ≠1); ⑧(ln x )′= 1x.(2)导数的运算法则 ①和差的导数[f (x )±g (x )]′= f ′(x )±g ′(x ) . ②积的导数[f (x )·g (x )]′= f ′(x )g (x )+f (x )g ′(x ) . ③商的导数 [f xg x]′= fx g x -f x gxg 2x(g (x )≠0).热身练习1.若f (x )=2x 2图象上一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx 等于(C)A .3+2ΔxB .4+ΔxC .4+2ΔxD .3+ΔxΔy =f (x +Δx )-f (x )=2(1+Δx )2-2=2[2Δx +(Δx )2],所以Δy Δx =4+2Δx .2.设函数f (x )可导,则lim Δx →0 f+Δx -f2Δx等于(C)A .f ′(1) B.2f ′(1) C.12f ′(1) D.f ′(2)因为f (x )可导,所以lim Δx →0f+Δx -f2Δx =12lim Δx →0 f +Δx -fΔx =12f ′(1). 3.下列求导运算中正确的是(B) A .(x +1x )′=1+1x2 B .(lg x )′=1x ln 10C .(ln x )′=xD .(x 2cos x )′=-2x sin x(x +1x )′=1-1x 2,故A 错;(ln x )′=1x,故C 错;(x 2cos x )′=2x cos x -x 2sin x ,D 错.4.(2018·全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为 2x -y -2=0 .因为y ′=2x,y ′| x =1=2,所以切线方程为y -0=2(x -1),即y =2x -2.5.(1)(2016·天津卷)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为 3 .(2)y =xx +1,则y ′x =2= 19.(1)因为f ′(x )=2e x+(2x +1)e x=(2x +3)e x ,所以f ′(0)=3e 0=3. (2)因为y ′=(x x +1)′=x x +-x x +x +2=1x +2,所以y ′x =2=1+2=19.导数的概念利用导数的定义求函数f (x )=1x +2的导数.因为Δy =1x +Δx +2-1x +2=-Δx x +Δx +x +,所以Δy Δx=-1x +Δx +x +,所以f ′(x )=li m Δx →0 ΔyΔx =li m Δx →0[-1x +Δx +x +]=-1x +x +=-1x +2.利用定义求导数的基本步骤: ①求函数的增量:Δy =f (x +Δx )-f (x ); ②求平均变化率:Δy Δx=fx +Δx -f xΔx;③取极限得导数:f ′(x )=li m Δx →0f x +Δx -f xΔx.1.设函数f (x )在x 0处可导,则li m Δx →0 f x 0-Δx -f x 0Δx等于(B)A .f ′(x 0)B .-f ′(x 0)C .f (x 0)D .-f (x 0)li m Δx →0f x 0-Δx -f x 0Δx=-li mΔx →0f [x 0+-Δx-f x 0-Δx=-f ′(x 0).导数的运算求下列函数的导数:(1)y =x 2sin x; (2)y =1+sin x 1-cos x.(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x . (2)y ′=+sin x-cos x -+sin x-cos x-cos x2=cos x-cos x -+sin xx-cos x2=cos x -sin x -1-cos x2.利用导数公式和运算法则求导数,是求导数的基本方法(称为公式法).用公式法求导数的关键是:认清函数式的结构特点,准确运用常用的导数公式.2.(1)(2018·天津卷)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为 e .(2)设y =1+cos x sin x ,则y ′π2= -1 .(1)因为f (x )=e xln x ,所以f ′(x )=e xln x +ex x,所以f ′(1)=e.(2)因为y ′=+cos x x -+cos x xsin 2x=-sin 2x -+cos x os x sin 2x=-1-cos xsin 2x, 所以y ′π2=-1.求切线方程(1)(2017·全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为____________________.(2)若曲线y =x ln x 存在斜率为2的切线,则该切线方程为________________.因为y′=2x-1x2,所以y′|x=1=1,即曲线在点(1,2)处的切线的斜率k=1,所以切线方程为y-2=x-1,即x-y+1=0.(2)因为y′=ln x+1,设切点为P(x0,y0),则y′x=x0=ln x0+1=2,所以x0=e,此时y0=x0ln x0=eln e=e,所以切点为(e,e).故所求切线方程为y-e=2(x-e),即2x-y-e=0.(1)x-y+1=0 (2)2x-y-e=0(1)求切线方程有如下三种类型:①已知切点(x0,y0),求切线方程;②已知切线的斜率k,求切线方程;③求过(x1,y1)的切线方程.其中①是基本类型,类型②和类型③都可转化为类型①进行处理.(2)三种类型的求解方法:类型①,利用y-f(x0)=f′(x0)(x-x0)直接求出切线方程.类型②,设出切点(x0,y0),再由k=f′(x0),再由(x0,y0)既在切线上,又在曲线上求解;类型③,先设出切点(x0,y0),利用k=f′(x0)及已知点(x1,y1)在切线上求解.3.(2018·广州市模拟)已知直线y=kx-2与曲线y=x ln x相切,则实数k的值为(D) A.ln 2 B.1C.1-ln 2 D.1+ln 2本题实质上是求曲线过点(0,-2)的切线问题,因为(0,-2)不是切点,可先设出切点,写出切线方程,再利用切线过(0,-2)得到所求切线方程.设切点为(x0,x0ln x0),因为y′=ln x+1,所以k=ln x0+1,所以切线方程为y-x0ln x0=(ln x0+1)(x-x0),因为切线过点(0,-2),所以-2-x0ln x0=-x0ln x0-x0,所以x0=2,所以k=ln 2+1.1.函数y=f(x)的导数实质上是“增量(改变量)之比的极限”,即f′(x)=li mΔx→0Δy Δx=li mΔx→0f x+Δx-f xΔx.2.关于函数的导数,要熟练掌握基本导数公式和求导的运算法则,一般要遵循先化简再求导的基本原则.3.导数f′(x0)的几何意义是曲线y=f(x)在点M(x0,f(x0))处切线的斜率,其切线方程为y-f(x0)=f′(x0)(x-x0).若设点(x0,y0)是切线l与曲线C的切点,则有如下结论:①f′(x0)是切线l的斜率;②点(x0,y0)在切线l上;③点(x0,y0)在曲线C上.导数在函数中的应用——单调性1.了解函数的单调性与其导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).知识梳理1.函数的单调性与导数的关系设函数y=f(x)在某个区间(a,b)内有导数.如果f′(x)>0,则f(x)在(a,b)上为增函数;如果f′(x)<0,则f(x)在(a,b)上为减函数.2.导数与函数单调性的关系设函数y=f(x)在某个区间(a,b)内可导,且f′(x)在(a,b)的任意子集内都不恒等于0.如果f (x )在区间(a ,b )内单调递增,则在(a ,b )内f ′(x ) ≥ 0恒成立; 如果f (x )在区间(a ,b )内单调递减,则在(a ,b )内f ′(x ) ≤ 0恒成立.热身练习1.“f ′(x )>0在(a ,b )上成立”是“f (x )在(a ,b )上单调递增”的(A) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件f ′(x )>0在(a ,b )上成立⇒f (x )在(a ,b )上单调递增;反之,不一定成立,如y =x 3在(-1,1)上单调递增,但在(-1,1)上f ′(x )=3x 2≥0.2.设f (x )=2x 2-x 3,则f (x )的单调递减区间是(D) A .(0,43) B .(43,+∞)C .(-∞,0)D .(-∞,0)和(43,+∞)f ′(x )=4x -3x 2<0⇒x <0或x >43.3.函数f (x )=(3-x 2)e x的单调递增区间是(D) A .(-∞,0) B .(0,+∞)C .(-∞,-3)和(1,+∞) D.(-3,1)因为f ′(x )=-2x e x+(3-x 2)e x =(-x 2-2x +3)e x ,令f ′(x )>0,得x 2+2x -3<0,解得-3<x <1.所以f (x )的单调递增区间为(-3,1).4.设定义在区间(a ,b )上的函数f (x ),其导函数f ′(x )的图象如右图所示,其中x 1,x 2,x 3,x 4是f ′(x )的零点且x 1<x 2<x 3<x 4.则(1)f (x )的增区间为 (a ,x 1),(x 2,x 4) ; (2)f (x )的减区间为 (x 1,x 2),(x 4,b ) .5.(2019·福建三明期中)函数f (x )=x 3-3bx +1在区间[1,2]上是减函数,则实数b 的取值范围为 [4,+∞) .因为f ′(x )=3x 2-3b ≤0,所以b ≥x 2,要使b ≥x 2在[1,2]上恒成立, 令g (x )=x 2,x ∈[1,2],当x ∈[1,2],1≤g (x )≤4,所以b ≥4.利用导数求函数的单调区间函数f (x )=x 2-2x -4ln x 的单调递增区间是____________.函数f (x )的定义域为(0,+∞). f ′(x )=2x -2-4x =2x 2-2x -4x,由f ′(x )>0,得x 2-x -2>0,解得x >2或x <-1(舍去). 所以f (x )的单调递增区间为(2,+∞).(2,+∞)求可导函数f (x )的单调区间的步骤: ①求函数f (x )的定义域; ②求导数f ′(x );③解不等式f ′(x )>0和f ′(x )<0;④确定函数y =f (x )的单调区间:使f ′(x )>0的x 的取值区间为增区间,使f ′(x )<0的x 的取值区间为减区间.1.(2017·全国卷Ⅱ节选)设函数f (x )=(1-x 2)e x.讨论f (x )的单调性.f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.已知函数的单调性求参数的范围(经典真题)若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是A .(-∞,-2]B .(-∞,-1]C .[2,+∞) D.[1,+∞)依题意得f ′(x )=k -1x≥0在(1,+∞)上恒成立,即k ≥1x在(1,+∞)上恒成立.令g (x )=1x,因为x >1,所以0<g (x )<1,所以k ≥1,即k 的取值范围为[1,+∞).D函数f (x )在(a ,b )上单调递增,可转化为f ′(x )≥0在该区间恒成立,从而转化为函数的最值(或值域)问题.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是(C)A .[-1,1]B .[-1,13]C .[-13,13]D .[-1,13](方法一)因为f (x )在(-∞,+∞) 单调递增,所以f ′(x )=1-23cos 2x +a cos x ≥0对x ∈(-∞,+∞)恒成立,即f ′(x )=-43cos 2x +a cos x +53≥0对x ∈(-∞,+∞)恒成立,令cos x =t ,-1≤t ≤1,则等价于:g (t )=-43t 2+at +53≥0对t ∈[-1,1]恒成立.等价于⎩⎪⎨⎪⎧g -,g ,即⎩⎪⎨⎪⎧-a +13≥0,a +13≥0,所以-13≤a ≤13.即a 的取值范围为[-13,13].(方法二:特殊值法)取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,因为f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增,排除A ,B ,D.故选C.利用导数求含参数的函数的单调区间已知f (x )=12x 2-a ln x (a ∈R ),求函数f (x )的单调区间.f (x )的定义域为(0,+∞),因为f ′(x )=x -a x =x 2-ax(x >0),当a ≤0时,f ′(x )≥0恒成立,所以函数f (x )的单调递增区间为(0,+∞). 当a >0时,令f ′(x )>0,得x >a . 令f ′(x )<0,得0<x <a .所以函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为(a ,+∞),单调递减区间为(0,a ).(1)当函数的解析式中含有参数时,如果参数对导函数的符号有影响或导数的零点是否在定义域内不确定时,要对参数进行分类讨论.(2)讨论时,首先要看f ′(x )的符号是否确定,再看f ′(x )的零点与定义域的关系. (3)画出导函数的示意图有助于确定单调性.3.(2017·全国卷Ⅲ节选)已知函数f (x )=ln x +ax 2+(2a +1)x .讨论f (x )的单调性.f (x )的定义域为(0,+∞),f ′(x )=1x+2ax +2a +1=x +ax +x.若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈(0,-12a )时,f ′(x )>0;当x ∈(-12a,+∞)时,f ′(x )<0.故f (x )在(0,-12a )上单调递增,在(-12a,+∞)上单调递减.(1)求f(x)的定义域,并求导数f′(x);(2)解不等式f′(x)>0和f′(x)<0;(3)确定函数y=f(x)的单调区间:使f′(x)>0的x的取值区间为增区间,使f′(x)<0的x的取值区间为减区间.在求单调区间时,要注意如下两点:①要注意函数的定义域;②当求出函数的单调区间(如单调增区间)有多个时,不能把这些区间取并集.2.已知函数在区间上单调,求其中的参数时,要注意单调性与导数的关系的转化.即:(1)如果f(x)在区间[a,b]单调递增⇒f′(x)≥0在x∈[a,b]上恒成立;(2)如果f(x)在区间[a,b]单调递减⇒f′(x)≤0在x∈[a,b]上恒成立.3.处理含参数的单调性问题,实质是转化为含参数的不等式的解法问题,但要注意在函数的定义域内讨论.导数在函数中的应用——极值与最值1.掌握函数极值的定义及可导函数的极值点的必要条件和充分条件(导数在极值点两侧异号).2.会研究一些简单函数的极值.3.会利用导数求一些函数在给定区间上的最值.知识梳理1.函数的极值(1)函数极值的定义:设函数f(x)在点x0附近有定义,如果对x0附近的所有点,都有f(x)<f(x0) ,我们就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0);如果对x0附近的所有点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0).极大值与极小值统称为极值.①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.2.函数的最值(1)(最值定理)一般地,如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)一般地,求函数f(x)在[a,b]上的最大值与最小值的步骤如下:①求函数f(x)在(a,b)内的极值.②将f(x)的极值和端点的函数值比较,其中最大的一个为最大值;最小的一个为最小值.热身练习1.