电缆故障测试仪PK传统电缆故障测距方法
- 格式:docx
- 大小:385.00 KB
- 文档页数:3
电缆故障测试仪检测标准一个电缆故障测试仪是一种用于检测电缆故障的专用测试设备。
它可以通过测量和分析电缆的特性和参数,来找出电缆中可能存在的故障点或问题。
下面将介绍电缆故障测试仪的检测标准。
电缆故障测试仪需要具备一定的测量精度和准确性。
它应具备高精度的测量电压和电流的能力,以及能够准确测量电缆的电阻、电容、绝缘电阻等参数。
这些参数测量的准确性对于确定故障位置和类型非常重要。
电缆故障测试仪需要具备一定的测量范围和适用性。
不同类型和规格的电缆在电压、电流和频率上可能存在差异,因此,电缆故障测试仪应具备较大的测量范围,以适应各种规格的电缆。
同时,测试仪需要支持不同频率的测试,以满足各种应用需求。
另外,电缆故障测试仪需要具备较强的数据处理和分析能力。
它应能够将测量得到的数据进行实时显示和记录,并且能够对数据进行合理的分析和处理。
这样,测试人员可以通过对数据的分析,准确判断电缆故障的类型和位置,并采取相应的维修措施。
电缆故障测试仪还应具备较好的抗干扰能力。
在实际测试中,往往会受到外界环境的干扰,比如电磁场、电压噪声等。
因此,测试仪应具备较好的抗干扰能力,以保证测试结果的准确性和可靠性。
电缆故障测试仪还应具备良好的操作性和安全性。
它的操作界面应设计简单直观,方便用户进行操作和设置。
同时,测试仪还应具备相应的安全保护措施,防止操作人员受到电压击伤等事故。
综上所述,电缆故障测试仪的检测标准包括测量精度和准确性、适用性、数据处理和分析能力、抗干扰能力、操作性和安全性等方面的要求。
只有满足这些标准,测试仪才能有效地检测电缆故障,提高故障诊断和维修的效率和准确性。
电力电缆故障测试仪测试电缆故障的步骤电力电缆故障测试仪采用电磁感应方法对光缆、电缆进行路由寻迹及埋深测试,采用电位差方法对光缆、电缆进行故障定位测试;适用于具有金属导体(线对、护层、屏蔽层)的各种光缆、电缆的路由、埋深及对地绝缘不良点的定位测试;它是邮电通信系统以及铁路、矿山、油田、机场、航运等单位的线路故障专用测试仪。
电力电缆故障测试仪测试电缆故障的三个步骤:
步骤1、先用HT-TC电缆故障测距仪测距离。
其实,先要判断电缆故障是高阻还是低阻或者是接地,根据这个条件采用不同的测试方法;如果是接地故障,就直接用测距仪的低压脉冲法来测量距离;如果是高阻故障就要采用高压冲击放电的方法来测距离,用高压冲击放电的方法测距离时又要许多的辅助设备;如高压脉冲电容、放电球以及信号取样器等等;操作起来比较麻烦,并且还要分析采样波形,对测试者的知识要求比较高;而此时可以采用二次或三次脉冲来测量故障距离,与传统的测试方法相比,二次、三次脉冲法的先进之处,是将冲击高压闪络法中的复杂波形简化为简单的低压脉冲短路故障波形。
步骤2、是查找路径(如果路径清楚这一步可以省掉)在查找路径时,要给电缆加一信号(路径信号发生器)。
再用接收机接收这个信号,沿着有信号的路径走一遍,就确定了电缆的路径。
步骤3、根据测出的距离来定位其依据是打火放电产生的声音。
当从电缆故障定点仪的耳机听到声音最大的地方时,也就是找到了故障点的位置。
HTRS-V变压器容量及空载负载测试仪电缆故障测试仪的使用方法1、电缆故障测试原理本仪器主机采用时域反射(TDR)原理,对被测电缆发射一系列电脉冲,并接收电缆中因阻抗变化引起的反射脉冲,再根据电波在电缆中的传播速度和两次反射波的特征拐点代表的时间,可测出故障点到测试端的距离为:S=VT/2式中:S代表故障点到测试端的距离V代表电波在电缆中的传播速度T代表电波在电缆中来回传播所需要的时间这样,在V已知和T已经测出的情况下,就可计算出故障点距测试端的距离S。
这一切只需稍加人工干预,就可由计算机自动完成,测试故障迅速准确。
本测试系统故障测试有低压脉冲法、多次脉冲法、直闪电流法、冲闪电流法四种基本方式。
