随机化区组设计
- 格式:pdf
- 大小:978.09 KB
- 文档页数:14
第五节随机单位组设计随机单位组设计(randomized block design)也称为随机区组(或窝组)设计(随机化完全区组设计)。
它是根据局部控制的原则,如将同窝、同性别、体重基本相同的动物划归一个单位组,每一单位组内的动物数等于处理数,并将各单位组的试验动物随机分配到各处理组,这种设计称为随机单位组设计。
随机单位组设计要求同一单位组内各头(只)试验动物尽可能一致,不同单位组间的试验动物允许存在差异,但每一单位组内试验动物的随机分组要独立进行,每种处理在一个单位组内只能出现一次。
例如,为了比较5种不同中草药饲料添加剂对猪增重的效果,从4头母猪所产的仔猪中,每窝选出性别相同、体重相近的仔猪各5头,共20头,组成4个单位组,设计时每一单位组有仔猪5头,每头仔猪随机地喂给不同的饲料添加剂。
这就是处理数为5,单位组数为4的随机单位组设计。
一、随机单位组设计方法(一)随机单位组设计(随机化完全区组设计)的分组方法在畜牧、水产等动物试验中,除把初始条件相同的动物如同窝仔畜划为同一单位组外,还可根据实际情况,把不同试验场、同一场内不同畜舍、不同池塘等划分为单位组。
下面结合例子说明分组的方法。
【例12.3】前面提到的5种中草药饲料添加剂分别以A1、A2、A3、A4、A5表示,供试4窝仔猪分别按体重依次编号为:1-5号为第Ⅰ组,6-10号为第Ⅱ组,11-15号为第Ⅲ组,16-20为第Ⅳ组。
试按随机单位组设计将试验仔猪分组。
分组:先从随机数字表(Ⅱ)第15行、第11列15开始,向下依次抄下16个随机数字(舍弃00),每抄4个数字留一空位,见表12-2第2行。
再将同一单位组内前4个随机数字依次除以5、4、3、2(最大数5为处理数),根据余数(余数为0者,以除数代之)确定每一单位组内各供试仔猪喂给的添加剂种类。
如第一单位组中,第一个余数是5,则将第1号仔猪喂给5种添加剂列于第5位的A5添加剂;第二个余数是2,则将第2号仔猪喂给剩下的4种添加剂A1、A2、A3、A4列于第二位的A2添加剂;第三个余数是3,则将第3号仔猪喂给剩下的3种添加剂A1、A3、A4列于第三位的A4添加剂;第四个余数是1,则将第4号仔猪喂给剩下的2种添加剂A1、A3列于第1位的A1添加剂;第5号仔猪只能喂给剩下的A 3添加剂。
(精编资料推荐)随机区组设计随机区组设计方差分析概述随机区组设计又称为配伍设计,该方法属于两因素方差分析(Two-WayANOVA),用于多个样本均数间的比较,比如动物按体重、窝别等性质配伍,然后随机地分配到各个处理组中,即保证每一个区组内的观察对象的特征尽可能相近。
同一受试对象在不同时间点上观察,或同一样品分成多份,每一份给予不同处理的比较也可用随机区组设计进行分析。
随机区组设计分组原则:在某些研究中,先将受试对象按可能影响试验结果的属性分组(非随机组),分组的原则是将属性相同或相近的受试对象分在同一组内,如将病人按年龄/性别/职业或病情分组,或者将动物按性别/体重分组,然后采取随机化的方法对每个组内的受试对象分配各种处理。
如此以来,可使得区组内的观察单位同质性好,使各比较组的可比性强,使组间均衡性好,处理因素的效应更容易检测处理。
随机区组设计方差分析用于分析两个或两个以上因素是否对不同水平下样本的均值产生显著的影响;检验多个因素取值水平的不同组合之间,因变量的均值是否存在显著性差异。
其既可以分析单个因素的作用(主效应),也可以分析因素之间的交互作用(交互效应),还可以进行协方差分析,以及各因素变量与协变量之间的交互作用。
若有两个因素A与B,因素A与B间不存在交互作用,那么可以对因素A和B各自进行独立分析,在后续分析中去除不显著的因素。
如果方差分析结果显示因素A和B间存在交互作用,则需对数据进行进一步分析,具体包括:在因素A的某个水平下,因素B对响应变量的作用在因素B的某个水平下,因素A对响应变量的作用在所有因素(A/B)的组合中,哪两组的差异最大SPSS实现随机区组设计方差分析示例:研究3种不同的避孕药A/B/C在体内的半衰期,考虑到窝别对结果的影响,采用随机区组设计方案。
将同一窝别的3只雌性大白鼠随机分配到A/B/C3组,测定该药在血液中的半衰期(小时),试分析3种药物的半衰期有无不同?1.示例分析:目的:确认3种药物的半衰期有无不同;不同窝别对半衰期有所影响,考虑该该问题,按照窝别进行配伍设计,在同一配伍内随机分配A/B/C三种药物。
生物统计学
随机区组设计
随机区组设计(randomized blocks design),亦称完全随机区组设计(random complete block design)。
