1.2.1 函数的概念
- 格式:pptx
- 大小:1.17 MB
- 文档页数:32
人教版高中数学必修一第一章1.2.1函数的概念1.2.1函数的概念[学习目标] 1.理解函数的概念,了解构成函数的三要素.2.能正确使用区间表示数集.3.会求一些简单函数的定义域、函数值.知识点一函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.知识点二函数的三要素函数的三个要素:定义域,对应关系,值域.(1)定义域定义域是自变量x的取值集合.有时函数的定义域可以省略,如果未加特殊说明,函数的定义域就是指能使这个式子有意义的所有实数x的集合.(2)对应关系对应关系f是核心,它是对自变量x进行“操作”的“程序”或者“方法”,是连接x与y的纽带,按照这一“程序”,从定义域集合A中任取一个x,可得到值域{y|y=f(x)且x∈A}中唯一确定的y与之对应.(3)值域函数的值域是函数值的集合,通常一个函数的定义域和对应关系确定了,那么它的值域也会随之确定.思考(1)符号“y=f(x)”中“f”的意义是什么?(2)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(3)f(x)与f(a)有何区别与联系?答(1)符号“y=f(x)”中“f”表示对应关系,在不同的具体函数中,“f”的含义不一样.例如y=f(x)=x2中,“f”表示的对应关系为因变量y等于自变量x的平方,从而f(a)=a2,f(x+1)=(x+1)2,而函数y=f(x)=2x中,“f”表示的对应关系为因变量y等于自变量x的二倍,从而f(a)=2a,f(x+1)=2(x +1).(2)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(3)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.知识点三函数相等如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.思考函数y=x2+x与函数y=t2+t相等吗?答相等,这两个函数定义域相同,都是实数集R,而且这两个函数的对应关系也相同,因此这两个函数相等.函数相等与否与自变量用什么字母没有关系,只是习惯上自变量用x表示.知识点四区间概念区间的定义、名称、符号及数轴表示如下表:思考(1)对于区间[a,b]而言,区间端点a,b应满足什么关系?(2)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(3)“∞”是数吗?如何正确使用“∞”?答(1)若a,b为区间的左右端点,则a<b.(2)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(3)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.题型一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N 的函数关系的有()A.0个B.1个C.2个D.3个答案 B解析①错,x=2时,在N中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x=2时,对应元素y=3∉N,不满足任意性.④错,x=1时,在N中有两个元素与之对应,不满足唯一性.反思与感悟 1.判断一个对应关系是不是函数关系的方法:(1)A,B必须都是非空数集;(2)A中任意一个数在B中必须有并且是唯一的实数和它对应.注意:A中元素无剩余,B中元素允许有剩余.2.函数的定义中“任意一个x”与“有唯一确定的y”说明函数中两变量x,y的对应关系是“一对一”或者是“多对一”而不能是“一对多”.跟踪训练1下列对应关系式中是A到B的函数的是()A.A⊆R,B⊆R,x2+y2=1B.A={-1,0,1},B={1,2},f:x→y=|x|+1C.A=R,B=R,f:x→y=D.A=Z,B=Z,f:x→y=答案 B解析对于A,x2+y2=1可化为y=±,显然对任意x∈A,y值不唯一,故不符合.对于B,符合函数的定义.对于C,2∈A,但在集合B中找不到与之相对应的数,故不符合.对于D,-1∈A,但在集合B中找不到与之相对应的数,故不符合.题型二判断是否为同一函数例2判断下列函数是否为同一函数:(1)f(x)=与g(x)=(2)f(x)=与g(x)=;(3)f(x)=x2-2x-1与g(t)=t2-2t-1;(4)f(x)=1与g(x)=x0(x≠0).解(1)f(x)的定义域中不含有元素0,而g(x)的定义域为R,定义域不相同,所以二者不是同一函数.(2)f(x)的定义域为[0,+∞),而g(x)的定义域为(-∞,-1]∪[0,+∞),定义域不相同,所以二者不是同一函数.(3)尽管两个函数的自变量一个用x表示,另一个用t表示,但它们的定义域相同,对应关系相同,对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为同一函数.