2、低压脉冲方式低压脉冲用于测试电缆中电波传播的速度、电缆全长、低阻故障(故障相电阻值低于1K)和开路故障及短路故障,主机即可完成任务,无须多次脉冲产生器。
同时给下一步应 HTRS-V变压器容量及空载负载测试仪用多次脉冲法测试电缆高阻故障提供了依据。
脉冲测试的基本原理测量电缆故障时,电缆可视为一条均匀分布的传输线,根据传输线理论,在电缆一端加上脉冲电压,该脉冲按一定的速度(决定于电缆介质的介电常数和导磁系数)沿线向远端传输,当脉冲遇到故障点(或阻抗不均匀点)就会产生反射,且闪测仪记录下发送脉冲和反射脉冲之间的传输时间△T,则可按已知的传输速度V来计算出故障点的距离Lx,Lx=V•△T/2,如图8所示:测全长则可利用终端反射脉冲:L=V•T/2同样已知全长可测出传输速度:V=2L/T 测试时,在电缆故障相上加上低压脉冲,该脉冲沿电缆 HTRS-V变压器容量及空载负载测试仪传播直到阻抗失配的地方,如中间接头、T型接头、短路点、断路点和终端头等等,在这些点上都会引起电波的反射,反射脉冲回到电缆测试端时被测试仪接收。
测试仪可以适时显示这一变化过程。
根据电缆的测试波形我们可以判断故障的性质,当发射脉冲与反射脉冲同相时,表示是断路故障或终端头开路。
如何使用电缆故障测试仪进行电缆路径寻测使用电缆故障测试仪可以快速找到电缆的故障点,方便进行电力检修工作,因此电缆故障测试仪是很多输配电的电力工作者经常需要使用到的设备,使用电缆故障测试仪进行进行电缆路径寻测工作是电力工作者经常需要使用到的项目,本文就以YTC630A电缆故障测试仪为例,来给大家简单介绍如何使用电缆故障测试仪进行电缆路径寻测。
操作步骤:步骤1 将高压冲闪线一端插入路径/故障定位仪的“探棒”接口,另一端插入路径传感器的信号接口。
步骤2 将“定点/路径”模式开关切换到“路径”模式然后打开路径/故障定位仪的电源开关,开机8秒内显示电池电量(电量低于“7”时需更换电池!)。
步骤3 “峰值法/谷值法”一般选用“峰值法”。
步骤4 将“磁(路径)增益”顺时针旋转,直到不能旋转。
步骤5 从始端开始,绕过障碍物,在电缆可能铺设的位置找寻电缆的走向。
方法如下:将竖直天线与地面保持垂直,在可能出现电缆的位置呈“S”形行走,当向某一个方向连续移动时信号增强,继续朝此方向移动直到信号达到最强点,停在此处,然后在保持竖直天线与地面垂直的同时,旋转水平天线,当信号最强时,电缆即在天线的正下方,并且沿与水平天线垂直的方向延伸。
峰值法寻找路径时,在同一空间位置上,水平天线越垂直电缆走向,信号越强;当水平天线始终垂直电缆走向时,距离电缆越近,信号越强。
沿着垂直电缆的方向前进,当某点处信号较强,而附近两边信号较弱,呈现“A”型变化规律时,则较强点即为电缆正上方。
谷值法寻找路径时,保持竖直天线与地面垂直,在离地等高的平面上,向各个方向平移路径传感器,当某点处信号较弱,而附近两边信号较强,稍远的两边均减弱,呈现“M”型的变化规律时,则较弱点即为电缆的正上方。
如需对电缆的埋深测试,可以采用45°角法测试。
测试深度时,仪器的设置与谷值法的设置相同,首先找到电缆正上方,并且明确电缆走向后,在电缆正上方将路径传感器向与电缆走向垂直的方向倾斜45°角。
电缆故障测试仪的使用方法一、准备工作1.确保测试仪内部的电源已经接通,并确认电池电量充足。
如果使用外接电源供电,确保电源已连接并正常工作。
2.将测试仪的测量端口与待测试的电缆连接。
确保连接牢固且接触良好。
3.打开测试仪的电源开关,确保仪器开始工作。
二、测试前的设置1.根据待测试电缆的特性和要求,设置合适的测量参数。
这些参数包括电压范围、电流大小、测量时间等。
可以参考电缆的技术规格书或相关标准确定参数。
2.设置测试仪的工作模式。
测试仪通常具有多种工作模式,如直流模式、交流模式、脉冲模式等。
根据电缆的特性选择合适的工作模式。
