基本信号的产生和时频域抽样实验
- 格式:doc
- 大小:427.29 KB
- 文档页数:10
实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。
时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。
第1篇一、实验目的1. 理解信号资源的基本概念和分类。
2. 掌握信号采集、处理和分析的方法。
3. 分析不同信号资源的特点和适用场景。
4. 提高信号处理和分析的实际应用能力。
二、实验背景信号资源在通信、遥感、生物医学等领域具有广泛的应用。
本实验通过对不同类型信号资源的采集、处理和分析,使学生了解信号资源的基本特性,掌握信号处理和分析的方法。
三、实验内容1. 信号采集(1)实验设备:信号发生器、示波器、数据采集卡、计算机等。
(2)实验步骤:1)使用信号发生器产生正弦波、方波、三角波等基本信号。
2)将信号通过数据采集卡输入计算机,进行数字化处理。
3)观察示波器上的波形,确保采集到的信号准确无误。
2. 信号处理(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)利用MATLAB软件对采集到的信号进行时域分析,包括信号的时域波形、平均值、方差、自相关函数等。
2)对信号进行频域分析,包括信号的频谱、功率谱、自功率谱等。
3)对信号进行滤波处理,包括低通、高通、带通、带阻滤波等。
4)对信号进行时频分析,包括短时傅里叶变换(STFT)和小波变换等。
3. 信号分析(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)分析不同类型信号的特点,如正弦波、方波、三角波等。
2)分析信号在不同场景下的应用,如通信、遥感、生物医学等。
3)根据实验结果,总结信号资源的特点和适用场景。
四、实验结果与分析1. 时域分析(1)正弦波信号:具有稳定的频率和幅度,适用于通信、测量等领域。
(2)方波信号:具有周期性的脉冲特性,适用于数字信号处理、数字通信等领域。
(3)三角波信号:具有平滑的过渡特性,适用于模拟信号处理、音频信号处理等领域。
2. 频域分析(1)正弦波信号:频谱只有一个频率成分,适用于通信、测量等领域。
(2)方波信号:频谱包含多个频率成分,适用于数字信号处理、数字通信等领域。
(3)三角波信号:频谱包含多个频率成分,适用于模拟信号处理、音频信号处理等领域。
一、实验目的1. 理解信号分析的基本概念和原理;2. 掌握信号的时域和频域分析方法;3. 熟悉MATLAB在信号分析中的应用;4. 培养实验操作能力和数据分析能力。
二、实验原理信号分析是研究信号特性的科学,主要包括信号的时域分析和频域分析。
时域分析关注信号随时间的变化规律,频域分析关注信号中不同频率分量的分布情况。
1. 时域分析:通过对信号进行采样、时域卷积、微分、积分等操作,分析信号的时域特性。
2. 频域分析:通过对信号进行傅里叶变换、频域卷积、滤波等操作,分析信号的频域特性。
三、实验内容1. 信号采集与处理(1)采集一段语音信号,利用MATLAB的录音功能将模拟信号转换为数字信号。
(2)对采集到的信号进行采样,选择合适的采样频率,确保满足奈奎斯特采样定理。
(3)绘制语音信号的时域波形图,观察信号的基本特性。
2. 信号频谱分析(1)对采集到的信号进行傅里叶变换,得到信号的频谱。
(2)绘制信号的频谱图,分析信号的频域特性。
3. 信号滤波(1)设计一个低通滤波器,滤除信号中的高频噪声。
(2)将滤波后的信号与原始信号进行对比,分析滤波效果。
4. 信号调制与解调(1)对原始信号进行幅度调制,产生已调信号。
(2)对已调信号进行解调,恢复原始信号。
(3)分析调制与解调过程中的信号变化。
四、实验步骤1. 采集语音信号,将模拟信号转换为数字信号。
2. 对采集到的信号进行采样,确保满足奈奎斯特采样定理。
3. 绘制语音信号的时域波形图,观察信号的基本特性。
4. 对信号进行傅里叶变换,得到信号的频谱。
5. 绘制信号的频谱图,分析信号的频域特性。
6. 设计低通滤波器,滤除信号中的高频噪声。