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(A)A.1个 B.2个C.3个 D.4个因为f′(x)与x轴有4个交点,即f′(x)=0有4个解,但仅左边第二个交点x=x0满足x<x0时,f′(x)<0;x>x0时,f′(x)>0,其他交点均不符合该条件.2.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则(C) A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件因为函数f(x)在x=x0处可导,所以若x=x0是f(x)的极值点,则f′(x0)=0,所以q⇒p,故p是q的必要条件;反之,以f (x )=x 3为例,f ′(0)=0,但x =0不是极值点.所以p q . 故p 不是q 的充分条件.3.(2016·四川卷)已知a 为函数f (x )=x 3-12x 的极小值点,则a =(D) A .-4 B .-2 C .4 D .2由题意得f ′(x )=3x 2-12,令f ′(x )=0得x =±2,所以当x <-2或x >2时,f ′(x )>0; 当-2<x <2时,f ′(x )<0,所以f (x )在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数. 所以f (x )在x =2处取得极小值,所以a =2.4.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是(C) A .1,-1 B .1,-17 C .3,-17 D .9,-19令f ′(x )=3x 2-3=0,得x =±1.f (1)=1-3+1=-1,f (-1)=-1+3+1=3, f (-3)=-17,f (0)=1.所以最大值为3,最小值为-17. 5.(2016·北京卷)函数f (x )=xx -1(x ≥2)的最大值为 2 .f ′(x )=x --x x -2=-1x -2,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数, 故f (x )max =f (2)=22-1=2.求函数的极值、最值求函数f (x )=13x 3-4x +4的极值.因为f ′(x )=x 2-4=(x -2)(x +2), 令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.(1)求可导函数f (x )的极值的步骤: ①确定函数的定义域,求导数f ′(x ); ②求方程f ′(x )=0的根;③检查f ′(x )在方程根左、右值的符号;④作出结论:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.(2)求可导函数f (x )在[a ,b ]上最值的步骤: ①求f (x )在(a ,b )内的极值;②将f (x )各极值与f (a ),f (b )比较,得出f (x )在[a ,b ]上的最值.1.求函数f (x )=13x 3-4x +4在[-3,3]上的最大值与最小值.由例1可知,在[-3,3]上, 当x =-2时,f (x )有极大值f (-2)=283;当x =2时,f (x )有极小值f (2)=-43.又f (-3)=7,f (3)=1,所以f (x )在[-3,3]上的最大值为283,最小值为-43.含参数的函数的极值的讨论已知函数f (x )=x -a ln x (a ∈R ),求函数f (x )的极值.由f ′(x )=1-a x =x -ax(x >0)可知(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,所以函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =a 处取得极小值a -a ln a ,无极大值.对于解析式中含有参数的函数求极值,有时需要分类讨论后解决问题.讨论的思路主要有:(1)参数是否影响f ′(x )的零点的存在; (2)参数是否影响f ′(x )不同零点的大小; (3)参数是否影响f ′(x )在零点左右的符号. 如果有影响,则要分类讨论.2.(2018·银川高三模拟节选)已知函数f (x )=ax -1-ln x (a ∈R ).讨论函数f (x )在定义域内的极值点的个数.f (x )的定义域为(0,+∞). f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )≤0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减,所以f (x )在(0,+∞)上没有极值点.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a.所以f (x )在(0,1a )上递减,在(1a,+∞)上递增,所以f (x )在x =1a处有极小值.所以当a ≤0时,f (x )在(0,+∞)上没有极值点, 当a >0时,f (x )在(0,+∞)上有一个极值点.含参数的函数的最值讨论已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最大值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )max =f (1)=-a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )max =f (2)=ln 2-2a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.所以f (x )max =f (1a)=-ln a -1.综上可知:当0<a ≤12时,f (x )max =ln 2-2a ;当12<a <1时,f (x )max =-ln a -1; 当a ≥1时,f (x )max =-a .(1)求函数的最值时,要先求函数y =f (x )在(a ,b )内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内使f ′(x )=0的点和区间端点的函数值,最后比较即可.(2)当函数f (x )中含有参数时,需要依据极值点存在的位置与所给区间的关系,对参数进行分类讨论.3.已知函数f (x )=ln x -ax (a >0),求函数f (x )在[1,2]上的最小值.f ′(x )=1x -a =1-axx(x >0),令f ′(x )=0,得x =1a.(1)当1a≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )min =f (2)=ln 2-2a .(2)当1a ≥2时,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )min =f (1)=-a .(3)当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,f (x )min =f (1)=-a ;当ln 2≤a <1时,f (x )min =f (2)=ln 2-2a . 综上可知:当0<a <ln 2时,函数f (x )min =-a ; 当a ≥ln 2时,函数f (x )min =ln 2-2a .1.求可导函数f(x)的极值的步骤:(1)确定f(x)的定义域,求导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根左、右值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.2.求可导函数f(x)在[a,b]上的最大值和最小值可按如下步骤进行:(1)求f(x)在(a,b)内的极值;(2)将f(x)的各极值与f(a),f(b)比较,确定f(x)的最大值和最小值.3.求含参数的极值,首先求定义域;然后令f′(x)=0,解出根,根据根是否在所给区间或定义域内进行参数讨论,并根据左右两边导函数的正负号,从而判断f(x)在这个根处取极值的情况.4.含参数的最值,首先按照极值点是否在所给区间对参数进行讨论,然后比较区间内的极值和端点值的大小.导数的综合应用——导数与不等式1.能够构造函数利用导数证明一些简单的不等式和解某些不等式.2.会将恒成立问题及存在性问题转化为最值问题进行求解.知识梳理1.如果不等式f(x)≥g(x),x∈[a,b]恒成立,则转化为函数φ(x)=f(x)-g(x)在x ∈[a,b]内的最小值≥0.(填“最小值”“最大值”“极小值”或“极大值”) 2.若f′(x)>0,x∈[a,b],且x0∈(a,b)有f(x0)=0,则f(x)>0的x的取值范围为(x0,b) ,f(x)<0的x的取值范围为(a,x0) .3.若f(x)>m在x∈[a,b]上恒成立,则函数f(x)在x∈[a,b]的最小值>m.(填“最小值”“最大值”“极小值”或“极大值”)若f (x )<m 在x ∈[a ,b ]上恒成立,则函数f (x )在x ∈[a ,b ]的 最大值 <m .(填“最小值”“最大值”“极小值”或“极大值”)4.若f (x )>m 在x ∈[a ,b ]有解,则函数f (x )在x ∈[a ,b ]的 最大值 >m .(填“最小值”“最大值”“极小值”或“极大值”)热身练习1.对于∀x ∈[0,+∞),则e x与1+x 的大小关系为(A) A .e x≥1+x B .e x<1+xC .e x=1+x D .e x与1+x 大小关系不确定令f (x )=e x-(1+x ),因为f ′(x )=e x-1,所以对∀x ∈[0,+∞),f ′(x )≥0,故f (x )在[0,+∞)上递增,故f (x )≥f (0)=0, 即e x≥1+x .2.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )>0,则必有(B) A .f (0)+f (2)<2f (1) B .f (0)+f (2)>2f (1) C .f (0)+f (2)=2f (1)D .f (0)+f (2)与2f (1)的大小不确定依题意,当x >1时,f ′(x )>0,f (x )在(1,+∞)上是增函数;当x <1时,f ′(x )<0,f (x )在(-∞,1)上是减函数, 故当x =1时,f (x )取最小值,所以f (0)>f (1),f (2)>f (1),所以f (0)+f (2)>2f (1).3.已知定义在R 上函数f (x )满足f (-x )=-f (x ),且x >0时,f ′(x )<0,则f (x )>0的解集为(A)A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)因为f (x )是定义在R 上的奇函数,所以f (0)=0,又x >0时,f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减,所以f (x )>0的解集为(-∞,0).4.若函数h (x )=2x -k x +k3在[1,+∞)上是增函数,则实数k 的取值范围是 [-2,+∞).因为h′(x)=2+kx2,且h(x)在[1,+∞)上单调递增,所以h′(x)=2+kx2≥0,所以k≥-2x2,要使k≥-2x2在[1,+∞)上恒成立,则只要k≥(-2x2)max,所以k≥-2.5.设f(x)=-x2+a,g(x)=2x.(1)若∀x∈[0,1],f(x)≥g(x),则实数a的取值范围为[3,+∞);(2)若∃x∈[0,1],f(x)≥g(x),则实数a的取值范围为[0,+∞).(1)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]min=F(1)=-3+a.因为“若∀x∈[0,1],f(x)≥g(x)”等价于“[F(x)]min≥0,x∈[0,1]”,所以-3+a≥0,解得a≥3.所以实数a的取值范围为[3,+∞).(2)F(x)=f(x)-g(x)=-x2-2x+a(x∈[0,1]).则[F(x)]max=F(0)=a.因为“若∃x∈[0,1],f(x)≥g(x)”等价于“[F(x)]max≥0,x∈[0,1]”,所以a≥0.所以实数a的取值范围为[0,+∞).利用导数解不等式若f(x)的定义域为R,f′(x)>2恒成立,f(-1)=2,则f(x)>2x+4的解集为A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)令g(x)=f(x)-2x-4,因为g′(x)=f′(x)-2>0,所以g(x)在(-∞,+∞)上是增函数,又g(-1)=f(-1)-2×(-1)-4=0,所以f(x)>2x+4⇔g(x)>g(-x>-1.所以f(x)>2x+4的解集为(-1,+∞).B利用导数解不等式的基本方法:(1)构造函数,利用导数研究其单调性;(2)寻找一个特殊的函数值;(3)根据函数的性质(主要是单调性,结合图象)得到不等式的解集.1.(2018·遂宁模拟)已知f(x)为定义在(-∞,0)上的可导函数,2f(x)+xf′(x)>x2恒成立,则不等式(x+2018)2f(x+2018)-4f(-2)>0的解集为(B)A.(-2020,0) B.(-∞,-2020)C.(-2016,0) D.(-∞,-2016)构造函数F(x)=x2f(x),x<0,当x<0时,F′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)],因为2f(x)+xf′(x)>x2≥0,所以F′(x)≤0,则F(x)在(-∞,0)上递减.又(x+2018)2f(x+2018)-4f(-2)>0可转化为(x+2018)2f(x+2018)>(-2)2f(-2),即F(x+2018)>F(-2),所以x+2018<-2,所以x<-2020.即原不等式的解集为(-∞,-2020).利用导数证明不等式已知函数f(x)=(1+x)e-2x.当x∈[0,1]时,求证:f(x)≤11+x.要证x∈[0,1]时,(1+x)e-2x≤11+x,只需证明e x≥x+1.记k(x)=e x-x-1,则k′(x)=e x-1,当x∈(0,1)时,k′(x)>0,因此,k(x)在[0,1]上是增函数,故k(x)≥k(0)=0,所以f(x)≤11+x,x∈[0,1].(1)证明f(x)>g(x)的步骤:①构造函数F(x)=f(x)-g(x);②研究F(x)的单调性或最值;③证明F (x )min >0.(2)注意:其中构造函数是将不等式问题转化为函数问题.为了利用导数研究函数的性质,常用分析法...将要证明的不等式进行适当变形或化简,然后构造相应的函数.2.(2018·全国卷Ⅰ节选)已知函数f (x )=a e x-ln x -1.证明:当a ≥1e时,f (x )≥0.当a ≥1e 时,f (x )≥exe -ln x -1.设g (x )=e x e -ln x -1,则g ′(x )=e xe -1x .当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e时,f (x )≥0.已知不等式恒成立求参数的范围已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x ∈[-3,3],都有f (x )≤g (x )成立,求实数c 的取值范围.f (x )≤g (x ) ⇔7x 2-28x -c ≤2x 3+4x 2-40x ⇔c ≥-2x 3+3x 2+12x , 所以原命题等价于c ≥-2x 3+3x 2+12x 在x ∈[-3,3]上恒成立. 令h (x )=-2x 3+3x 2+12x ,x ∈[-3,3],则c ≥h (x )max . 因为h ′(x )=-6x 2+6x +12=-6(x -2)(x +1),当x 变化时,h ′(x )和h (x )在[-3,3]上的变化情况如下表:单调递减单调递增 单调递减 易得h (x )max =h (-3)=45,故c ≥45.