三、开始测试1.先进行预测试。
预测试主要是为了了解电缆的整体状态,检测是否存在明显的故障点。
预测试可以通过测量电缆的电阻来进行,也可以通过对电缆施加一定的电压或电流来进行。
2.根据测试仪的指示进行测量。
根据测量参数的设置,在测试仪上选择相应的测量功能和范围。
按下开始按钮开始测量。
四、分析测量结果1.测量结果通常会以数字或图形的形式显示在测试仪的屏幕上。
根据显示的结果,可以判断电缆是否存在故障以及故障的类型和位置。
2.通过比较测量结果和标准值,可以评估电缆的质量和性能,并确定是否需要进行维修或更换。
五、记录和报告1.对于每次测试,应当记录相关信息,包括测试时间、测试地点、测试参数、测量结果等。
这些信息可以用于后续分析和比较。
2.如果发现故障,应当及时报告给相关人员,并提供详细的测试结果和建议。
六、注意事项1.在使用电缆故障测试仪之前,必须仔细阅读并遵守测试仪的操作手册和安全提示。
2.在使用测试仪时,要保证仪器处于安全的工作环境中,远离高温、潮湿和易燃物品等。
3.测试时应当注意避免错误的接线,确保电缆和测试仪之间的连接正确可靠。
4.注意安全使用高压电源。
在使用高压模式进行测试时,必须遵守相关的安全操作规程,并戴好防护设备。
6.定期对测试仪进行检查和校准,确保其工作正常和准确。
总结:电缆故障测试仪的使用方法主要包括准备工作、测试前的设置、开始测试、分析测量结果、记录和报告以及注意事项。
电缆故障测试检测查找仪器使用方法电缆故障测试检测查找仪器使用方法---1. 简介电缆是电力传输的关键组成部分,在工业生产和日常生活中发挥着重要作用。
然而,电缆在长时间使用后可能会出现故障,导致电力传输中断或不稳定。
为了有效地检测和查找电缆故障,我们需要使用专业的电缆故障测试检测查找仪器。
本文将介绍这些仪器的使用方法,帮助用户快速准确地定位电缆故障。
2. 仪器准备在开始使用电缆故障测试检测查找仪器之前,需要进行一些准备工作。
以下是准备工作的步骤:- 确保所需仪器已全部准备齐全,包括电缆故障测试仪、电缆定位仪、电缆局放仪等。
- 阅读仪器的用户手册,了解仪器的功能和操作流程。
- 根据需要准备好测试电缆,确保其符合测试要求。
3. 电缆故障测试检测仪的使用方法电缆故障测试检测仪是一种用于测量和判断电缆绝缘状态的仪器。
以下是电缆故障测试检测仪的使用方法:1. 将电缆故障测试检测仪连接到电缆上,并确保连接牢固。
2. 根据仪器的要求选择相应的测量模式。
- 若只需测量电缆的绝缘电阻,则选择绝缘电阻测量模式。
- 若需要测量电缆的介质损耗,则选择介质损耗测量模式。
- 若需要检测电缆的局部放电情况,则选择局部放电测量模式。
3. 按下仪器上的开始测试按钮,待测试结果显示在仪器的屏幕上。
4. 根据测试结果,判断电缆的绝缘状况是否正常。
- 若测试结果显示绝缘电阻过低,则说明电缆出现绝缘故障。
- 若测试结果显示介质损耗过大,则说明电缆出现介质故障。
- 若测试结果显示局部放电存在,则说明电缆出现局部放电故障。
4. 电缆定位仪的使用方法电缆定位仪是一种用于定位电缆故障点的仪器。
以下是电缆定位仪的使用方法:1. 将电缆定位仪连接到电缆上,并确保连接牢固。
2. 打开电缆定位仪,并选择定位模式。
- 若只需定位电缆故障的大致位置,则选择粗略定位模式。
- 若需要更准确地定位电缆故障点,则选择精确定位模式。
3. 沿着电缆线路移动电缆定位仪,观察仪器上的指示灯或屏幕显示。
电缆故障检测仪的测距方法检测仪技术指标电缆故障检测仪是一套综合性的电缆故障探测仪器。
能对电缆的高阻闪络故障,高处与低处阻性的接地,短路和电缆的断线,接触不良等故障进行测试。
1、电缆故障测距的方法①电缆故障检测仪是一套综合性的电缆故障探测仪器。
能对电缆的高阻闪络故障,高处与低处阻性的接地,短路和电缆的断线,接触不良等故障进行测试。