7. 对滤波后的信号与原始信号进行对比,分析滤波效果。
8. 对原始信号进行幅度调制,产生已调信号。
9. 对已调信号进行解调,恢复原始信号。
10. 分析调制与解调过程中的信号变化。
五、实验结果与分析1. 时域分析通过观察语音信号的时域波形图,可以看出信号的基本特性,如信号的幅度、频率等。
第1篇一、实验目的1. 熟悉常用信号测量仪器的操作方法。
2. 掌握信号的时域和频域分析方法。
3. 学会运用信号处理方法对实际信号进行分析。
二、实验原理信号测量实验主要包括信号的时域测量、频域测量以及信号处理方法。
时域测量是指对信号的幅度、周期、相位等参数进行测量;频域测量是指将信号分解为不同频率成分,分析各频率成分的幅度和相位;信号处理方法包括滤波、放大、调制、解调等。
三、实验仪器与设备1. 示波器:用于观察信号的波形、幅度、周期、相位等参数。
2. 频率计:用于测量信号的频率和周期。
3. 信号发生器:用于产生标准信号,如正弦波、方波、三角波等。
4. 滤波器:用于对信号进行滤波处理。
5. 放大器:用于对信号进行放大处理。
6. 调制器和解调器:用于对信号进行调制和解调处理。
四、实验内容与步骤1. 时域测量(1)打开示波器,调整波形显示,观察标准信号的波形。
(2)测量信号的幅度、周期、相位等参数。
(3)观察不同信号(如正弦波、方波、三角波)的波形特点。
2. 频域测量(1)打开频率计,调整频率显示,测量信号的频率和周期。
(2)使用信号发生器产生标准信号,如正弦波,通过频谱分析仪分析其频谱。
(3)观察不同信号的频谱特点。
3. 信号处理方法(1)滤波处理:使用滤波器对信号进行滤波处理,观察滤波前后信号的变化。
(2)放大处理:使用放大器对信号进行放大处理,观察放大前后信号的变化。
(3)调制和解调处理:使用调制器对信号进行调制,然后使用解调器进行解调,观察调制和解调前后信号的变化。
五、实验结果与分析1. 时域测量结果通过时域测量,我们得到了不同信号的波形、幅度、周期、相位等参数。
例如,正弦波具有平滑的波形,周期为正弦波周期的整数倍,相位为正弦波起始点的角度;方波具有方波形,周期为方波周期的整数倍,相位为方波起始点的角度;三角波具有三角波形,周期为三角波周期的整数倍,相位为三角波起始点的角度。
2. 频域测量结果通过频域测量,我们得到了不同信号的频谱。
时域及频域采样定理
时域采样定理(Nyquist采样定理)和频域采样定理(Shannon采样定理)是两个基本的采样定理,用于指导信号采样和重构的过程。
时域采样定理(Nyquist采样定理):时域采样定理是由哈利·尼奎斯特(Harry Nyquist)在20世纪20年代提出的。
该定理指出,要恢复一个连续时间信号,采样频率必须至少是信号最高频率的两倍。
简而言之,对于最高频率为f的信号,采样频率应该大于2f。
如果采样频率低于2f,那么在重构信号时将会产生混叠现象,导致信号失真。
频域采样定理(Shannon采样定理):频域采样定理是由克劳德·香农(Claude Shannon)在1949年提出的。
该定理表明,如果一个信号在频域上没有频率成分超过一半的采样频率,那么可以通过其离散时间域的采样来完全恢复该信号。
简而言之,对于信号的最高频率为f,采样频率应该大于2f才能完全还原原始信号。
这两个采样定理的要点是:采样频率必须满足一定条件,以避免采样过程中的信息丢失和信号失真。
如果采样频率不满足定理的要求,就会出现混叠效应,导致无法准确地恢复原始信号。
因此,在信号处理和通信系统中,遵循时域采样定理和频域采样定理是非常重要的,以保证信号采样和重构的准确性和有效性。
数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。
二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。
2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。
实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。
由此讨论原时域信号不失真地由频域抽样恢复的条件。