这种设计的特点是根据“局部控制”的原则,在若干个“局部”完成试验。
例如,试验地按肥力程度划分为等于重复次数的区组,一区组安排一重复,区组内各处理都独立地随机排列。
这是随机排列设计中最常用、最基本的设计。
排列
随机区组设计有以下优点:
(1)设计简单,容易掌握;
(2)富于伸缩性,单因素、多因素以及综合性的试验都可应用;(3)能提供无偏的误差估计,并有效地减少单向的肥力差异,降
低误差;
(4)对试验地的地形要求不严,必要时,不同区组亦可分散设置在不同地段上。
不足之处:
这种设计不允许处理数太多,一般不超过20个。
因为处理多,区组必然增大,局部控制的效率降低,而且只能控制一个方向的土壤差异。
谢谢!。
随机区组设计五个品种摘要:一、引言二、五个品种的概述1.品种12.品种23.品种34.品种45.品种5三、随机区组设计介绍四、五个品种的随机区组设计方法五、实验结果与分析六、结论正文:一、引言在农业生产和科学研究中,对不同品种的农作物进行对比实验是常见的方法,以期找出产量高、品质好、抗病性强等特性的品种。
为了提高实验的准确性和可靠性,常常采用随机区组设计来进行实验。
本文将对五个品种的农作物进行随机区组设计实验,并分析实验结果。
二、五个品种的概述1.品种1:水稻,产量高、品质好,但对某种病害较敏感。
2.品种2:小麦,耐寒性强,抗病性好,但产量较低。
3.品种3:玉米,生长速度快,适应性强,但易受虫害影响。
4.品种4:大豆,蛋白质含量高,抗逆性强,但易受土壤养分限制。
5.品种5:油菜,油脂含量高,生长期短,但对环境适应性较差。
三、随机区组设计介绍随机区组设计是一种常用的实验设计方法,它将实验对象分为若干个区组,每个区组内的实验对象分别接受不同的处理,以消除实验误差,提高实验效果。
四、五个品种的随机区组设计方法以品种1 为例,首先将品种1 分为若干个区组,每个区组分别进行不同的处理,如施肥、灌溉、病虫害防治等。
然后,在每个区组内,分别观察和记录五个品种的生长情况、产量、品质等指标。
五、实验结果与分析经过一段时间的观察和记录,得到五个品种在各区组内的实验数据。
通过分析这些数据,可以发现每个品种在不同处理下的优缺点,以及各品种之间的差异。
例如,在施肥处理下,品种1 的产量显著提高,品种2 的品质得到改善;在灌溉处理下,品种3 的生长速度加快,品种4 的抗逆性增强等。
六、结论通过对五个品种进行随机区组设计实验,可以较为准确地了解各品种在不同处理下的表现,为农业生产和品种选育提供科学依据。
第十一章随机区组试验知识目标:●掌握随机区组试验田间试验设计方法;●掌握随机区组排列田间试验结果统计分析方法。
技能目标:●学会随机区组试验设计;●能够绘制随机区组设计田间布置图;●学会随机区组试验结果统计分析。
随机区组试验设计是把试验各处理随机排列在一个区组中,区组内条件基本上是一致的,区组间可以有适当的差异。
随机区组试验由于引进了局部控制原理,可以从试验的误差方差中分解出区组变异的方差(即由试验地土壤肥力、试材、操作管理等方面的非处理效应所造成的变异量),从而减少试验误差,提高F检验和多重比较的灵敏度和精确度。
随机区组试验也分为单因素和复因素两类。
本节只介绍单因素和二因素随机区组试验的方差分析方法,第一节单因素随机区组试验和统计方法一、随机区组设计随机区组设计(randomized blocks design)是根据“局部控制”和“随机排列”原理进行的,将试验地按肥力程度等性质不同划分为等于重复次数的区组,使区组内环境差异最小而区组间环境允许存在差异,每个区组即为一次完整的重复,区组内各处理都独立地随机排列。
这是随机排列设计中最常用、最基本的设计。
区组内各试验处理的排列可采用抽签法或随机数字法。
如采用随机数字法,可按照如下步骤进行:(1)当处理数为一位数时,这里以8个处理为例,首先要将处理分别给以1、2、3、4、5、6、7、8的代号,然后从随机数字表任意指定一页中的一行,去掉0和9及重复数字后,即可得8个处理的排列次序。
如在该表1页第26行数字次序为0056729559,3083877836,8444307650,7563722330,1922462930 则去掉0和9以及重复数字而得到56723841,即为8个处理在区组内的排列。
完成一个区组的排列后,再从表中查另一行随机数字按上述方法排列第二区组、第三区组……,直至完成所有区组的排列。
(2)当处理数多于9个为两位数时,同样可查随机数字表。
从随机数字表任意指定一页中的一行,去掉00和小于100且大于处理数及其最大整数倍相乘所得的数字及重复数字后,将剩余的两位数分别除以处理数,所得的各余数即为各处理在此区组内的排列。