(4)f(x)的定义域为R,g(x)的定义域为{x|x≠0},因此二者不是同一函数.反思与感悟判断两个函数是否相同,只需判断这两个函数的定义域与对应关系是否相同.(1)定义域和对应关系都相同,则两个函数相同;(2)定义域不同,则两个函数不同;(3)对应关系不同,则两个函数不同;(4)即使定义域和值域都分别相同的两个函数,也不一定相同,例如y=x和y=2x-1的定义域和值域都是R,但不是同一函数;(5)两个函数是否相同,与自变量用什么字母表示无关.跟踪训练2下列各组函数中,表示同一函数的是()A.y=x+1与y=B.y=x2与y=(x+1)2C.y=()3与y=xD.f(x)=()2与g(x)=答案 C题型三求函数的定义域例3求下列函数的定义域:(1)y=-;(2)y=.解(1)要使函数有意义,自变量x的取值必须满足即所以函数的定义域为{x|x≤1,且x≠-1}.(2)要使函数有意义,必须满足|x|-x≠0,即|x|≠x,∴x<0.∴函数的定义域为{x|x<0}.反思与感悟 1.当函数是由解析式给出时,求函数的定义域就是求使解析式有意义的自变量的取值集合,必须考虑下列各种情形:(1)负数不能开偶次方,所以偶次根号下的式子大于或等于零;(2)分式中分母不能为0;(3)零次幂的底数不为0;(4)如果f(x)由几部分构成,那么函数的定义域是使各部分都有意义的实数的集合;(5)如果函数有实际背景,那么除符合上述要求外,还要符合实际情况.2.求函数的定义域,一般是转化为解不等式或不等式组的问题,注意定义域是一个集合,其结果必须用集合或区间来表示.跟踪训练3求下列函数的定义域:(1)y=;(2)y=-+.解(1)由于00无意义,故x+1≠0,即x≠-1.又x+2>0,x>-2,所以x>-2且x≠-1.所以函数y=的定义域为{x|x>-2,且x≠-1}.(2)要使函数有意义,需解得-≤x<2,且x≠0,所以函数y=-+的定义域为.题型四求函数值例4已知f(x)=(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.解 (1)∵f (x )=,∴f (2)==. 又∵g (x )=x 2+2, ∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f [g (3)]=f (11)==.反思与感悟 求函数值时,首先要确定出函数的对应关系f 的具体含义,然后将变量代入解析式计算,对于f [g (x )]型的求值,按“由内到外”的顺序进行,要注意f [g (x )]与g [f (x )]的区别. 跟踪训练4 已知函数f (x )=. (1)求f (2);(2)求f [f (1)]. 解 (1)∵f (x )=,∴f (2)==. (2)f (1)==,f [f (1)]=f ==.抽象函数定义域理解错误致误例5 已知函数f (3x +1)的定义域为[1,7],求函数f (x )的定义域. 错解 因为f (3x +1)的定义域为[1,7], 即1≤3x +1≤7,解得0≤x ≤2, 所以f (x )的定义域为[0,2]. 正解 令3x +1=t ,则4≤t ≤22, 即f (t )中,t ∈[4,22], 故f (x )的定义域为[4,22]. 易错警示跟踪训练5若f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(x)的定义域.解由f(x)的定义域为[-3,5],得φ(x)的定义域需满足即解得-3≤x≤3.所以函数φ(x)的定义域为[-3,3].1.下列图象中能表示函数y=f(x)图象的是()答案 B解析由函数的概念知答案为B.2.下列各组函数中表示同一函数的是()A.f(x)=x与g(x)=()2B.f(x)=|x|与g(x)=x(x>0)C.f(x)=2x-1与g(x)=2x+1(x∈N*)D.f(x)=与g(x)=x+1(x≠1)答案 D解析选项A,B,C中两个函数的定义域均不相同,故选D.3.函数f(x)=+的定义域为________.答案{x|x≥-1且x≠2}解析由,得x≥-1且x≠2.4.函数f(x)对任意自然数x满足f(x+1)=f(x)+1,f(0)=1,则f(5)=________. 答案 6解析f(1)=f(0)+1=1+1=2,f(2)=f(1)+1=3,f(3)=f(2)+1=4,f(4)=f(3)+1=5,f(5)=f(4)+1=6.5.已知函数f(x)=x2+x-1.(1)求f(2),f();(2)若f(x)=5,求x的值.解(1)f(2)=22+2-1=5,f()=+-1=.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2,或x=-3.1.对函数相等的概念的理解:(1)函数有三个要素:定义域、值域、对应关系.函数的定义域和对应关系共同确定函数的值域,因此当且仅当两个函数的定义域和对应关系都分别相同时,这两个函数才是同一个函数. (2)定义域和值域都分别相同的两个函数,它们不一定是同一函数,因为函数对应关系不一定相同.