实验三:由X32(k)恢复X(z)和X(e jw)。
四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
实 验 报 告一、实验室名称:数字信号处理实验室二、实验项目名称:采样的时域及频域分析三、实验原理:1、设一带限信号的频谱如由上图可知,当为临界采样和过采样时,理论上可以无失真的恢复采样信号,但是实际在临界采样时,由于实际滤波器的性能限制,无法无失真的恢复,在欠采样时只能部分恢复原信号的频谱特性。
因此过采样时使用最为广泛的采样方式,当需要注意的是对临界采样和欠采样由于采样频率可以降低,在不需要恢复出信号的全部频谱特征时,则往往使用这两种采样方式。
随着信号处理技术的发展,信号的频率越来越高,这两种方式也有着广泛的应用前景。
4、如图,2倍的抽样率扩展导致频谱的2倍重复,表明傅里叶变换以2倍压缩。
因此可得输入频谱的一个额外镜像,这个过程也叫做映射。
上采样后不必要的镜像必须用一个称为内插滤波器的低通滤波器H(z)来消除,即:C 、分数倍变采样率的实现原理,时域和频域的变化情况。
采样率的分数转换可以用M 倍抽取器和L 倍内插器级联而成,其中M 和L 都是正整数。
这样级联有两种可能的形式2。
对信号的过采样: x[n] x u [n] ()H z L y[n]n=-4:4;t=0:0.001:1;f=5;T=1/f;%原信号yt=sin(2*pi*f*t);subplot(2,2,1);plot(t,yt);grid;fs=k*f;Ts=1/fs;%采样后信号yn=sin(2*pi*f*n*Ts);subplot(2,2,2);stem(n,yn);grid;九、实验结论:1.在MATLAB中设计完成可变采样率采样(抽取)程序。
并完成了对信号的采样。
2.对比观察、分析各种采样(临界采样、过采样、欠采样)时域频域的情况。
并得出在理想情况下过采样和临界采样才能完全无失真恢复信号,而对于欠采样由于有丛叠则不能完全恢复。
十、总结及心得体会:通过实验基本达到了实验的目的:深刻理解了低通采样中的临界采样的时域及频域变化情况。
实验项目名称:基本信号的产生和时域抽样实验 实验项目性质:普通实验 所属课程名称:信号分析与处理 实验计划学时:2一、实验目的1学习使用matlab 产生基本信号波形、实现信号的基本运算2熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解; 3 加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验内容和要求1 用Matlab 产生以下序列的样本,并显示其波形: (a): ()(0.9)cos(0.2/3),020n x n n n ππ=+≤≤(b): )20()5()(---=n u n u n x(c): )n(nx-=*5.0exp()(d): )xπn=1.0sin()(n(e): ||1000)(t a e t x -=(f): )()sin()(0t u t Ae t x t a Ω=-α2 设||1000a )t (x t e -=(a ):求其傅里叶变换)jw (X a ;(b ):用频率Hz s 5000F =对)t (x a 进行采样,求出采样所得离散时间信号]n [x a1的傅里叶变换)(X 1jw a e ;再用频率Hz s 1000F =对)t (x a 进行采样,求出采样所得离散时间信号]n [x a2的傅里叶变换)(X a2jw e ;(c):分别针对(b)中采样所得离散时间信号]n[xa1和]n[xa2,重建出对应的连续时间信号)t(xa1和)t(xa2,并分别与原连续时间信号)t(xa进行比较;根据抽样定理(即Nyquist定理)的知识,说明采样频率对信号重建的影响。
3 已知序列x[k]={1,1,1;k=0,1,2},对其频谱)X进行抽样,分别取( j eN=2,3,10,观察频域抽样造成的混叠现象。