(1)已知不等式恒成立,求参数a 的范围,例如f (x )>g (x )在x ∈D 上恒成立,其主要方法是:①构造函数法:将不等式变形为f (x )-g (x )>0,构造函数F (x )=f (x )-g (x ),转化为F (x )min >0.②分离参数法:将不等式变为a >h (x )或a <h (x )在x ∈D 内恒成立,从而转化为a >h (x )max或a <h (x )min .(2)注意:①恒成立问题常转化为最值问题,要突出转化思想的运用;②“f (x )max ≤g (x )min ”是“f (x )≤g (x )”的一个充分不必要条件,分析不等式恒成立时,要注意不等号两边的式子中是否是有关联的变量,再采取相应的策略.1. 已知两个函数f (x )=7x 2-28x -c ,g (x )=2x 3+4x 2-40x .若∀x 1∈[-3,3],x 2∈[-3,3]都有f (x 1)≤g (x 2)成立,求实数c 的取值范围.此题与例3不同,例3中不等式两边的式子中均有相同的变化的未知量x ,故可先移项,直接进行转化;而此题中不等式两边的式子中的x 1,x 2相互独立,则等价于f (x 1)max ≤g (x 2)min.由∀x 1∈[-3,3],x 2∈[-3,3], 都有f (x 1)≤g (x 2)成立,得f (x 1)max ≤g (x 2)min . 因为f (x )=7x 2-28x -c =7(x -2)2-28-c , 当x 1∈[-3,3]时,f (x 1)max =f (-3)=147-c ;g (x )=2x 3+4x 2-40x ,g ′(x )=6x 2+8x -40=2(3x +10)(x -2),当x 变化时,g ′(x )和g (x )在[-3,3]上的变化情况如下表:单调递减单调递增易得g (x )min =g (2)=-48, 故147-c ≤-48,即c ≥195.1.利用导数证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数F (x )=f (x )-g(x),然后根据函数的单调性,或者函数的最值证明F(x)>0.其中要特别关注如下两点:(1)是直接构造F(x),还是适当变形化简后构造F(x),对解题的繁简有影响;(2)找到F(x)在什么地方可以等于零,往往是解决问题的一个突破口.2.利用导数解不等式的基本方法是构造函数,寻找一个函数的特殊值,通过研究函数的单调性,从而得出不等式的解集.3.处理已知不等式恒成立求参数范围的问题,要突出转化的思想,将其转化为函数的最值问题.已知f(x)>g(x)在x∈D上恒成立,求其中参数a的范围,其主要方法是:①构造函数法:将不等式变形为f(x)-g(x)>0,构造函数F(x)=f(x)-g(x),转化为F(x)min>0.②分离参数法:将不等式变为a>h(x)或a<h(x)在x∈D内恒成立,从而转化为a>h(x)max 或a<h(x)min.导数的综合应用——导数与方程1.能利用导数研究一般函数的单调性、极值与最值,获得对函数的整体认识.2.会利用导数研究一般函数的零点及其分布.知识梳理1.函数零点的有关知识(1)零点的概念:函数的零点是函数图象与x轴交点的横坐标.(2)几个常用结论:①f(x)有零点y=f(x)的图象与x轴有交点方程f(x)=0有实数解.②F(x)=f(x)-g(x)有零点y=f(x)与y=g(x)的图象有交点方程f(x)=g(x)有实数解.③零点存在定理:f (x )在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )内 至少有一 个零点.2.利用导数研究函数零点的方法(1)研究y =f (x )的图象,利用数形结合的思想求解. (2)研究方程有解的条件,利用函数与方程的思想求解.热身练习1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是(D)观察导函数f ′(x )的图象可知,f ′(x )的函数值从左到右依次为小于0,大于0,小于0,大于0,所以对应函数f (x )的增减性从左到右依次为减、增、减、增. 观察选项可知,排除A ,C.如图所示,f ′(x )有3个零点,从左到右依次设为x 1,x 2,x 3,且x 1,x 3是极小值点,x 2是极大值点,且x 2>0,故选项D 正确.2.函数f (x )=13x 3-4x +4的零点个数为(D)A .0B .1C .2D .3因为f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )=0,得x =±2.当x 变化时,f ′(x ),f (x )的变化情况如下表:单调递增单调递减单调递增由此可得到f (x )的大致图象(如下图).由图可知f (x )有3个零点.3.若方程13x 3-4x +4+a =0有3个不同的解,则a 的取值范围为(B)A .(-43,283)B .(-283,43)C .[-43,283]D .[-283,43]13x 3-4x +4+a =0有3个不同的解⇔f (x )=13x 3-4x +4与g (x )=-a 有3个不同的交点.利用第2题图可知,-43<-a <283,即-283<a <43.4.若函数g (x )=13x 3-4x +4+a 的图象与x 轴恰有两个公共点,则a =(B)A.283或-43 B .-283或43C .-283或283D .-43或43g (x )=13x 3-4x +4+a 与x 轴恰有两个公共点⇔方程13x 3-4x +4+a =0有2个不同的解⇔f (x )=13x 3-4x +4与φ(x )=-a 有2个不同的交点.利用第2题图可知,-a =-43或-a =283,所以a =-283或a =43.5.已知函数f (x )=e x-2x +a 有零点,则实数a 的取值范围是(C) A .(-∞,ln 2) B .(ln 2,+∞) C .(-∞,2ln 2-2] D .[2ln 2-2,+∞)(方法一)因为f′(x)=e x-2,令e x-2=0得,e x=2,所以x=ln 2,当x∈(-∞,ln 2)时,f′(x)<0,f(x)单调递减;当x∈(ln 2,+∞)时,f′(x)>0,f(x)单调递增,所以当x=ln 2时,f(x)取最小值f(x)min=2-2ln 2+a.要f(x)有零点,所以a≤2ln 2-2.(方法二)函数f(x)=e x-2x+a有零点,即关于x的方程e x-2x+a=0有实根,即方程a=2x-e x有实根.令g(x)=2x-e x(x∈R),则g′(x)=2-e x.当x<ln 2时,g′(x)>0;当x>ln 2时,g′(x)<0.所以当x=ln 2时,g(x)max=g(ln 2)=2ln 2-2,所以函数g(x)的值域为(-∞,2ln 2-2].所以a的取值范围为(-∞,2ln 2-2].利用导数研究三次函数的零点及其分布已知函数f(x)=x3-12x+a,其中a≥16,则f(x)的零点的个数是A.0或1 B.1或2C.2 D.3(方法一:从函数角度出发,研究f(x)的图象与x轴的交点)因为f′(x)=3x2-12,令f′(x)=3x2-12=0,得x=±2,当x变化时,f′(x),f(x)的变化情况如下表:单调递增单调递减单调递增由此可得到f(x)的大致图象(如图),由a≥16得,a+16>0,a-16≥0,当a=16时,f(x)的图象与x轴有2个交点;当a>16时,f(x)的图象与x轴只有1个交点.所以f(x)的零点个数为1或2.(方法二:从方程角度出发,利用函数与方程的思想)f(x)=x3-12x+a的零点个数⇔方程x3-12x=-a的解的个数⇔g(x)=x3-12x与h(x)=-a的交点个数.画出g(x)=x3-12x与h(x)=-a的图象.由g′(x)=3x2-12=0,得x=±2,当x变化时,g′(x),g(x)的变化情况如下表:单调递增单调递减单调递增所以g(x)的图象如右图所示:因为a≥16,所以y=-a≤-16.由图可知直线y=-a与y=x3-12x的图象有1个或2个交点.B利用导数研究函数的零点的基本思路: (1)研究y =f (x )的图象,利用数形结合的思想求解; (2)研究f (x )=0有解,利用函数与方程的思想求解.1.(经典真题)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围为(B)A .(2,+∞) B.(-∞,-2) C .(1,+∞) D.(-∞,-1)当a =0时,不符合题意.a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,得x 1=0,x 2=2a.若a >0,由图象知f (x )有负数零点,不符合题意.若a <0,由图象结合f (0)=1>0知,此时必有f (2a )>0,即a ×8a 3-3×4a2+1>0,化简得a 2>4,又a <0,所以a <-2.利用导数研究超越方程的根及其分布已知函数f (x )=x -a e x(a ∈R ),x ∈R .已知函数y =f (x )有两个零点x 1,x 2,且x 1<x 2,求a 的取值范围.由f (x )=x -a e x,可得f ′(x )=1-a e x. 下面分两种情况讨论:(1)a ≤0时,f ′(x )>0在R 上恒成立,可得f (x )在R 上单调递增,不合题意. (2)a >0时,由f ′(x )=0,得x =-ln a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:这时,f (x )的单调递增区间是(-∞,-ln a );单调递减区间是(-ln a ,+∞). 于是,“函数y =f (x )有两个零点”等价于如下条件同时成立: ①f (-ln a )>0;②存在s 1∈(-∞,-ln a ),满足f (s 1)<0; ③存在s 2∈(-ln a ,+∞),满足f (s 2)<0. 由f (-ln a )>0,即-ln a -1>0,解得0<a <e -1,而此时,取s 1=0,满足s 1∈(-∞,-ln a ),且f (s 1)=-a <0;而当x ∈(-ln a ,+∞)时,由于x →+∞时,e x 增长的速度远远大于x 的增长速度,所以一定存在s 2∈(-ln a ,+∞)满足f (s 2)<0.另法:取s 2=2a +ln 2a ,满足s 2∈(-ln a ,+∞),且f (s 2)=(2a -e 2a )+(ln 2a -e 2a)<0.所以a 的取值范围是(0,e -1).函数的零点是导数研究函数的性质的综合应用,要注意如下方面: (1)利用导数研究函数的单调性、极值、最值等性质; (2)数形结合思想方法的应用;(3)函数零点存在定理及根的分布知识的应用.2.(2018·广州模拟节选)已知函数f (x )=a ln x +x 2(a ≠0),若函数f (x )恰有一个零点,求实数a 的取值范围.函数f (x )的定义域为(0,+∞). 因为f (x )=a ln x +x 2,所以f ′(x )=a x +2x =2x 2+ax.①当a >0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增, 取x 0=e -1a ,则f (e -1a )=-1+(e -1a)2<0,(或:因为0<x 0<a 且x 0<1e 时,所以f (x 0) =a ln x 0 +x 20 < a ln x 0+a <a ln 1e +a =0.)因为f (1)=1,所以f (x 0)·f (1)<0,此时函数f (x )有一个零点.②当a <0时,令f ′(x )=0,解得x =-a2. 当0<x <-a 2时,f ′(x )<0,所以f (x )在(0,-a2)上单调递减, 当x >-a2时,f ′(x )>0,所以f (x )在(-a2,+∞)上单调递增. 要使函数f (x )有一个零点, 则f (-a2)=a ln -a 2-a2=0,即a =-2e. 综上所述,若函数f (x )恰有一个零点,则a =-2e 或a >0.利用导数研究两函数图象的交点问题已知函数f (x )=x +a x (a ∈R ),g (x )=ln x .若关于x 的方程g xx 2=f (x )-2e(e 为自然对数的底数)只有一个实数根,求a 的值.由g x x 2=f (x )-2e ,得ln x x 2=x +ax-2e , 化为ln x x=x 2-2e x +a .问题转化为函数h (x )=ln x x与m (x )=x 2-2e x +a 有一个交点时,求a 的值.由h (x )=ln x x ,得h ′(x )=1-ln x x2.令h ′(x )=0,得x =e. 当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0. 所以h (x )在(0,e)上递增,在(e ,+∞)上递减. 所以当x =e 时,函数h (x )取得最大值,其值为h (e)=1e .而函数m (x )=x 2-2e x +a =(x -e)2+a -e 2,当x =e 时,函数m (x )取得最小值,其值为m (e)=a -e 2.所以当a -e 2=1e ,即a =e 2+1e 时,方程g x x 2=f (x )-2e 只有一个实数根.(1)利用f (x )=g (x )的解⇔y =f (x )与y =g (x )的图象交点的横坐标,可将方程的解的问题转化为两函数图象的交点问题,从而可利用数形结合的思想方法进行求解.(2)在具体转化时,要注意对方程f (x )=g (x )尽量进行同解变形,变到两边的函数是熟悉的形式或较简单的形式,以便于对其图象特征进行研究.3.(经典真题)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2, 由题意得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2. 设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4. 由题意知1-k >0,当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g (-1)=k -1<0,g (0)=4,所以g (x )=0在(-∞,0]有唯一实根. 当x >0时,令h (x )=x 3-3x 2+4, 则g (x )=h (x )+(1-k )x >h (x ),h ′(x )=3x 2-6x =3x (x -2),h (x )在(0,2)上单调递减,在(2,+∞)上单调递增,所以g (x )>h (x )≥h (2)=0.所以g (x )=0在(0,+∞)没有实根.综上,g (x )=0在R 上有唯一实根,即曲线y =f (x )与直线y =kx -2只有一个交点.1.利用导数研究函数的零点及其零点分布问题的基本步骤: (1)构造函数,并确定定义域; (2)求导,确定单调区间及极值; (3)作出函数的草图;(4)根据草图直观判断函数的零点的情况或得到零点所满足的条件. 2.处理函数y =f (x )与y =g (x )的图象的交点问题,常用方法有: (1)数形结合,即分别作出两函数的图象,考察交点情况;。