1、电缆故障测距的方法①实时专家系统专家系统就是一个具有智能特点的计算机程序,它的智能化紧要表现为能够在特定的领域内仿照人类专家思维来求解多而杂问题。
因此,专家系统必需包含领域专家的大量学问,拥有仿佛人类专家思维的推理本领,并能用这些学问来解决实际问题。
②利用因果网对电力系统故障定位。
因果网络中有4类节点状态、征兆、假设、起始原因。
状态节点是表达领域中某部分或某功能的状态,如断路器跳闸;征兆节点是表达状态节点的征兆,如断路器跳闸的征兆是保护动作:假设节点是表达讨论系统的诊断假设,如发生线路故障的假设;起始原因节点是表达引起故障的最初原因。
各类节点之间可形成对应的基本关系。
③小波变换应用在电缆故障测距中小波分析是几个学科共同进展的结晶,这几个学科是数学、信号处理以及计算机视觉。
小波分析在数学上是用小波的原型函数来实现的,其中原型函数可以看成是带通滤波器,因此小波分析也可以通过滤波器来实现,其关键是寻求具有恒定相对带宽的滤波器组,而这正是信号处理中滤波器组理论的核心内容。
2、电缆故障定点的新方法①人工神经网络人工神经网络(ANN)是以计算机网络系统模拟生物神经网络的智能计算系统。
网络上的每个结点相当于一个神经元,经可以记忆(存储)、处理确定的信息,并与其他结点并行工作。
求解一个问题是向人工神经网络的某些结点输入信息,各结点处理后向其它结点输出,其它结点接受并处理后再输出,直到整个神经网工作完毕,输出最后结果。
②GPS(全球定位系统)行波故障定位传统的高压输电线路故障定位紧要基于阻抗算法,这种算法对于高阻接地、多端电源线路、直流输电线路等情况存在明显的不适应,通常在应用中其故障定位精度100km)难以充分寻线要求。
电缆故障测距方法在线测距方法故障定位技术的发展主要经历了三个阶段:模拟式定位技术、单端数字式定位技术、双端定位技术。
早期的故障定位装置是机电式或静态电子仪器构成的模拟式装置。
后期的故障录波器是以光电转化为原理、以胶片为记录载体、根据故障录波仪记录的电信号来粗略估计故障点位置。
测试技术的出现以及计算机技术和通信技术都加速了故障定位技术的发展。
这个阶段出现了许多利用计算机进行故障定位的方法,其特点是采用单端信息,应用计算机的超强运算能力对各自算法进行修正,求得故障距离。
有些算法已应用到实际故障定位装置中,不足之处是无法克服故障电阻对故障定位精度的影响。
其中,单端阻抗法只用到线路一侧的电压、电流测量值,由于其理论上无法克服过渡电阻的影响,需要在测距算法中做一定的假设,所以其测量精度在很多情况下难以保证,但是有着造价低,不受通信因数的限制的优点,在实际应用中有着一定的应用需求。
单纯依靠单端信息不能有效地消除因素包括:负荷电流;系统运行阻抗;故障点过渡电阻,这自然影响到测距的精度。
单端行波法是基于单端信息量的一种测距方法,其中单端行波测距的关键是准确求出行波第一次到达监测端与其从故障点反射回到监测端的时间差,并包括故障行波分量的提取。
常用的行波单端故障定位算法有求导数法、相关法、匹配滤波器法和主频率法。
由于行波在特征阻抗变化处的折反射情况比较复杂(如行波到达故障点后会发生反射也会通过故障点折射到对侧母线上去),非故障线路不是“无限长”,由测量点折射过去的行波分量经一定时间后,又会从测量点折射回故障线路等,使行波分析和利用单端行波精确故障定位有较大困难。
双端行波测距是通过计算故障行波到达线路两端的时间差来计算故障位置,其测距精度基本不受线路的故障位置、故障类型、线路长度、接地电阻等因素的影响。
双端行波法的关键是准确记录下电流或电压行波到达线路两端的时间,误差应在几微秒以内,以保证故障定位误差在几百米内,行波在线路上的传播速度近似为300m/μs,1μs 时间误差对应约150m 的测距误差。
说说使用电缆故障测试仪的测试方法仪器在测定电缆故障之间,测试人员除掌握本机性能与操作方法之外,必须首先确定电缆故障的性质,以便采用适当的工作方法与测试方法。