x=[1,1,1];L=3;N=256;omega=[0:N-1]*2*pi/N;X0=1+exp(-j*omega)+exp(-2*j*omega);plot(omega./pi,abs(X0));xlabel('Omega/PI');hold onN=2;omegam=[0:N-1]*2*pi/N;Xk=1+exp(-j*omegam)+exp(-2*j*omegam);stem(omegam./pi,abs(Xk),'r','o');hold off00.20.40.60.81 1.2 1.4 1.6 1.82Omega/PI4、A 编制实验用主程序及相应子程序。
实验一 基本信号的产生一、实验学时:3学时 二、实验类型:验证性 三、开出要求:必修 四、实验目的学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算,为信号分析和系统设计奠定基础。
五、实验原理及内容MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期矩形波信号等。
这些基本信号是信号处理的基础。
1. 连续阶跃信号的产生产生阶跃信号的MA TLAB 程序如下:t= -2: 0.02: 6; x=(t>=0); plot(t,x); axis([-2,6,0,1.2]);图一 连续阶跃信号2. 连续指数信号的产生产生随时间衰减的指数信号的MATLAB 程序如下:t = 0: 0.001: 5; x = 2*exp(-1*t); plot(t,x);图二 连续指数信号 3. 连续正弦信号的产生利用MATLAB 提供的函数cos 和sin 可产生正弦和余弦信号。
产生一个幅度为2, 频率为4Hz, 相位为p/6的正弦信号的MATLAB 程序如下:f0=4;w0=2*pi*f0;t = 0: 0.001: 1;x = 2*sin(w0*t+ pi/6);plot(t,x); 图三 连续正弦信号4.连续矩形脉冲信号的产生函数rectpulse(t,w)可产生高度为1、宽度为w 、关于t=0对称的矩形脉冲信号。
产生高度为1、宽度为4、延时2秒的矩形脉冲信号的MATLAB 程序如下:t=-2: 0.02: 6;x=rectpuls(t-2,4);plot(t,x); 图四 连续矩形脉冲信号5. 连续周期矩形波信号的产生函数square(w0*t)产生基本频率为w0 (周期T=2p/w0)的周期矩形波信号。
函数square(w0*t, DUTY)产生基本频率为w0 (周期T=2p/w0)、占空比DUTY= t/T*100的周期矩形波。
τ为一个周期中信号为正的时间长度。
实验项目名称:基本信号的产生和时频域抽样实验
实验项目性质:普通实验
所属课程名称:信号分析与处理
实验计划学时:2
一、实验目的
1学习使用matlab 产生基本信号波形、实现信号的基本运算
2熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;
3 加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、实验内容和要求
1 用Matlab 产生以下序列的样本,并显示其波形:
(a): ()(0.9)cos(0.2/3),020n x n n n ππ=+≤≤
(b): )20()5()(---=n u n u n x
(c): )*5.0exp()(n n x -=
(d): )1.0sin()(n n x π=
(e): ||1000)(t a e t x -=
(f): )()sin()(0t u t Ae t x t a Ω=-α
2 设||1000a )t (x t e -=
(a ):求其傅里叶变换)jw (X a ;
(b ):用频率Hz s 5000F =对)t (x a 进行采样,求出采样所得离散时间信
号]n[
x
a1的傅里叶变换)
(
X
1
jw
a
e;再用频率Hz
s
1000
F=对)t(
x
a
进行采样,
求出采样所得离散时间信号]n[
x
a2的傅里叶变换)
(
X
a2
jw
e;
(c):分别针对(b)中采样所得离散时间信号]n[
x
a1和]n[
x
a2
,重建出
对应的连续时间信号)t(
x
a1和)t(
x
a2
,并分别与原连续时间信号)t(
x
a