导数——平均变化率与瞬时变化率本讲教育信息】⼀. 教学内容:导数——平均变化率与瞬时变化率⼆. 本周教学⽬标:1、了解导数概念的⼴阔背景,体会导数的思想及其内涵.2、通过函数图象直观理解导数的⼏何意义.三. 本周知识要点:(⼀)平均变化率1、情境:观察某市某天的⽓温变化图2、⼀般地,函数f(x)在区间[x1,x2]上的平均变化率平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.(⼆)瞬时变化率——导数1、曲线的切线如图,设曲线c是函数的图象,点是曲线 c 上⼀点作割线PQ,当点Q 沿着曲线c⽆限地趋近于点P,割线PQ⽆限地趋近于某⼀极限位置PT我们就把极限位置上的直线PT,叫做曲线c在点P 处的切线割线PQ的斜率为,即当时,⽆限趋近于点P的斜率.2、瞬时速度与瞬时加速度1)瞬时速度定义:运动物体经过某⼀时刻(某⼀位置)的速度,叫做瞬时速度.2)确定物体在某⼀点A处的瞬时速度的⽅法:要确定物体在某⼀点A处的瞬时速度,从A点起取⼀⼩段位移AA1,求出物体在这段位移上的平均速度,这个平均速度可以近似地表⽰物体经过A点的瞬时速度.当位移⾜够⼩时,物体在这段时间内的运动可认为是匀速的,所得的平均速度就等于物体经过A点的瞬时速度.我们现在已经了解了⼀些关于瞬时速度的知识,现在已经知道物体做直线运动时,它的运动规律⽤函数表⽰为s=s(t),也叫做物体的运动⽅程或位移公式,现在有两个时刻t0,t0+Δt,现在问从t0到t0+Δt这段时间内,物体的位移、平均速度各是:位移为Δs=s(t0+Δt)-s(t0)(Δt称时间增量)平均速度根据对瞬时速度的直观描述,当位移⾜够⼩,现在位移由时间t来表⽰,也就是说时间⾜够短时,平均速度就等于瞬时速度.现在是从t0到t0+Δt,这段时间是Δt. 时间Δt⾜够短,就是Δt⽆限趋近于0.当Δt→0时,位移的平均变化率⽆限趋近于⼀个常数,那么称这个常数为物体在t= t0的瞬时速度同样,计算运动物体速度的平均变化率,当Δt→0时,平均速度⽆限趋近于⼀个常数,那么这个常数为在t= t0时的瞬时加速度.3、导数3、导数设函数在(a,b)上有定义,.若⽆限趋近于0时,⽐值⽆限趋近于⼀个常数A,则称f(x)在x=处可导,并称该常数A为函数在处的导数,记作.⼏何意义是曲线上点()处的切线的斜率.导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每⼀个,都对应着⼀个确定的导数,从⽽构成了⼀个新的函数,称这个函数为函数在开区间内的导函数,简称导数,也可记作.【典型例题】例1、⽔经过虹吸管从容器甲中流向容器⼄,t s后容器甲中⽔的体积(单位:),计算第⼀个10s内V的平均变化率.解:在区间[0,10]上,体积V的平均变化率为即第⼀个10s内容器甲中⽔的体积的平均变化率为.例2、已知函数,,分别计算在区间[-3,-1],[0,5]上函数及的平均变化率.解:函数在[-3,-1]上的平均变化率为在[-3,-1]上的平均变化率为函数在[0,5]上的平均变化率为在[0,5]上的平均变化率为例3、已知函数,分别计算函数在区间[1,3],[1,2],[1,1.1],[1,1.001]上的平均变化率.解:函数在区间[1,3]上的平均变化率为函数在[1,2]上的平均变化率为函数在[1,1.1]上的平均变化率为函数在[1,1.001]上的平均变化率为例4、物体⾃由落体的运动⽅程s=s(t)=gt2,其中位移单位m,时间单位s,g=9.8 m/s2. 求t=3这⼀时段的速度.解:取⼀⼩段时间[3,3+Δt],位置改变量Δs=g(3+Δt)2-g·32=(6+Δt)Δt,平均速度g(6+Δt)当Δt⽆限趋于0时,⽆限趋于3g=29.4 m/s.例5、已知质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),(1)当t=2,Δt=0.01时,求.(1)当t=2,Δt=0.01时,求.(2)当t=2,Δt=0.001时,求.(3)求质点M在t=2时的瞬时速度.分析:Δs即位移的改变量,Δt即时间的改变量,即平均速度,当Δt越⼩,求出的越接近某时刻的速度.解:∵=4t+2Δt∴(1)当t=2,Δt=0.01时,=4×2+2×0.01=8.02 cm/s.(2)当t=2,Δt=0.001时,=4×2+2×0.001=8.002 cm/s.(3) Δt0,(4t+2Δt)=4t=4×2=8 cm/s例6、曲线的⽅程为y=x2+1,那么求此曲线在点P(1,2)处的切线的斜率,以及切线的⽅程.解:设Q(1+,2+),则割线PQ的斜率为:斜率为2∴切线的斜率为2.切线的⽅程为y-2=2(x-1),即y=2x.【模拟试题】1、若函数f(x)=2x2+1,图象上P(1,3)及邻近点Q(1+Δx,3+Δy),则=()A. 4B. 4ΔxC. 4+2ΔxD. 2Δx2、⼀直线运动的物体,从时间到时,物体的位移为,那么时,为()A. 从时间到时,物体的平均速度;B. 在时刻时该物体的瞬时速度;C. 当时间为时物体的速度;D. 从时间到时物体的平均速度3、已知曲线y=2x2上⼀点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线⽅程.4、求曲线y=x2+1在点P(-2,5)处的切线⽅程.5、求y=2x2+4x在点x=3处的导数.6、⼀球沿⼀斜⾯⾃由滚下,其运动⽅程是s=s(t)=t2(位移单位:m,时间单位:s),求⼩球在t=5时的瞬时速度7、质点M按规律s=2t2+3做直线运动(位移单位:cm,时间单位:s),求质点M在t=2时的瞬时速度.【试题答案】1、B2、B3、解:(1)时,k=∴点A处的切线的斜率为4.(2)点A处的切线⽅程是y-2=4(x-1)即y=4x-24、解:时,k=∴切线⽅程是y-5=-4(x+2),即y=-4x-3.5、解:Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,=2Δx+16∴时,y′|x=3=166、解:时,瞬时速度v=(10+Δt)=10 m/s.∴瞬时速度v=2t=2×5=10 m/s.7、解:时,瞬时速度v==(8+2Δt)=8cm/s。
《平均变化率》教案及教案说明教案说明:本教案旨在帮助学生理解平均变化率的概念,掌握平均变化率的计算方法,并能应用于实际问题中。
通过本教案的学习,学生将能够:1. 理解平均变化率的定义和意义;2. 掌握平均变化率的计算公式;3. 应用平均变化率解决实际问题。
教案内容:一、引言1. 引入话题:讨论物体速度的变化,引导学生思考如何描述速度的变化。
2. 引入平均变化率的概念:速度的变化可以用平均变化率来描述,平均变化率的定义是速度的变化量与时间的比值。
二、平均变化率的定义与计算1. 讲解平均变化率的定义:平均变化率是变化量与变化时间的比值,表示变化的快慢。
2. 给出平均变化率的计算公式:平均变化率= 变化量/ 变化时间。
3. 举例说明:假设一个物体在时间t1时的速度为v1,在时间t2时的速度为v2,速度的平均变化率为(v2 v1) / (t2 t1)。
三、平均变化率的应用1. 问题情境:给出一个物体在不间点的速度,要求学生计算平均变化率。
2. 学生分组讨论:学生分组讨论并计算给定情境下的平均变化率。
3. 集体讨论:各组汇报计算结果,集体讨论并解释结果的意义。
四、巩固练习1. 给出一些实际问题,要求学生计算平均变化率。
2. 学生独立完成练习,教师进行解答和讲解。
五、总结与反思1. 总结平均变化率的定义、计算方法和应用。
2. 学生反思学习过程中的困难和问题,提出疑问并进行解答。
教学资源:1. 教学PPT:用于展示平均变化率的定义、计算公式和应用实例。
2. 练习题:用于巩固学生对平均变化率的理解和应用能力。
教学评估:1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。
2. 练习题完成情况:检查学生完成练习题的正确性和解题思路。
3. 学生反馈:收集学生对教学内容的反馈和建议,以便进行教学改进。
六、实际情境分析1. 引入实际情境:讨论商品价格的变化,引导学生思考如何描述价格的变化。
2. 应用平均变化率的概念:商品价格的变化可以用平均变化率来描述,平均变化率的定义是价格的变化量与时间的比值。
常用计算公式表以下是一份常用计算公式表,包含了各个领域常见的公式,可以帮助读者快速查找和应用这些公式。
1. 数学公式1.1 代数公式- 二次方程求根公式:对于二次方程ax²+bx+c=0,其根可以通过公式x=(-b±√(b²-4ac))/(2a)求得。
- 四则运算法则:加法、减法、乘法和除法的基本法则,用于计算数值运算。
1.2 几何公式- 长方形的面积公式:面积 = 长 ×宽。
- 圆的面积公式:面积= πr²,其中r为半径。
- 三角形的面积公式:面积 = 0.5 ×底 ×高。
1.3 概率与统计公式- 概率公式:概率 = 事件发生次数 / 总次数。
- 标准差公式:标准差= √(每个数与平均数之差的平方和的均值)。
2. 物理公式2.1 牛顿力学- 牛顿第二定律:力 = 质量 ×加速度。
- 动能公式:动能 = 1/2 ×质量 ×速度²。
- 万有引力公式:F = G × (m1 × m2) / r²,其中F为两物体之间的引力,G为引力常数,m1和m2为物体的质量,r为它们之间的距离。
2.2 热力学- 热力学第一定律:ΔU = Q - W,其中ΔU为系统内能的变化,Q为热量,W为对外界的功。
- 热力学第二定律:熵增原理,熵在自然过程中总是增加的。
2.3 光学- 折射定律:n₁sinθ₁= n₂sinθ₂,其中n₁和n₂为两种介质的折射率,θ₁和θ₂为入射角和折射角。
3. 化学公式3.1 反应速率公式- 反应速率的平均变化率:Δ[R]/Δt = Δ[R]/Δt,其中[R]表示反应物浓度,t表示时间。
- 速率常数公式:速率 = k[A]ⁿ[B]ᵐ,其中k为速率常数,[A]和[B]为反应物浓度,ⁿ和ᵐ为反应物的反应级数。
3.2 pH计算公式- pH = -log[H⁺],其中[H⁺]表示酸性溶液中的氢离子浓度。
2020年高考数学(理)二轮专项复习专题04 导数导数的概念是微积分的核心概念之一,它有极其丰富的实际背景和广泛的应用.在本专题中,我们将复习导数的概念及其运算,体会导数的思想及其内涵;应用导数探索函数的单调性、极值等性质,感受导数在解决数学问题和实际问题中的作用.导数的相关问题主要围绕以下三个方面:导数的概念与运算,导数的应用,定积分与微积分基本定理.§4-1 导数概念与导数的运算【知识要点】1.导数概念:(1)平均变化率:对于函数y =f (x ),定义1212)()(x x x f x f --为函数y =f (x )从x 1到x 2的平均变化率.换言之,如果自变量x 在x 0处有增量∆x ,那么函数f (x )相应地有增量f (x 0+∆x )-f (x 0),则比值xx f x x f ∆-∆+)()(00就叫做函数y =f (x )从x 0到x 0+∆x 之间的平均变化率.(2)函数y =f (x )在x =x 0处的导数:函数y =f (x )在x =x 0处的瞬时变化率是xx f x x f x ∆-∆+→∆)()(lim000,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0),即xx f x x f x f x ∆-∆+='→∆)()(lim )(0000.(3)函数y =f (x )的导函数(导数):当x 变化时,f ′(x )是x 的一个函数,我们称它为函数y =f (x )的导函数(简称导数),即xx f x x f x f x ∆-∆+='→∆)()(lim)(0.2.导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,即k =f '(x 0). 3.导数的运算:(1)几种常见函数的导数: ①(C )′=0(C 为常数);②(x n )′=nx n -1(x >0,n ∈Q *); ③(sin x )′=cos x ; ④(cos x )′=-sin x ; ⑤(e x )′=e x ;⑥(a x )′=a x ln a (a >0,且a ≠1);⑦x x 1)(ln =; ⑧e xx a a log 1)(log =(a >0,且a ≠1).(2)导数的运算法则:①[u (x )±v (x )]′=u ′(x )±v ′(x );②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③)0)(()()()()()(])()([2=/'-'='⋅x v x v x v x u x v x u x v x u . (3)简单的复合函数(仅限于形如f (ax +b ))的导数:设函数y =f (u ),u =g (x ),则函数y =f (u )=f [g (x )]称为复合函数.其求导步骤是:x y '=u f '·x g ',其中u f '表示f 对u 求导,x g '表示g 对x 求导.f 对u 求导后应把u 换成g (x ). 【复习要求】1.了解导数概念的实际背景; 2.理解导数的几何意义;3.能根据导数定义求函数y =C ,y =x ,y =x 2,y =x 3,x y xy ==,1的导数; 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数; 5.理解简单复合函数(仅限于形如f (ax +b ))导数的求法. 【例题分析】例1 求下列函数的导数:(1)y =(x +1)(x 2-1);(2)11+-=x x y ; (3)y =sin2x ; (4)y =e x ·ln x .解:(1)方法一:y ′=(x +1)′(x 2-1)+(x +1)(x 2-1)′=x 2-1+(x +1)·2x =3x 2+2x -1.方法二:∵y =(x +1)(x 2-1)=x 3+x 2-x -1,∴y ′=(x 3+x 2-x -1)′=3x 2+2x -1.(2)方法一:⋅+=+--+=+'+--+'-='+-='222)1(2)1()1()1()1()1)(1()1()1()11(x x x x x x x x x x x y 方法二:∵12111.+-=+-=x x x y ,∴2)1(2)12()121('+='+-='+-=x x x y . (3)方法一:y'=(sin2x )'=(2sin x · cos x )'=2[(sin x )'·cos x +sin x ·(cos x )']=2(cos 2x -sin 2x )=2cos2x . 方法二:y'=(sin2x )'·(2x )'=cos2x ·2=2cos2x .(4))(ln e ln )e ('+'='⋅⋅x x y xx=xx xxx x x e )1(ln e ln e ⋅⋅+=+.【评析】理解和掌握求导法则和式子的结构特点是求导运算的前提条件.运用公式和求导法则求导数的基本步骤为:①分析函数y =f (x )的结构特征;②选择恰当的求导法则和导数公式求导数; ③化简整理结果.应注意:在可能的情况下,求导时应尽量减少使用乘法的求导法则,可在求导前利用代数、三角恒等变形等方法对函数式进行化简,然后再求导,这样可减少运算量.(如(1)(2)题的方法二较方法一简捷).对于(3),方法一是使用积的导数运算公式求解,即使用三角公式将sin2x 表示为sin x 和cos x 的乘积形式,然后求导数;方法二是从复合函数导数的角度求解.方法二较方法一简捷.对利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数要熟练、准确. 例2 (1)求曲线y =x 2在点(1,1)处的切线方程;(2)过点(1,-3)作曲线y =x 2的切线,求切线的方程.【分析】对于(1),根据导数的几何意义:函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,可求出切线的斜率,进而由直线方程的点斜式求得切线方程.对于(2),注意到点(1,-3)不在曲线y =x 2上,所以可设出切点,并通过导数的几何意义确定切点的坐标,进而求出切线方程.解:(1)曲线y =x 2在点(1,1)处的切线斜率为y ′=2x |x =1=2, 从而切线的方程为y -1=2(x -1),即2x -y -1=0.(2)设切点的坐标为),(20x x . 根据导数的几何意义知,切线的斜率为y '=2x |0x x ==2x 0,从而切线的方程为).(20020x x x x y -=- 因为这条切线过点(1,-3),所以有)1(23002x x x -=--, 整理得03202=--x x ,解得x 0=-1,或x 0=3. 从而切线的方程为y -1=-2(x +1),或y -9=6(x -3),即切线的方程为2x +y +1=0,或6x -y -9=0.【评析】用导数求曲线的切线方程,常依据的条件是:①函数y =f (x )在点x 0处的导数f '(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率, 即k =f '(x 0);②切点既在切线上又在曲线上,即切点的坐标同时满足切线与曲线的方程.