如y=x与y=3x的定义域和值域都是R,但它们的对应关系不同,所以是两个不同的函数. 2.区间实质上是数轴上某一线段或射线上的所有点所对应的实数的取值集合,即用端点所对应的数、“+∞”(正无穷大)、“-∞”(负无穷大)、方括号(包含端点)、小圆括号(不包含端点)等来表示的部分实数组成的集合.如{x|a<x≤b}=(a,b],{x|x≤b}=(-∞,b]是数集描述法的变式.一、选择题1.下列四个图象中,是函数图象的是()A.①B.①③④C.①②③D.③④答案 B解析由每一个自变量x对应唯一一个f(x)可知②不是函数图象,①③④是函数图象.2.设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()答案 B解析A项中,当0<x≤2时,每一个x都没有y与它对应,故不可能是函数的图象;B项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是函数的图象且是f(x)的图象;C项中,-2≤x<2时,每一个x都有两个不同的y值与它对应,故它不是函数的图象;D项中,-2≤x≤2时,每一个x都有唯一的y值与它对应,故它是某个函数的图象,但函数的值域不是N={y|0≤y≤2},故它是某个函数的图象但不是f(x)的图象.3.已知函数y=f(x)的定义域为[-1,5],则在同一坐标系中,函数f(x)的图象与直线x=1的交点个数为()A.0B.1C.2D.0或1答案 B解析因为1在定义域[-1,5]上,所以f(1)存在且唯一.4.函数f(x)=的定义域为()A.(1,+∞)B.[0,+∞)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案 D解析因为f(x)=,所以x≥0且x≠1,故可知定义域为[0,1)∪(1,+∞),故选D.5.若函数y=x2-3x的定义域为{-1,0,2,3},则其值域为()A.{-2,0,4}B.{-2,0,2,4}C.{y|y≤-}D.{y|0≤y≤3}答案 A解析依题意,当x=-1时,y=4;当x=0时,y=0;当x=2时,y=-2;当x=3时,y=0.所以函数y=x2-3x的值域为{-2,0,4}.6.若函数f(x)=的定义域为R,则实数m的取值范围是()A.(-∞,+∞)B.(0,)C.(,+∞)D.[0,)答案 C解析(1)当m=0时,分母为4x+3,此时定义域不为R,故m=0不符合题意.(2)当m≠0时,由题意,得解得m>.由(1)(2),知实数m的取值范围是(,+∞).二、填空题7.用区间表示下列集合:(1){x|-≤x<5}=________;(2){x|x<1或2<x≤3}=________.答案(1)[-,5);(2)(-∞,1)∪(2,3]解析(1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x|-≤x<5}=[-,5). (2)注意到集合中的“或”对应区间中的“∪”,则{x|x<1或2<x≤3}=(-∞,1)∪(2,3].8.已知函数f(x)的定义域为(-1,1),则函数g(x)=f+f(x-1)的定义域是________.答案(0,2)解析由题意知即∴0<x<2.9.设f(x)=2x2+2,g(x)=,则g[f(2)]=________.答案解析∵f(2)=2×22+2=10,∴g[f(2)]=g(10)==.10.已知f(x)=x2+2x+4(x∈[-2,2]),则f(x)的值域为________.答案[3,12]解析函数f(x)的图象对称轴为x=-1,开口向上,而-1在区间[-2,2]上,所以f(x)的最小值为f(-1)=3,最大值为f(2)=12,所以f(x)在[-2,2]上的值域为[3,12].三、解答题11.已知函数f(x)=+.(1)求函数的定义域;(2)求f(-3),f()的值;(3)当a>0时,求f(a),f(a-1)的值.解(1)由得函数的定义域为[-3,-2)∪(-2,+∞).(2)f(-3)=-1,f()=+.(3)当a>0时,f(a)=+,a-1∈(-1,+∞),f(a-1)=+.12.求下列函数的值域.(1)y=-1(x≥4);(2)y=2x+1,x∈{1,2,3,4,5};(3)y=x+;(4)y=x2-2x-3(x∈[-1,2]).解(1)∵x≥4,∴≥2,∴-1≥1,∴y∈[1,+∞).(2)y={3,5,7,9,11}.(3)方法一函数y=x+的定义域为[,+∞),易知在定义域内y随x的增大而增大,故函数在x=时取最小值,无最大值,故值域为[,+∞).方法二设u=,则u≥0,且x=,于是,y=+u=(u+1)2≥,∴y=x+的值域为[,+∞).(4)y=x2-2x-3=(x-1)2-4,作出其图象可得值域为[-4,0].13.已知函数f(x)=.(1)求f(2)+f,f(3)+f的值;(2)求证f(x)+f是定值.(1)解∵f(x)=,∴f(2)+f=+=1.f(3)+f=+=1.(2)证明f(x)+f=+=+==1.第11页共11页。