进
行比较;根据抽样定理(即Nyquist定理)的知识,说明采样频率对信号重建的影响。
3 已知序列x[k]={1,1,1;k=0,1,2},对其频谱)
(Ωj e
X进行抽样,分别取N=2,3,10,观察频域抽样造成的混叠现象。
4、A 编制实验用主程序及相应子程序。
① 信号产生子程序, 用于产生实验中要用到的下列信号序列: a.采样信号序列:对下面连续信号:
)t (u )t (sin Ae )t (x 0at a Ω=- 进行采样, 可得到采样序列
)n (x a =)nT (x a =)n (u )nT (sin Ae 0anT Ω-, 0≤n<50
其中A 为幅度因子, a 为衰减因子, 0Ω是模拟角频率, T 为采样
间隔。
这些参数都要在实验过程中由键盘输入, 产生不同的)t (x a 和)n (x a 。
b. 单位脉冲序列: x b (n)=δ(n)
c. 矩形序列: x c (n)=R N (n), N=10
② 系统单位脉冲响应序列产生子程序。
本实验要用到两种FIR 系统。
a. h a (n)=R 10(n);
b. h b (n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)
③ 有限长序列线性卷积子程序, 用于完成两个给定长度的序列的卷积。
可以直接调用MATLAB 语言中的卷积函数conv 。
conv 用于两个有限长度序列的卷积, 它假定两个序列都从n=0 开始。
调用格式如下:
y=conv(x, h)
其中参数x 和y 是两个已赋值的行向量序列。
给出主程序流程框图如下。
4、B. 调通并运行实验程序, 完成下述实验内容:
① 分析采样序列的特性。
产生采样信号序列)n (x a ,使128.444A =,π250a =,π2500=Ω。
a. 取采样频率f s =1 kHz, 即T=1 ms 。
观察所得采样)n (x a 的幅频
特性|)e (X |jw 和图中的|)j (X |a Ω在折叠频率附近有无明显差别。
应当注意,实验中所得频谱是用序列)n (x a 的傅里叶变换公式求得的,所以在频率度量上存在关系:T w Ω=,w 为数字频率,Ω为模拟频率。
b. 改变采样频率, f s =300 Hz , 观察|)(|jw e X 的变化, 并做记录(打印曲线); 进一步降低采样频率, f s =200 Hz , 观察频谱混叠是否明显存在, 说明原因, 并记录(打印)这时的|)(|jw e X 曲线。
② 时域离散信号、 系统和系统响应分析。
a. 观察信号)n (x b 和系统)n (h b 的时域和频域特性; 利用线性卷积求信号)n (x b 通过系统)n (h b 的响应)n (y , 比较所求响应)n (y 和)n (h b 的时域及频域特性, 注意它们之间有无差别, 绘图说明, 并用所学理论解释所得结果。
b. 观察系统)n (h a 对信号)n (x c 的响应特性。
③ 卷积定理的验证。
将实验②中的信号换成)n (x a ,使0.4a =,2.07340=Ω,1A =,1T =。
重复实验②a ,打印|e Y |k
jw )(曲线。
实验一中第四题的主程序框图三、实验主要仪器设备和材料
装有Matlab软件的计算机
四、实验方法、步骤及结果测试
实验方法:编程,上机调试,分析实验结果;步骤:编辑程序,并观察相应的时频域波形
五、实验报告要求
1) 简述实验原理及目的。
2) 结合实验中内容和实验结果,将实验结果与理论结果比较,并根据思考题对实验结果进行分析说明。
六、思考题
1、信号卷积与系统输出信号的关系?
答:系统对输入的响应是卷积关系,对应的转换到频域就是乘积关系。
2、连续信号抽样,抽样频率一般为多少,在实际应用中,为何一般选取抽样频率m f f )53(m ax ->=?
答:必须满足取样定理,也就是取样脉冲的频率要大于等于被取样信号最大频率的2倍。
这是因为取样信号的频谱是被取样信号频谱的周期延拓,在满足取样定理时,取样信号的频谱才不会发生混叠,m f f )53(max ->=这样在通过一个低通滤波器才能更好地恢复出取样信
号的频谱,也就是被取样信号所包含信息才没有改变。