例3设函数f (x )=ax 3+bx +c (a ≠0)为奇函数,其图象在点(1,f (1))处的切线与直线x -6y -7=0垂直,导函数f '(x )的最小值为-12.求a ,b ,c 的值. 【分析】本题考查函数的奇偶性、二次函数的最值、导数的几何意义等基础知识,以及推理能力和运算能力.题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、b 、c 的值. 解:∵f (x )为奇函数, ∴f (-x )=-f (x ), 即-ax 3-bx +c =-ax 3-bx -c , ∴c =0.∵f '(x )=3ax 2+b 的最小值为-12, ∴b =-12. 又直线x -6y -7=0的斜率为61,因此,f '(1)=3a +b =-6, ∴a =2. 综上,a =2,b =-12,c =0. 例4 已知a >0,函数a x x f -=1)(,x ∈(0,+∞).设ax 201<<,记曲线y =f (x )在点M (x 1,f (x 1))处的切线为l .(1)求l 的方程;(2)设l 与x 轴的交点是(x 2,0),证明:ax 102≤<. 【分析】对于(1),根据导数的几何意义,不难求出l 的方程;对于(2),涉及到不等式的证明,依题意求出用x 1表示的x 2后,将x 2视为x 1的函数,即x 2=g (x 1),结合要证明的结论进行推理. 解:(1)对f (x )求导数,得21)(x x f -=',由此得切线l 的方程为: )(1)1(1211x x x a x y --=--. (2)依题意,切线方程中令y =0,得211112122)1(ax x x a x x x -=+-=.由ax 201<<,及)2(2112112ax x ax x x -=-=,有x 2>0; 另一方面,aa x a ax x x 1)1(2212112+--=-=,从而有ax 102≤<,当且仅当a x 11=时,a x 12=.【评析】本题考查的重点是导数的概念和计算、导数的几何意义及不等式的证明.涉及的基础知识都比较基本,题目难度也不大,但把导数的相关知识与不等式等内容有机整合,具有一定新意,体现了导数作为工具分析和解决一些函数性质问题的方法.本题中的(2)在证明ax 102≤<时,还可用如下方法: ①作法,.0)1(1211212112≥-=+-=-ax aax x a x a②利用平均值不等式,aax ax a ax ax a ax x x 1)22(1)2)((1)2(21111112=-+≤-=-=.例5 设函数),(1)('Z ∈++=b a bx ax x f ,曲线y =f (x )在点(2,f (2))处的切线方程为y =3.(1)求f'(x )的解析式;(2)证明:曲线y =f (x )的图象是一个中心对称图形,并求其对称中心;(3)证明:曲线y =f (x )上任一点处的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 解:(1)2)(1)('b x a x f +-=,于是⎪⎪⎩⎪⎪⎨⎧=+-=++,0)2(1,12122b a b a 解得⎩⎨⎧-==,1,1b a 或⎪⎪⎩⎪⎪⎨⎧-==.38,49b a 因为a ,b ∈Z ,所以⋅-+=11)(x x x f(2)证明:已知函数y 1=x ,xy 12=都是奇函数, 所以函数xx x g 1)(+=也是奇函数,其图象是以原点为中心的中心对称图形. 而1111)(+-+-=x x x f , 可知,函数g (x )的图象按向量a =(1,1)平移,即得到函数f (x )的图象,故函数f (x )的图象是以点(1,1)为中心的中心对称图形.(3)证明:在曲线上任取一点)11,(000-+x x x . 由200)1(11)('--=x x f 知,过此点的切线方程为)]()1(11[110200020x x x x x x y ---=-+--. 令x =1得1100-+=x x y ,切线与直线x =1交点为)11,1(00-+x x ; 令y =x 得y =2x 0-1,切线与直线y =x 交点为(2x 0-1,2x 0-1).直线x =1与直线y =x 的交点为(1,1); 从而所围三角形的面积为2|22||12|21|112||111|2100000=--=----+⋅⋅x x x x x . 所以,所围三角形的面积为定值2. 练习4-1一、选择题:1.(tan x )′等于( ) (A)x2sin 1(B)x2sin 1-(C)x 2cos 1(D)x2cos 1-2.设f (x )=x ln x ,若f '(x 0)=2,则x 0等于( ) (A)e 2(B)e(C)22ln (D)ln23.函数y =ax 2+1的图象与直线y =x 相切,则a 等于( ) (A)81 (B)41 (C)21 (D)14.曲线x y 21e =在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )(A)2e 29 (B)4e 2(C)2e 2(D)e 2二、填空题: 5.f '(x )是1231)(3++=x x x f 的导函数,则f '(-1)=______. 6.若函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =x +2,则f (1)+f '(1)=______. 7.过原点作曲线y =e x 的切线,则切点的坐标为______;切线的斜率为______. 8.设函数f (x )=xe kx (k ≠0),则曲线y =f (x )在点(0,f (0))处的切线方程是______. 三、解答题:9.求下列函数的导数: (1)y =x -e x ; (2)y =x 3+cos x ; (3)y =(x +1)(x +2)(x +3);(4)⋅=xxy ln10.已知抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1),且该曲线在点B 处的切线方程为y =x -3,求a 、b 、c 的值.11.求曲线24121232-=-=x y x y 与在交点处的两条切线的夹角的大小.§4-2 导数的应用【知识要点】1.利用导数判断函数的单调性:(1)函数的单调性与其导函数的正负有如下关系:设函数f (x )在区间(a ,b )内可导, ①如果恒有f '(x )>0,那么函数f (x )在区间(a ,b )内单调递增; ②如果恒有f '(x )<0,那么函数f (x )在区间(a ,b )内单调递减.值得注意的是,若函数f (x )在区间(a ,b )内有f '(x )≥0(或f '(x )≤0),但其中只有有限个点使得f '(x )=0,则函数f (x )在区间(a ,b )内仍是增函数(或减函数).(2)一般地,如果一个函数在某一范围内的导数的绝对值越大,说明这个函数在这个范围内变化得快.这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就比较“平缓”.2.利用导数研究函数的极值:(1)设函数f (x )在点x 0附近有定义,如果对x 0附近所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,x 0是极大值点;如果对x 0附近所有的点,都有f (x )>f (x 0),就说f (x 0)是函数f (x )的一个极小值,x 0是极小值点.(2)需要注意,可导函数的极值点必是导数为零的点,但导数为零的点不一定是极值点.如y =x 3在x =0处的导数值为零,但x =0不是函数y =x 3的极值点.也就是说可导函数f (x )在x 0处的导数f '(x 0)=0是该函数在x 0处取得极值的必要但不充分条件.(3)函数f (x )在区间[a ,b ]上的最值:f (x )在区间[a ,b ]上的最大值(或最小值)是f (x )在区间(a ,b )内的极大值(或极小值)及f (a )、f (b )中的最大者(或最小者).(4)应注意,极值只是相对一点附近的局部性质,而最值是相对整个定义域内的整体性质. 【复习要求】1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次);3.会利用导数解决某些实际问题. 【例题分析】例1 求下列函数的单调区间: (1)f (x )=x 3-3x ; (2)f (x )=3x 2-2ln x ; (3)2)1(2)(--=x bx x f .解:(1)f (x )的定义域是R ,且f '(x )=3x 2-3,所以函数f (x )的减区间是(-1,1),增区间是(-∞,-1)和(1,+∞). (2)f (x )的定义域是(0,+∞),且xx x f 26)(-=', 令f ′(x )=0,得33,3321-==x x .列表分析如下:所以函数f (x )的减区间是)33,0(,增区间是),33(+∞. (3)f (x )的定义域为(-∞,1)∪(1,+∞),求导数得3342)1()1(2)1(222)1()1(2)2()1(2)(---=--+-=-----='⋅x x b x b x x x b x x x f .令f ′(x )=0,得x =b -1.①当b -1<1,即b <2时,f ′(x )的变化情况如下表:所以,当b <2时,函数f (x )在(-∞,b -1)上单调递减,在(b -1,1)上单调递增,在(1,+∞)上单调递减. ②当b -1>1,即b >2时,f ′(x )的变化情况如下表:所以,当b >2时,f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减. ③当b -1=1,即b =2时,12)(-=x x f ,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减. 【评析】求函数f (x )的单调区间的步骤是:①确定f (x )的定义域(这一步必不可少,单调区间是定义域的子集); ②计算导数f ′(x );③求出方程f ′(x )=0的根;④列表考察f ′(x )的符号,进而确定f (x )的单调区间(必要时要进行分类讨论). 例2求函数44313+-=x x y 的极值. 解:y ′=x 2-4=(x +2)(x -2),令y ′=0,解得x 1=-2,x 2=2. 列表分析如下:所以当x =-2时,y 有极大值3;当x =2时,y 有极小值3-. 【评析】求函数f (x )的极值的步骤是:①计算导数f ′(x );②求出方程f ′(x )=0的根;③列表考察f ′(x )=0的根左右值的符号:如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.例3 已知函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 解:(1)f ′(x )=-3x 2+6x +9.令f ′(x )<0,解得x <-1或x >3.所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).(2)因为f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,所以f (2)>f (-2).因为在(-1,3)上f ′(x )>0,所以f (x )在[-1,2]上单调递增,又由于f (x )在[-2,-1]上单调递减,因此f (2)和f (-1)分别是f (x )在区间[-2,2]上的最大值和最小值.于是有22+a =20,解得a =-2.故f (x )=-x 3+3x 2+9x -2,因此f (-1)=1+3-9-2=-7, 即函数f (x )在区间[-2,2]上的最小值为-7.【评析】求函数f (x )在闭区间[a ,b ]上最值的方法: ①计算导数f ′(x );②求出方程f ′(x )=0的根x 1,x 2,…;③比较函数值f (x 1),f (x 2),…及f (a )、f (b )的大小,其中的最大(小)者就是f (x )在闭区间[a ,b ]上最大(小)值. 例4 设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)【分析】本题给出的信息量较大,并且还都是抽象符号函数.解答时,首先要标出重要的已知条件,从这些条件入手,不断深入研究.由f ′(x )g (x )+f (x )g ′(x )>0你能产生什么联想?它和积的导数公式很类似,整理可得[f (x )g (x )]′>0.令h (x )=f (x )g (x ),则当x <0时,h (x )是增函数.再考虑奇偶性,函数h (x )是奇函数.还有一个已知条件g (-3)=0,进而可得h (-3)=f (-3)g (-3)=0,这样我们就可以画出函数h (x )的示意图,借助直观求解.答案:D.例5 求证:当x >0时,1+x <e x .分析:不等式两边都是关于x 的函数,且函数类型不同,故可考虑构造函数f (x )=1+x -e x ,通过研究函数f (x )的单调性来辅助证明不等式.证明:构造函数f (x )=1+x -e x ,则f ′(x )=1-e x . 当x >0时,有e x >1,从而f ′(x )=1-e x <0,所以函数f (x )=1+x -e x 在(0,+∞)上单调递减, 从而当x >0时,f (x )<f (0)=0, 即当x >0时,1+x <e x .【评析】通过构造函数,利用函数的单调性证明不等式是常用方法之一,而借助导数研究函数单调性辅助证明不等式突出了导数的工具性作用.例6用总长14.8 m 的钢条制作一个长方体容器的框架,如果容器底面的长比宽多0.5 m ,那么长和宽分别为多少时容器的容积最大?并求出它的最大容积.解:设容器底面长方形宽为x m ,则长为(x +0.5)m ,依题意,容器的高为x x x 22.3)]5.0(448.14[41-=+--.显然⎩⎨⎧>->,022.3,0x x ⇒0<x <1.6,即x 的取值范围是(0,1.6).记容器的容积为y m 3,则y =x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x x ∈(0,1.6). 对此函数求导得,y ′=-6x 2+4.4x +1.6.令y ′>0,解得0<x <1;令y ′<0,解得1<x <1.6.所以,当x =1时,y 取得最大值1.8,这时容器的长为1+0.5=1.5.答:容器底面的长为1.5m 、宽为1m 时,容器的容积最大,最大容积为1.8m 3.【评析】解决实际优化问题的关键在于建立数学模型(目标函数),通过把题目中的主要关系(等量和不等量关系)形式化,把实际问题抽象成数学问题,再选择适当的方法求解.例7 已知f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2. (1)求f (x )的解析式;(2)证明对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.【分析】对于(1)题目涉及到三个未知数,而题设中有三个独立的条件,因此,通过解方程组来确定参数a 、c 、d 的值;对于(2)可通过研究函数f (x )的最值加以解决.解:(1)由f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,知f (0)=0,解得d =0, 所以f (x )=ax 3+cx (a ≠0),f ′(x )=3ax 2+c (a ≠0).由当x =1时,f (x )取得极值-2,得f (1)=a +c =-2,且f ′(1)=3a +c =0,解得 a =1,c =-3, 所以f (x )=x 3-3x .(2)令f ′(x )>0,解得x <-1,或x >1;令f ′(x )<0,解得-1<x <1,从而函数f (x )在区间(-∞,-1)内为增函数,(-1,1)内为减函数,在(1,+∞)内为增函数. 故当x ∈[-1,1]时,f (x )的最大值是f (-1)=2,最小值是f (1)=-2, 所以,对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<2-(-2)=4.