首先用兆欧或万用表在电缆一端测量各相对地及相之间的绝缘电阻,根据阻值高低确定是低阻短路或断线开路,或者是高阻闪络性故障。
操作方法1、当阻值低于200〜300欧姆为低阻故障,。
〜几十欧为短路故障,阻值极高到无限大为开路或断线故障。
是否断线,还可以将电缆终端相连用表在始端测量被短路接两相的阻值加以确认。
此类故障可用低脉冲法直接测定。
2、当阻值很高(数百兆和千兆)且在作高压实验时有瞬间放电现象,此类故障一般称为闪络性故障,可采用直流高压闪测法确定。
3、高阻故障:阻值高于低阻故障,且在作高压试验时直流高压闪测法确定。
4、按一定方式粗略测试之后再进行确定点,必要时需找电缆路径,丈量电缆长度或距离。
主要特点1、功能齐全,测试故障安全、迅速、准确。
仪器采用低压脉冲法和高压闪络法进行探测,可测试电缆的各种故障,对电力电缆的闪络及高阻故障无需烧穿而直接测试。
如配备声点仪,可准确测定故障点的位置2、测试精度高。
仪器采用高速数据采样技术,读取分辨率标。
智能化程度高。
测试结果以小型及数据自动显示在大屏幕液晶显示屏上,判断故障直观。
并配有菜单显示操作功能,无需对操作人员作专门的训练。
3、具有波开及参数存储、调出功能。
采用非易失性器件,关机后波形、数据不易失。
4、具有双踪显示功能。
可将故障电缆的测试波形与正常波形进行对比,有利于对故障的进一步判断。
5、具有波形扩展比例功能。
改变波形比例,可扩展波形进行精确测试。
6、控制测量光标,可自动沿线搜索,并在故障波形的拐点处自动停下。
7、可任意改变双光标的位置,直接显示故障点与测试点的直接距离或相对距离。
8、具有打印功能。
将测试的结果打印存档。
技术参数1.测试距离不小于10公里。
2.故障点定位误差小于0.5米。
3.电缆路径探测不小于10公里。
电缆故障测试仪的特性和测距方法电力电缆故障检测的基本方法是对故障电缆施加高压脉冲,在故障点产生击穿,电缆故障的击穿点在放电过程中产生电磁波和声音。
结合低压脉冲、脉冲电流、声磁同步定点等方法;检测断线、低电阻、高电阻、闪络等故障;智能水平高,可自动判断故障点是否放电,并自动计算故障距离。
下面为大家介绍一下HT-TC电缆故障测试仪的特性和检测方法:电缆故障检测仪的特性特性1:功能齐全,安全、快速。
该仪器采用低压脉冲法和高压闪络法检测电缆的各种故障,特别是电缆的闪络和高电阻故障,可直接进行不烧损检测。
如果配备了声点探测器,可以准确地确定故障的确切位置。
特性2:采用大屏幕液晶真彩色嵌入式计算机,具有电缆路径、定位和故障定位功能。
仪器采用网络和数字通信技术,极大地提高了仪器的使用功能和测试精度。
特性3:电缆故障测试仪根据不同功能打开不同的电源通路,最大限度地降低功耗;如果15分钟内不工作,仪器将自动关机;当电池电压过低时,仪器将自动关机,以保护电池。
集成设备体积小,重量轻,携带方便。
电缆故障检测仪的测距的方法方法1:实时专家系统专家系统是一个具有智能化特点的计算机程序。
它的智能化主要表现为在特定领域模仿人类专家思维解决复杂问题的能力。
方法2:利用因果网对电力系统故障定位因果网络中有四种类型的节点状态、症状、假设和初始原因。
状态:表示领域中某部分或功能的状态,如断路器跳闸;症状:表示状态节点的标志,例如断路器跳闸标志是保护动作;假设:表示研究系统的诊断假设,如线路故障假设;初始原因:表示故障的初始原因。
可以形成各种节点之间的基本关系。
方法3:小波变换应用在电缆故障测距中小波分析是数学、信号处理和计算机视觉等几门学科共同发展的结晶。
小波分析是通过小波的原型函数数学实现的,其中原型函数可以看作是带通滤波器,因此小波分析也可以通过滤波器实现。
关键是找到一个相对带宽恒定的滤波器组,这是滤波器组理论在信号处理中的核心内容。
电缆故障测试仪PK传统电缆故障测距方法