【评析】使用导数判断函数的单调性,进而解决极值(最值)问题是常用方法,较为简便. 例8 已知函数f (x )=x ln x . (1)求f (x )的最小值;(2)若对所有x ≥1都有f (x )≥ax -1,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .令f ′(x )>0,解得e 1>x ; 令f ′(x )<0,解得e 10<<x . 从而f (x )在)e 1,0(单调递减,在),e 1(+∞单调递增.所以,当e 1=x 时,f (x )取得最小值e1-.(2)解法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0, 故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1.②若a >1,方程g ′(x )=0的根为x 0=e a -1,此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数. 所以,x ∈(1,x 0)时,g (x )<g (1)=1-a <0, 即f (x )<ax -1,与题设f (x )≥ax -1相矛盾. 综上,满足条件的a 的取值范围是(-∞,1].解法二:依题意,得f (x )≥ax -1在[1,+∞)上恒成立,即不等式x x a 1ln +≤对于x ∈[1,+∞)恒成立. 令xx x g 1ln )(+=,则)11(111)(2x x x x x g -=-='.当x >1时,因为0)11(1)(>-='xx x g ,故g (x )是(1,+∞)上的增函数,所以g (x )的最小值是g (1)=1,从而a 的取值范围是(-∞,1]. 例9 已知函数)1ln()1(1)(-+-=x a x x f n,其中n ∈N *,a 为常数. (1)当n =2时,求函数f (x )的极值;(2)当a =1时,证明:对任意的正整数n ,当x ≥2时,有f (x )≤x -1. 解:(1)由已知得函数f (x )的定义域为{x |x >1},当n =2时,)1ln()1(1)(2-+-=x a x x f ,所以32)1()1(2)('x x a x f ---=. ①当a >0时,由f (x )=0得121,12121<-=>+=ax a x , 此时321)1())(()(x x x x x a x f ----='. 当x ∈(1,x 1)时,f ′(x )<0,f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0,f (x )单调递增. ②当a ≤0,f ′(x )<0恒成立,所以f (x )无极值. 综上所述,n =2时, 当a >0时,f (x )在ax 21+=处取得极小值,极小值为)2ln 1(2)21(a a a f +=+. 当a ≤0时,f (x )无极值.(2)证法一:因为a =1,所以)1ln()1(1)(-+-=x x x f n. 当n 为偶数时,令)1ln()1(11)(-----=x x x x g n,则)2(0)1(1211)1(1)(11≥>-+--=---+='++x x nx x x x n x g n n .所以当x ≥2时,g (x )单调递增,又g (2)=0, 因此0)2()1ln()1(11)(=≥-----=g x x x x g n恒成立,所以f (x )≤x -1成立.当n 为奇数时,要证f (x )≤x -1,由于0)1(1<-nx ,所以只需证ln(x -1)≤x -1, 令h (x )=x -1-ln(x -1), 则)2(012111)(≥≥--=--='x x x x x h . 所以,当x ≥2时,h (x )=x -1-ln(x -1)单调递增,又h (2)=1>0, 所以,当x ≥2时,恒有h (x )>0,即ln(x -1)<x -1成立. 综上所述,结论成立. 证法二:当a =1时,)1ln()1(1)(-+-=x x x f n.当x ≥2时,对任意的正整数n ,恒有1)1(1≤-nx ,故只需证明1+ln(x -1)≤x -1.令h (x )=x -1-[1+ln(x -1)]=x -2-ln(x -1),x ∈[2,+∞), 则12111)(--=--='x x x x h , 当x ≥2时,h ′(x )≥0,故h (x )在[2,+∞)上单调递增,因此当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1)≤x -1成立. 故当x ≥2时,有1)1ln()1(1-≤-+-x x x n, 即f (x )≤x -1.练习4-2一、选择题:1.函数y =1+3x -x 3有( ) (A)极小值-2,极大值2 (B)极小值-2,极大值3 (C)极小值-1,极大值1(D)极小值-1,极大值32.f '(x )是函数y =f (x )的导函数,y =f '(x )图象如图所示,则y =f (x )的图象最有可能是( )3.函数f (x )=ax 3-x 在R 上为减函数,则a 的取值范围是( ) (A)a <0(B)a ≤0(C)31<a (D)31≤a 4.设a ∈R ,若函数f (x )=e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是( ) (A)a <-1 (B)a >-1(C)e1-<a (D)e1->a 二、填空题:5.函数f (x )=x 3-3ax 2+2bx 在x =1处取得极小值-1,则a +b =______. 6.函数y =x (1-x 2)在[0,1]上的最大值为______.7.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上的最小值为-37,则实数a =______.8.有一块边长为6m 的正方形铁板,现从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器,为使其容积最大,截下的小正方形边长为______m . 三、解答题:9.已知函数f (x )=x 3+ax 2+bx (a ,b ∈R )的图象过点P (1,2),且在点P 处的切线斜率为8. (1)求a ,b 的值;(2)求函数f (x )的单调区间;(3)求函数f (x )在区间[-1,1]上的最大值与最小值.10.当)2π,0( x 时,证明:tan x >x .11.已知函数f (x )=e x -e -x .(1)证明:f (x )的导数f '(x )≥2;(2)若对所有x ≥0都有f (x )≥ax ,求a 的取值范围.专题04 导数参考答案练习4-1一、选择题:1.C 2.B 3.B 4.D二、填空题:5.3 6.4 7.(1,e);e 8.y =x 三、解答题:9.(1)y '=1-e x ;(2)y '=3x 2-sin x ;(3)y '=3x 2+12x +11;(4)2ln 1xxy -=10.略解:因为抛物线y =ax 2+bx +c 经过点A (1,1),B (2,-1)两点,所以a +b +c =1.① 4a +2b +c =-1.②因为y '=2ax +b ,所以y '|x =2=4a +b .故4a +b =1.③ 联立①、②、③,解得a =3,b =-11,c =9.11.解:由01622412122332=-+⇒⎪⎪⎩⎪⎪⎨⎧-=-=x x x y x y ,所以(x -2)(x 2+4x +8)=0,故x =2,所以两条曲线只有一个交点(2,0).对函数2212x y -=求导数,得y ′=-x , 从而曲线2212x y -=在点(2,0)处切线的斜率是-2.对函数2413-=x y 求导数,得243'x y =,从而曲线2413-=x y 在点(2,0)处切线的斜率是3.设两条切线的夹角为α ,则1|3)2(132|tan =⨯-+--=α,所以两条切线的夹角的大小是45°. 练习4-2一、选择题:1.D 2.C 3.B 4.A 二、填空题: 5.61-6.932 7.3 8.1三、解答题:9.解:(1)a =4,b =-3.(2)函数f (x )的单调增区间为(-∞,-3),),31(+∞;减区间为)31,3(-. (3)函数f (x )在[-1,1]上的最小值为2714-,最大值为6. 10.证明:设f (x )=tan x -x ,)2π,0(∈x .则0tan 1cos 11)'cos sin ()(2.2>=-=-='x xx x x f ,所以函数f (x )=tan x -x 在区间)2π,0(内单调递增. 又f (0)=0,从而当)2π,0(∈x 时,f (x )>f (0)恒成立, 即当)2π,0(∈x 时,tan x >x . 11.解:(1)f (x )的导数f '(x )=e x +e -x .由于2e e 2ee =≥+--⋅x x xx ,故f '(x )≥2,当且仅当x =0时,等号成立.(2)令g (x )=f (x )-ax ,则g '(x )=f '(x )-a =e x +e -x -a ,①若a ≤2,当x >0时,g '(x )=e x +e -x -a >2-a ≥0, 故g (x )在(0,+∞)上为增函数,所以,x ≥0时,g (x )≥g (0),即f (x )≥ax .②若a >2,方程g '(x )=0的正根为24ln 21-+=a a x ,此时,若x ∈(0,x 1),则g ′(x )<0,故g (x )在该区间为减函数.所以,x ∈(0,x 1)时,g (x )<g (0)=0,即f (x )<ax ,与题设f (x )≥ax 相矛盾. 综上,满足条件的a 的取值范围是(-∞,2].习题4一、选择题:1.B 2.B 3.A 4.D 5.C 二、填空题:6.1 7.-2 8.5;-15 9.y =-3x 10.61 三、解答题:11.(1)f '(x )=(1+kx )e kx ,令(1+kx )e kx =0,得)0(1=/-=k kx . 若k >0,则当)1,(k x --∞∈时,f '(x )<0,函数f (x )单调递减;当),1(+∞-∈kx 时,f '(x )>0,函数f (x )单调递增.若k <0,则当)1,(kx --∞∈时,f '(x )>0,函数f (x )单调递增;当),1(+∞-∈kx 时,f '(x )<0,函数f (x )单调递减.(2)若k >0,则当且仅当11-≤-k,即k ≤1时,函数f (x )在区间(-1,1)内单调递增;若k <0,则当且仅当11≥-k ,即k ≥-1时,函数f (x )在区间(-1,1)内单调递增.综上,函数f (x )在区间(-1,1)内单调递增时,k 的取值范围是[-1,0)∪(0,1]. 12.解:(1)f '(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2取得极值,则有f '(1)=0,f '(2)=0.即⎩⎨⎧=++=++.031224,0366b a b a 解得a =-3,b =4.(2)由(1)可知,f (x )=2x 3-9x 2+12x +8c , f '(x )=6x 2-18x +12=6(x -1)(x -2).当x ∈(0,1)时,f '(x )>0;当x ∈(1,2)时,f '(x )<0;当x ∈(2,3)时,f '(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以 9+8c <c 2,解得c <-1或c >9,因此c 的取值范围为(-∞,-1)∪(9,+∞).13.解:对函数f (x )求导得:f '(x )=e ax (ax +2)(x -1).(1)当a =2时,f '(x )=e 2x (2x +2)(x -1). 令f '(x )>0,解得x >1或x <-1; 令f '(x )<0,解得-1<x <1.所以,f (x )单调增区间为(-∞,-1),(1,+∞);f (x )单调减区间为(-1,1).(2)令f '(x )=0,即(ax +2)(x -1)=0,解得ax 2-=,或x =1. 由a >0时,列表分析得:当a x -<时,因为0,,02>>->a a x x ,所以02>--a x x ,从而f (x )>0. 对于a x 2-≥时,由表可知函数在x =1时取得最小值01)1(<-=a e af ,所以,当x ∈R 时,a af x f e 1)1()(min -==.由题意,不等式03)(≥+ax f 对x ∈R 恒成立,所以得031≥+-ae a a ,解得0<a ≤ln3.14.(1)解:对函数f (x )求导数,得x a x x f 21)('++=.依题意有f '(-1)=0,故23=a .从而23)1)(12(23132)(2+++=+++='x x x x x x x f . f (x )的定义域为),23(+∞-,当123-<<-x 时,f '(x )>0; 当211-<<-x 时,f '(x )<0; 当21->x 时,f ′(x )>0. 从而,f (x )分别在区间),21(),1,23(+∞---内单调递增,在区间)21,1(--内单调递减.(2)解:f (x )的定义域为(-a ,+∞),ax ax x x f +++=122)(2.方程2x 2+2ax +1=0的判别式∆=4a 2-8. ①若∆<0,即22<<-a ,在f (x )的定义域内f '(x )>0,故f (x )无极值.②若∆=0,则2=a 或.2-=a若⋅++='+∞-∈=2)12()(),,2(,22x x x f x a 当22-=x 时,f '(x )=0, 当)22,2(--∈x 或),22(+∞-∈x 时,f '(x )>0,所以f (x )无极值.若),2(,2+∞∈-=x a ,f '(x )2)12(2--=x x >0,f (x )也无极值.③若∆>0,即2>a 或2-<a ,则2x 2+2ax +1=0有两个不同的实数根22,222221-+-=---=a a x a a x .当2-<a 时,x 1<-a ,x 2<-a ,从而f ′(x )在f (x )的定义域内没有零点,故f (x )无极值. 当2>a 时,x 1>-a ,x 2>-a ,f '(x )在f (x )的定义域内有两个不同的零点,所以f (x )在x =x 1,x =x 2处取得极值.综上,f (x )存在极值时,a 的取值范围为),2(+∞. f (x )的极值之和为f (x 1)+f (x 2)=ln(x 1+a )+x 12+ln(x 2+a )+x 22 =ln[(x 1+a )(x 2+a )]+(x 1+x 2)2-2x 1x 2=ln21+a 2-1>1-ln2=ln 2e.。
知识点1.函数的平均变化率一般地,已知函数y=f(x),f (x 2)−f(x 1)x 2−x 1称作函数y=f(x)在[x 1,x 2]上的平均变化率. x 2−x 1表示自变量x 的改变量,计作∆x ;y 2−y 1表示函数值的改变量,计作∆y .于是平均变化率也可用Δy Δx表示.这里∆x ,∆y 可为正值,也可为负值,但∆x ≠0,∆y 可以为0.函数的平均变化率f (x 2)−f(x 1)x 2−x 1表示函数值的改变量与对应的自变量的改变量之间的比例,它表示函数图像上(x 1,f(x 1)),( x 2,f(x 2))两点连线的斜率,近似地刻画了曲线在区间[x 1,x 2]上的变化趋势.在式子Δy Δx=f (x 2)−f(x 1)x 2−x 1=f (x 1+Δx )−f(x 1)Δx中,当x 1取定值,Δx 取不同的数值时,函数的平均变化率不同;当Δx 取定值,x 1取不同的数值时,函数的平均变化率也不同.平均变化率的几何意义:设函数y=f(x)的图像如下图所示.PQ 是曲线的一条割线,其斜率为tan β=∆y ∆x =f (x 0+∆x )−f(x 0)∆x可知曲线割线的斜率就是函数的平均变化率.2.平均速度设物体运动路程与时间的关系是s=f(t),在t 0到t 0+Δt 这段时间内,物体的平均速度是v ̅=f (t 0+Δt )−f(t 0)Δt=ΔsΔt在匀速直线运动中,比值ΔsΔt 是恒定的.在非匀速直线运动中,比值ΔsΔt 是不恒定的.要精确地描述非匀速直线运动,就要知道物体在每一时刻运动的快慢程度,即瞬时速度.3.瞬时速度作变速直线运动的物体在不同时刻的速度是不同的,把物体在某一时刻的速度叫做瞬时速度.设物体运动的路程与时间之间的关系是s=f(t),当∆t →0时,函数f(t)在t 0到t 0+∆t 之间的平均变化率f (t 0+Δt )−f(t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.即V=lim ∆t→0Δs Δt=lim∆t→0f (t 0+∆t )−f(t 0)∆t同理,对于速度函数y=v(t) 其在t 0的瞬时变化率就是在t 0时刻的瞬时加速度,即当t 0→0,v (t 0+∆t )−v(t 0)∆t表示t 0时刻的瞬时加速度.瞬时速度实质是平均速度当Δt →0时的极限值.瞬时速度的计算必须先求出平均速度v ̅=Δs Δt,再对平均速度取极限.Δt →0,是指时间间隔Δt 越来越短,能超过任意小的时间间隔,但始终不能为零. Δt 、Δs 在变化中都趋近月0,但它们的比值却趋近于一个确定的常数. 4.导数的概念 4.1导数设函数y=f(x)在x 0及其附近有定义,当自变量在x=x 0附近改变量为∆x 时,函数值相应地改变∆y=f(x 0+∆x)-f(x 0).当∆x 趋近于0时,平均变化率Δy Δx =f (x 0+∆x )−f(x 0)∆x趋近于一个常数l,那么常数l称为函数f (x )在点x 0的瞬时变化率,计作当∆x →0时,f (x 0+∆x )−f(x 0)∆x→l,或lim ∆x→0f(x0+∆x)−f(x0)∆x=l.一般地,函数y=f(x)在点x0处的瞬时变化率,称为f(x)在点x0处的导数,并计作,f´(x0)或y′|x=x.这时又称f(x)在点x0处是可导的.于是上述变化过程又可计作当∆x→0时,f(x0+∆x)−f(x0)∆x→f´(x0).或lim ∆x→0f(x0+∆x)−f(x0)∆x= f´(x0).∆x是自变量x在x0处的改变量,所以∆x可正、可负,但不能为0.当∆x >0(或<0)时,∆x→0表示x0+∆x从右边(或从左边)趋近于x0.∆y是相应函数的改变量,∆y可正、可负、也可为0.求函数y=f(x)在点x0处的导数的步骤如下:(1)求函数的增量∆y=f(x0+∆x)-f(x0);(2)求函数的平均变化率:ΔyΔx =f(x0+∆x)−f(x0)∆x;(3)取极限,求得f´(x0)=lim∆x→0∆y∆x.4.2导函数如果f(x)在区间(a,b)内每一点x都是可导的,则称f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x).于是,在区间(a,b)内,f´(x)构成一个新的函数,叫做y= f (x)的导函数,计作f´(x)或y´.导函数通常简称导数.求函数在某一点处的导数,一般是先求处函数的导函数,再计算这点的导函数值.注意区分函数y=f(x)“在x0处的导数”、“导函数”、“导数”.函数在x0处的导数表示在点x0函数的改变量与自变量的比的极限,它是一个数值,不是变数;导函数是如果函数f(x)在区间(a,b)可导,这样对于区间(a,b)内每个值x,都对应一个确定的导数f´(x),而构成一个新的函数y= f´(x);导函数简称导数,于是导数{f (x )在点x 0处的导数导函数.5.导数的几何意义设函数y=f(x)的图像如下图所示.P P 0是曲线的一条割线,其斜率为可知曲线割线的斜率就是函数的平均变化率.当点P 0沿曲线趋近于点P 时,其最终位置为曲线在点P 的切线,此时,切线的斜率为由导数意义可知,曲线y=f(x)在点(x 0,f(x 0) )的切线的斜率等于f ´(x 0).我们用割线的极限位置来定义切线,而不说“与曲线只有一个公共点的直线是切线”.以前我们学过圆的切线:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线.圆是一种特殊的曲线,如果将圆的切线定义推广到一般曲线,显然是不合适的.观察下图虽然直线l与曲线有唯一公共点,但是我们不能说l与曲线相切;而尽管直线m与曲线有不止一个公共点,我们却可以说直线m与曲线相切.因此,对于一般曲线不能以公共点个数来界定直线与曲线相切与否.6.利用导数的几何意义求曲线的切线方程6.1利用导数的几何意义求曲线的切线方程的步骤第一步:求出函数y=f(x)在点x0处的导数f´(x0);第二步:根据直线的点斜式方程,得切线方程为y-y0=f´(x0)(x-x0).特别地,若切线平行于y轴(即倾斜角为π2),此时导数不存在,曲线在点(x0,f(x0) )处的切线方程是x=x0.观察图像易知,f´(x0)>0则切线的倾斜角为锐角;f´(x0)<0则切线与x轴正向的夹角为钝角;f´(x0)=0则切线与x轴平行.函数在某点可导是曲线在该点存在切线的充分不必要条件,如果函数在某一点不可导,则可利用切线的定义来求切线方程.过某一点P的切线与在点P处的切线是不同的概念,过点P的切线不一定以点P为切点,在点P处的切线是以点P为切点的直线,注意不要混淆.6.2几种常见曲线的切线方程(1)过圆(x-a)²+(y-b)²=r²上过一点P0(x0,y0)的切线方程为(x0-a)(x-a)+( y0-b)(y-b)=r².特例,当a=b=0时,即圆心在坐标原点,此时,过点P0(x0,y0)的切线方程为x0x+y0y=r².(2)过椭圆x²a²+y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²+y0yb²=1.(3)过双曲线x²a²−y²b²=1上的一点P0(x0,y0)的切线方程为x0xa²−y0yb²=1.(4)过抛物线y²=2px上的一点P0(x0,y0)的切线方程为y0y=p(x+x0).7.几个常用函数的导数7.1常数函数y=f(x)=c的导数y´=lim∆x→0ΔyΔx=lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0c−cΔx=0.y ´=0的几何意义为函数y=c 图像上每一点处的切线的斜率都为0,.其物理意义为若y=c 表示路程关于时间的函数,则y´=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.7.2函数y=x 的导数 y´=lim∆x→0Δy Δx=lim∆x→0(x+∆x )−x∆x=lim ∆x→01=1.同理,对于y=2x ,y´=2;对于y=3x ,y´=3……对于y=x ,y´=1表示函数y=x 图像上每一点处的切线斜率都是1.函数y=kx (k >0)增加的快慢与k 有关,即与函数的导数有关系.k 越大,函数增加得越快;k 越小,函数增加的越慢.函数y=kx (k <0)减少的快慢与|k|有关系,即与函数导数的绝对值有关系. |k|越大,函数减少得越快;|k|越小,函数减少得越慢.7.3函数y=f(x)=x ²的导数. y´=lim∆x→0Δy Δx =lim∆x→0f (x+∆x )−f(x)∆x=lim∆x→0(x+∆x )²−x ²∆x=lim∆x→0x ²+2x·∆x+(∆x )2−x ²∆x=lim ∆x→0(2x+∆x )+2x7.4函数y=f(x)=1x的导数 y´=lim∆x→0Δy Δx=lim∆x→0f (x+∆x )−f(x)∆x =lim∆x→01x+Δx −1xΔx=lim∆x→0x−(x+∆x )x(x+∆x)∆x =lim ∆x→0[−1x(x+∆x)]=-1x ².函数y=1x的图像如:结合函数图像及其导数y´=-1x²发现,当x<0时,随着x的增加,函数y=1x减少的越来越快;当x>0时,随着x的增加,函数减少得越来越慢;7.5函数y=√x的导数设y=f(x)=√x(x>0),y´=lim∆x→0ΔyΔx =lim ∆x→0f(x+∆x)−f(x)∆x=lim∆x→0√x+Δx−√xΔx=limΔx(√x+Δx+√x)=lim√x+Δx+√x=2√x(x>0)由y´=2√x可知,函数y=√x的图像上没一地啊n的切线斜率都大于零(不包括原点).以上公式是进行导数运算的基础,务必要熟练掌握.上述公式可划分为四类,第一类是幂函数y ´=(x μ )´ =μx μ−1;第二类为指数函数y ´=(a x )′a x ln a ,(e x )′=e x 是一个特例;第三类为对数函数y ´=(log a x)′=1x ln a ,(ln x)′=1x 是对数函数的一个特例;第四类为三角函数,可记为正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数.对于公式(ln x )´=1x 和(e x )´=e x 很好记,但对于(log a x )´=1x log a e 和 (a x )´=a x ln a 的记忆就比较难,应从以下几个方面加深对公式的理解和记忆:(1)区分公式的结构特征,从纵的方面区分(ln x )´与(log a x )´,和(e x )´与(a x )´,找出差异,记忆公式;(2)对公式(log a x )´,用(ln x )´和复合函数求导法则证明来帮助记忆,即求证对数函数求导公式(log a x )´=1x log a e证明如下: (log a x )´=(ln x ln a)´=1ln a ·1x=1xlog a e这样知道了(log a x )´=1x log a e 中log a e 的来历,对于公式的记忆和区分是很有必要的.9.导数的四则运算9.1函数和或差的求导法则设函数f(x),g(x)是可导的,则(f(x)±g(x))´=f ´(x) ±g ´(x).即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差).这个法则可以推广到任意有限个函数,即(f 1±f 2±⋯±f n )′=f 1′±′f 2′±⋯±f n ′.9.2函数积的求导法则设函数f(x),g(x)是可导的,则(f(x) g(x))´= f ´(x) g(x)+ f(x) g ´(x).即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数乘上第二个函数的导数.另,[Cf(x)]´=Cf ´(x).(C 为常数)切忌与函数和(或差)的公式混淆,(f(x) g(x))´≠f ´(x)g ´(x),与(f(x)±g(x))´=f ´(x) ±g ´(x)要分清.9.3函数的商的求导法则设函数f(x),g(x)是可导的,g(x) ≠0,则[f(x)g(x)]′=g (x )f ′(x )−f (x )g ′(x)g ²(x).特别地,当f(x) ≡1时,有[1g(x)]′=g ′(x)g ²(x).注意f ´(x 0)与(f (x 0)) ´的区别.f ´(x 0)代表函数f(x)在x= x 0处的导数值,不一定为0;而(f(x 0)) ´是函数值f(x 0)的导数,而f(x 0)是一个常量,其导数值一定为0,即(f(x 0))´=0.9.4复合函数的求导法则由几个函数复合而成的函数,叫做复合函数.由函数y=f(u)与u=φ(x)复合而成的函数一般形式是y=f(φ(x)),其中,u 称为中间变量.设函数u=φ(x)在点x 处可导,函数y=f(u)在点x 对应点u 处也可导,则复合函数y=f(φ(x))在点x 处也可导,且y´x =y´u ·u´x 或f´x (φ(x))=f ´(u) φ′(x).注意:(1)要弄清复合函数的结构关系,分清它是由哪些基本函数复合而成的,选择合适的中间变量;判断复合函数复合关系时,一般是从外向里分析,最外层的主题函数结构是以基本函数为主要形式,各层的中间变量结构也都是基本函数关系,直到最里层应是关于自变量的基本函数或关于自变量的基本函数经过有限次四则运算而得到的函数.(2)复合函数求导方法:①将复合函数的复合关系一一分解;②分步计算,每一步都要清楚是对哪个变量求导,特别要注意中间变量的导数;③根据基本初等函数的求导公式以及运算法则求出个函数的导数,并把中间变量转换成自变量的函数;④熟练掌握复合函数的求导后,中间步骤可以省略不写.(3)上述复合函数的求导公式可以推广到有限次的复合函数求导,如:y=f(u),u=u(t),t=t(w),w=w(x),则y´x =f´u ·u´t ·t´w ·w´x .复合函数求导法则的应用.利用复合函数的求导法则可以求出抽象函数的导数.例:求证存在导函数的奇函数的导数是偶函数.证明:设f(x)是奇函数,即f(-x)=f(x).两边分别对x求导数,得f´(-x)·(-x)´=-f´(-x),即-f´(x)= -f´(-x),∴f´(x)= f´(-x),故命题成立.10.利用导数判断函数的单调性10.1对于函数f(x),在区间(a,b)内,如果f′(x)>0,那么函数f(x)在这个区间内单调递增;如果f′(x)<0,那么函数f(x)在这个区间内单调递减.注意:(1)用曲线的切线的斜率来理解法则,当切线斜率非负时,切线的倾斜角小于90°,函数曲线呈向上增加趋势;当切线斜率为负时,切线的倾斜角大于90°,小于180°,函数曲线呈向下减少趋势;(2)如果在某个区间内恒有f(x)=0.则f(x)在这个区间内等于常数;(3)对于可导函数f(x)来说,f′(x)>0是f(x)在(a,b)上单调递增的充分不必要条件,f′(x)<0是f(x)在(a,b)上单调递减的充分不必要条件.例如f(x)=x3在R 上为增函数,但f′(0)=0,所以在x=0处不满足f′(x)>0.函数单调性的必要条件是:函数f(x)在(a,b)内可导,若f(x)在(a,b)上单调递增(或递减),则f′(x)≥0(或f′(x)≤0)且f′(x)在(a,b)的任意子区间上都不恒为0.10.2求可导函数单调区间的一般步骤和方法:第一步,确定函数f(x)的定义域;第二步,求f′(x);第三步,在定义域内,f′(x)>0的解集对应的区间为f(x)的增区间;f′(x)<0的解集对应的区间为f(x)的减区间.注意:(1)利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中只能在定义域内通过讨论导数的符号来判断函数的单调区间;(2)除了讨论f′(x)>0或f′(x)<0外,还要注意定义域内不连续和不可导点.10.3用导数判断函数单调性的应用(1)证明不等式若证明不等式f(x)>g(x),x∈(a,b),可以转化为证明f(x)-g(x)>0.如果(f(x)-g(x))´>0,说明函数F(x)=f(x)-g(x)在(a,b)上是增函数.若f(a)-g(a)≥0,由增函数的定义可知,当x∈(a,b)时,f(x)-g(x)>0,即f(x)>g(x).(2)证明有关函数根的问题用求导的方法确定方程根的个数,是一种很有效的方法,它是通过函数的变化情况,运用数形结合的思想来确定函数的图像与x轴的交点个数,最简单的一种是只有一个交点(即一个根)的情况,即函数在整个定义域内是单调函数,再结合某一个特殊值来确定f(x)=0.(3)求函数的值域有些函数的值域用以前学的方法有时不简便,这时我们可以考虑研究函数的单调性,特别是函数的自变量定义在某一区间上时,这时可用单调性来研究值域.(4)求参数的值(或取值范围)求函数y=f(x)的单调增区间、减区间分别是解不等式f´(x)>0,f´(x)<0所得的x的取值集合.反过来,若已知f(x)在区间D上单调递增,求f(x)中的参数值的问题,这类问题往往转化为不等式的恒成立问题,即f´(x)≥0在D上恒成立,求f(x)中的参数值.11.利用导数研究函数的极值11.1函数的极值已知函数y=f(x),设点a是定义域(a,b)内任一点,如果对a附近的所有点=f(a).并把a x,都有f(x)<f(a),则称函数f(x)在点a处取极大值,计作y极大称为函数f(x)的一个极大值点.同样,如果在点b附近都有f(x)>f(b),则称函=f(b).并把b称为函数f(x)的一个极小值数f(x)在点b处取极小值,计作y极小点. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值.对于极大值点a,f′(a)=0;而且在点x=a附近的左侧f′(x)>0,右侧f′(x)<0.