随着电缆用量在整个电力传输线路和因特网中所占的比例日益提高,电缆故障出现的几率越来越大。
电缆故障对生产造成的危害较大,轻者会造成单台电气设备不能运行,重者会导致整个变电所停电,所以电缆故障点的快速测定和精确定位问题变得非常重要。
按照传统的电缆故障测距方法已经远远满足不了目前的电网体系,传统的方法费时费力定位也不准确,对电网的快速检修产生了比较大的阻力。
所以我们需要更快速更准确的测试设备进行支持,即电缆故障测试仪,新一代的电缆故障测距神器!
电缆故障测距设备及传统方法主要有以下四种:
电桥法:这是电力电缆的测距的经典方法。
该方法比较简单,但需要事先知道电缆线长度等数据,且只适用于低阻及短路故障。
但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般的灵敏度仪表很难探测。
脉冲回波法:针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比起上面的电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。
测试时将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。
利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。
该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。
脉冲电压法。
该方法可用于测量高阻与闪络故障。
首先将电缆故障在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点与故障点往返一次所需的时间来测距。
脉冲电压法的一个重要优点是不必将高阻与闪络性故障烧穿,直接利用故障击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。
但缺点是:
①仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差;
②在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿;
③在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。
脉冲电流法:该方法安全、可靠、接线简单。
其方法是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。
该方法用互感器将脉冲电流耦合出来,波形较简单,较
安全。
这种方法也包括直闪法及冲闪法两种。
与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记录仪器与操作人员来说,特别安全、方便,但是只局限于不带电电缆检测,对线路也是有一定的损害的。
电缆故障检测以及定点的新方法—电缆故障测试仪
利用高频信号发生器向电缆输入高频电流,这样会产生高频电磁波,然后在地面上用探头沿电缆路径接收电缆周围高频电磁场,电磁场的变化经接收处理后直接在液晶屏幕上显示出来,根据显示出数值的大小直接判断故障点位置。
高频感应法与传统音频感应法相比有如下很多优点。
高频信号源本身就比音频信号源容易实现,制造容易,可以减少定点探测装置的体积和重量,为设备的小型化和便携创造有利条件。
高频信号的频谱抗干扰性能较强。
该方法可以直接将结果显示出来,比靠人耳辨别更可靠,更方便。
用高频感应法比音频感应法要优越得多,而且它可在不停电情况下用耦合式接线来实施在线故障探测。
电缆故障测试仪可以适用于各种型号的电线电缆,可进行带电电缆在线检测,对线路没有任何损害,不会影响线路传输问题,检测结果快速准确,有液晶屏显示结果简单明了操作简单,是现代电网快速节奏最好的电缆检测设备。