类似地,对于小值点b,f′(b)=0;而且在点x=b附近的左侧f′(x)<0,右侧f′(x)>0.注意:(1)极值必须在区间内的连续点处取得.一个函数的定义域内可能出现许多个极小值和极大值点,某一点的极小值可能大于另一点的极大值,也即极小值和极大值之间没有必然的大小关系.极值是一个局部性概念.(2)函数的极值点的导数为0,但导数为0的点可能不是函数的极值点.即,f′(c)=0是f(x)在x=c处取极值的必要条件,但不是充分条件.(3)若f(x)在(a,b)内有极值,那么f(x)在(a,b)内一定不是单调函数,即在区间上单调的函数没有极值.(4)如果函数y=f(x)在区间[a,b]内有极值,则极值点的分布是有规律的.相邻两个极大值点之间必然会有一个极小值点,同样相邻两个极小值点之间必然会有一个极大值点.通常当函数y=f(x)在区间[a,b]内有有限个极值点时,其极大值点与极小值点是交替出现的.11.2函数y=f(x)极值的求解方法第一步:求导数f′(x);第二步:求方程f′(x)=0的根;第三步:检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.注意:(1)对于使f′(x)无意义的点也可能是极值点,因此和f′(x)=0的根对应的点一样,都是可疑点,也要进行讨论.(2)极大值点可以看做函数单调递增区间与单调递减区间的分界点,同样极小值点是函数单调递减区间与单调递增区间的分界点.12.利用导数研究函数的最值12.1函数的最大值与最小值对于函数y=f(x),如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≤f(x0),则称f(x0)为函数在定义域I上的最大值.如果在其定义域I内存在x0,使得对任意的x∈I,总有f(x)≥f(x0),则称f(x0)为函数在定义域I上的最小值.函数的最大值与最小值是一个整体性概念,是比较整个定义区间的函数值得出.一般地,若函数f(x)在闭区间上的图像是一条连续不间断的曲线,那么它必有最大值与最小值,且最值必在极值点或端点处取得.函数的极值可以有多个.对于最值,若存在最大值,则最大值唯一;若存在最小值,则最小值唯一;极值有可能是最值,最值只要不在端点处必定是极值.在开区间(a,b)内连续的函数不一定存在最大值与最小值.如函数y=tan x,在区间(-π2,π2)内连续,但没有最大值与最小值. 12.2函数最值的求解方法求可导函数f(x)在区间[a ,b ]上的最大值与最小值的步骤:第一步:求f(x)在(a,b)内的极值;第二步:将f(x)的各极值与f(a)、f(b)比较,其中最大的是最大值,最小的是最小值.如果函数f(x)在[a ,b ]上是单调时,可利用函数的单调性求得函数的最值,即,若f(x)在[a ,b ]上单调递增,则其最大值为f(b),最小值为f(a);若f(x)在[a ,b ]上单调递减,则其最大值为f(a),最小值为f(b).与求函数极值不同,求最值时不需要对各导数为零的点讨论其是最大值还是最小值,只需将导数为零的点的函数值和端点的函数值进行比较就行了.13.函数极值的应用:(1)确定参数的值,这里一般用待定系数法(2)求参数的取值范围(3)判断方程的根的变化,这里一般是利用数形结合的思想来讨论方程的根,即先根据函数的极值情况画出函数f (x )的图像,再观察方程的根(4)证明不等式,这里一般是先构造函数,再根据函数的最值来证明不等式(5)求含参数的值域问题时,通常对参数进行分类讨论,然而当函数有极值,需要确定参数值或其范围时,利用逆向思维较容易解决问题.14.导数的实际应用——最优问题14.1解决优化问题的基本思路(1)在解决实际最优化问题时,不难发现基本思路是:上述解决最优化问题的过程是一个典型的数学建模过程.(2)实际应用问题的解题程序:读题(文学语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答) 函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,确定自变量的定义域.14.2用导数解决最优问题的一般步骤:第一步:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x);第二步:求函数的导数f ′(x ),解方程f ′(x )=0;第三步:比较函数在区间端点和使f ′(x )=0的点的数值的大小,最大(小)者为最大(小)值.第四步:将结果代回原问题中,根据实际问题的现实意义判断取舍.注意:应用导数解决实际问题,关键是要建立恰当的数学模型(函数关系).函数建模,要设出两个变量,根据题意分析它们的关系,把变量转化成函数关系式,并确定自变量的定义区间以及其他限制条件.如果函数在定义区间内只有一个点使f ′(x )=0,此时函数在这点有极大(小)值,那么不与端点比较也可以知道这就是最大(小)值.在解决实际优化问题中,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.15.曲边梯形的面积以及变速直线运动行驶的路程曲边梯形面积的求法主要是用了“以直代曲”的思想,即用直边图形(如矩形)代替曲边梯形的面积,再用求极限的方法求曲边梯形的面积.求曲边梯形的面积可分为四步:分割→近似代替→求和→取极限.把变速直线运动的路程问题划归为求匀速直线运动的路程问题,采用的方法仍然是分割、近似代替、求和、取极限,它与曲边梯形的面积可以归纳为求一个特定形式和的极限.分割的目的在于更精确地“以直代曲”.以“矩形”代替“曲边梯形”,随着分割的等分越来越多,这种“代替”就越精确,所有小矩形的面积和就越逼近曲边梯形的面积.16.定积分的概念设函数y=f(x)定义在区间[a ,b ]上,用分点a=x 0<x 1<x 2<⋯<x n−1<x n <b .把区间[a ,b ]分为n 个小区间,其长度依次为∆x i =x i+1-x i ,i=0,1,2,…,n-1.计λ为这些小区间长度的最大者,当λ趋近于0时,所有的小区间长度都趋近于0.在每个小区间内任取一点ξi ,作和式I n =∑f(ξi )n−1i=0∆x i .当λ→0时,如果和式的极限存在,我们把和式I n 的极限叫做函数f(x)在区间[a ,b ]上的定积分,计作∫f (x )dx ba, 即∫f (x )dx b a =lim λ→0∑f(ξi )n−1i=0∆x i . 其中,f(x)叫做被积函数,a 叫做积分下限,b 叫做积分上限,f(x)dx 叫做被积式.此时称函数f(x)在区间[a ,b ]上可积.注意:(1)定积分∫f (x )dx ba 是一个常数.它的数值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即∫f (x )dx b a =∫f (u )du b a =∫f (t )dt b a =……(称为积分形式不变性); 另外,定积分∫f (x )dx b a 与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上、下限不同,所得的值也不同.(2)用定义求定积分的一般方法是:①分割,将区间[a ,b ]n 等分;②近似替代,取点ξi ∈[x i−1,x i ];③求和,∑f(ξi )n i=0b−a n ;④取极限,∫f (x )dx b a =lim n→∞∑f(ξi )b−a n i=0;(3)函数f(x)在区间[a ,b ]上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件).17.定积分的性质(1)∫kf (x )dx b a =k ∫f (x )dx b a(k 为常数); (2)∫[f 1(x )±f 2(x )]dx b a =∫f 1(x )dx b a ±∫f 2(x )dx b a;(3)∫f (x )dx b a =∫f (x )dx c a +∫f (x )dx b c (其中a<c<b ).注意:(1)性质(1)、(2)称为定积分的线性性质,性质(3)称为定积分对积分区间的可加性.(2)性质(2)对于有限个函数(两个以上)也成立,性质(3)对于把区间[a ,b ]分成有限个(两个以上)区间也成立.18.定积分的几何意义当函数f(x)在区间[a ,b ]上恒为正时,定积分∫f (x )dx b a的几何意义是由直线x=a,x=b,y=f(x),y=0围成的曲边梯形的面积.一般情况下,定积分∫f (x )dx b a 的几何意义是介于x 轴、函数f(x)的图像以及x=a ,x=b 之间的部分面积的代数和,在x 轴上方的取正好,在x 轴下方的取负号.如上图所示,321)(A A A dx x f ba +-=⎰则(1A 、2A 、3A 表示各阴影部分的面积).注意:(1)定积分∫f (x )dx b a 不一定表示面积,也可能是面积的相反数;定积分也可以是体积,可以是功,可以是路程、压力等,总之定积分还有更多的实际意义.(2)∫f (x )dx b a 、∫|f (x )|dx b a 、|∫f (x )dx ba | 在几何意义上有不同的含义.由于被积函数f(x)在[a ,b ]上可正可负,即它的图像可以在x 轴上方,也可以再x 轴下方,还可以在x 轴的上、下两侧,所以∫f (x )dx ba表示由x 轴,函数f(x)的曲线以及直线x=a ,x=b (a ≠b )围成的图像各部分面积的代数和;而|f (x )|是非负的,所以∫|f (x )|dx ba表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|∫f (x )dx b a |则是∫f (x )dx ba 的绝对值.三者的值一般情况下是不同的.19.微积分基本定理如果F ′(x )=f (x ),且f(x)在[a ,b ]上可积,则其中F (x )叫做f(x)的一个原函数.由于[F (x )+c ]′=f(x), F (x )+c 也是f(x)的原函数,其中c 为常数.一般,原函数在[a ,b ]上的改变量F(b)-F(a)简记作因此微积分基本定理(又称牛顿——莱布尼兹公式)可以写成注意:(1)利用微积分基本定理计算定积分的关键是找到满足F ′(x )=f (x )的函数F(x).通常我们用基本初等函数的求导公式和倒数的四则运算法则从反方向求出F(x).(2)这项定理揭示了导数与定积分之间的关系,即求积分与求导数是互为逆运算,这也是计算定积分的重要方法,是微积分学中最重要的定理.(3)若F (x )是f(x)的一个原函数,则F (x )+c 也是f(x)的原函数,即f(x)的原函数有无数个.一般只写最简单的一个,不用再加任意常数c 了.20.定积分的简单应用20.1几种典型平面图形面积的计算(1)求由一条曲线y=f(x)和直线x=a ,x=b(a <b)及y=0所围成的平面图形的面积S .常见有以下三种类型: ()ba F x①②③如图①,f(x)>0,∫f (x )dx b a >0,∴S =∫f (x )dx b a如图②,f(x)<0, ∫f (x )dx b a<0,∴S =|∫f (x )dx b a |=-∫f (x )dx b a . 如图③,当a ≤x ≤c 时,f(x)<0,∫f (x )dx c a<0;当c ≤x ≤b 时,f(x)>0,∫f (x )dx bc >0, ∴S =|∫f (x )dx c a |+|∫f (x )dx b c |=-∫f (x )dx c a +∫f (x )dx bc . (2)由两条曲线f(x)和g(x),直线x=a ,x=b ,(a <b )所围成的平面图形的面积S .①②如图①,当f(x)>g(x)>0时,S =∫[f (x )−g(x)]dx b a; 如图②,当f(x)>0,g(x)<0时,S =∫f (x )dx b a +|∫g (x )dx ba |=∫[f (x )−g(x)]dxb a . 求由两条曲线围成的平面图形的面积的解题步骤:第一步:画出图形;第二步:确定图形范围,通过解方程组求出交点的横坐标,确定积分上、下限;第三步:确定被积函数,特别要注意分清被积函数上、下位置; 第四步:写出平面图形面积的定积分表达式;第五步:运用微积分基本公式计算定积分,求出平面图形的面积.20.2作变速直线运动的物体所经过路程S ,等于其速度函数v=v(t)(v(t)≥0)在时间区间[a ,b ]上的定积分,即S=∫v (t )dt b a. 20.3变力做功物体在恒力F (单位:N )的作用下作直线运动,如果物体沿着与F 相同的方向移动了s (单位:m ),则力F 所做的功为:W=Fs.如果物体在变力F (x )的作用下作直线运动,并且物体沿着与F (x )相同的方向从x=a 移动到x=b (a <b ),那么变力F (x )所做的功为:W=∫f (x )dx b a .求变力做功的步骤:第一步:根据物理学的实际意义求出变力F(x)的表达式;第二步:求出起始位置与终止位置;第三步:根据变力做功公式W=∫f (x )dx b a 求出变力F(x)所做的功.。
平均变化率公式
平均变化率,是y的增量与x的增量的比,可以用来观察函数的变化速度以及函数是怎样变的。
在学习导数之前也可以先学习平均变化率,为后来学习导数做铺垫。
平均变化率公式:Δy=f(x+Δx)-f(x)。
平均变化率是y的增量与x的增量的比,可以用来观察函数的变化速度以及函数是怎样变的。
在学习导数之前也可以先学习平均变化率,为后来学习导数做铺垫。
导数也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
平均变化率的公式
平均变化率是经济学研究中的一个重要概念,它反映了经济状况的变化情况。
它可以用来衡量各种经济指标,例如收入、物价、产品价格、工资等,从而更准确地描述经济状况。
根据财政理论,平均变化率被定义为了描述特定时期内某一变量发生变化的情况,它在推断经济增长和下降趋势上也有很大意义。
根据经济学家的观点,平均变化率可以用下面的公式表示:
C=(N-M)/M
其中,C表示特定变量的变化率,N代表变量的最新指标,M表示变量的初始指标。
以全国居民人均可支配收入为例,假设2013年居民人均可支配收入为2.2万元,而2014年居民人均收入为2.5万元,那么这两年来全国居民人均可支配收入的平均变化率计算如下:
C=(2.5-2.2)/2.2=0.136
由此可见,2013-2014年全国居民人均可支配收入的变化率为13.6%。
平均变化率的计算可以帮助我们判断经济的变化。
它可以帮助人们更好地理解变量走势,对其发展趋势进行合理的预测,从而较好地实施针对性经济政策。
此外,平均变化率也可以用来评价某一变量随时间变化的程度,从而更有针对性地把握变化趋势。
例如,物价在2017年和2018年之间发生变化,如果我们要评价这两年物价变化的程度,我们可以计算
其平均变化率,从而判断物价变化趋势是增长还是下降。
平均变化率的计算也可以为经济学研究和经济决策提供技术支持,运用它可以更全面地把握某一特定变量的变化状况,从而更有针对性地制定经济政策。
综上所述,平均变化率的公式是根据社会经济变量的时间变化规律而定义的,它可以用来衡量某一变量的变化状况,并且可以用来评价经济发展趋势,从而更有针对性地把握经济发展动态,为经济管理和决策提供参考。
平均速度与平均速率的符号
平均速度与平均速率的符号是相同的,都用v表示。
在物理学中,平均速度是物体在一段时间内移动的平均速度,表示为v = Δx/Δt,其中Δx是物体在时间Δt内移动的距离。
平均速率是指物体在一段时间内的平均变化率,表示为v = Δy/Δt,其中Δy是物体在时间Δt内发生的变化量。
1. 概念介绍
- 什么是平均速度和平均速率?
- 有何不同之处?
2. 计算方法
- 平均速度的计算公式及例题
- 平均速率的计算公式及例题
3. 实际应用
- 平均速度在物理学中的应用
- 平均速率在经济学中的应用
4. 误解与误区
- 平均速度与瞬时速度的区别
- 平均速率与变化率的区别
5. 未来展望
- 平均速度与平均速率的研究前景
- 未来可能出现的新方法和新应用
6. 探究与讨论
- 如何通过实验测算平均速度和平均速率?- 如何通过计算机模拟研究二者之间的关系?
7. 总结与结论
- 平均速度和平均速率在不同领域的应用
- 平均速度和平均速率在科学研究中的重要性。