初中数学圆与圆的位置关系 ppt课件
- 格式:ppt
- 大小:149.50 KB
- 文档页数:7
3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。
课时教案课次:33教务主任签名:一、选择1. (泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )A .外离B .外切C .相交D .内切2. (滨州)已知两圆半径分别为2和3,圆心距为,若两圆没有公共点,则下列结论正确的是( ) A . B . C .或 D .或3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离4. .(益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是5.(肇庆)10.若与相切,且,的半径,则的半径是( )A .3B . 5C . 7D . 3 或76. (遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是A.4π-8B. 8π.16π- 7.(常德市)如图4,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( )A .4cmB .5cmC .6cmD .8cm8.(荆州年)如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则图中阴影部分的面积是( ) A . B . C . D . 9.(乌鲁木齐市)若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ).A .1B .2C .3D .4 10.(陕西省)图中圆与圆之间不同的位置关系有 ( )A .2种B .3种C .4种D .5种二、填空 11.(济宁市)已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 . 12. (齐齐哈尔市)已知相交两圆的半径分别为和,公共弦长为,则这两个圆的圆心距是_____________.13.(锦州)如图所示,点A.B 在直线MN 上,AB=11cm ,⊙A 、.⊙B 的半径均为1cm ,⊙A以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A 出发后____秒两圆相切.14. (重庆)已知的半径为3cm ,的半径为4cm ,两圆的圆心距为7cm ,则与的位置关系是 .15. (莆田)已知和的半径分别是一元二次方程的两根,且则和的位置关系是 . 16.(宜昌)如图,日食图中表示太阳和月亮的分别为两个圆, 这两个圆的位置关系是 .B . D . A .C .17.(绍兴市)如图,,的半径分别为1cm ,2cm ,圆心距为5cm .如果由图示位置沿直线向右平移3cm ,则此时该圆与的位置关系是__________.18.(威海)如图,⊙O 1和⊙O 2的半径为1和3,连接O 1O2,交⊙O 2于点P ,O 1O 2=8,若将⊙O 1绕点按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切_______次.19.(大兴安岭)已知相切两圆的半径分别为和,这两个圆的圆心距是 . 20.(佛山市)已知的三边分别是,两圆的半径,圆心距,则这两个圆的位置关系是 . 三、解答 21.(兰州)如图16,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A .与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC .AD .BC 之间的数量关系,并说明理由; (3)若,求大圆与小圆围成的圆环的 面积.(结果保留π)22.(凉山州)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于两点,过作直线与轴负方向相交成60°的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;23.(枣庄市) 如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径;(2)求图中阴影部分的面积.第23题图COABD。
第十七讲 圆和圆的位置关系【趣题引路】如图,在篮球比赛中,进攻一方都想尽可能接近对方球篮,•但又不能轻易进入限制区,因而进攻一方往往有一两名队员站在限制区外一点,伺机接球后转身投篮,他们站在何处比较有利?解析 现以篮圈中心O 为圆心,作与限制区两边相切的圆,切点为E 、F,这时E 、F 两处并非最佳点,因为横转一步后到A 、B 或C 、D 处,反而离篮圈远了;而B 、D•两处只能向一边转身到E 和F 点投篮,因而在A 、C 两处,即可转身到E 或F 投篮,•又可向另一侧转身插入限制区后投篮,因此,高大队员站在A 、C 两处最有利.【知识延伸】圆与圆的位置关系有外离、外切、相交、内切、内含五种情形.•判定两圆的位置关系有如下方法:1.由两圆交点的个数确定;2.由计算两圆的半径与圆心距的大小量化确定;3.由两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些辅助线.在解两圆相交问题时,•常用的辅助线有:1.连结公共弦━━目的在于利用圆周角的性质和圆内接四边形的性质来沟通角与角的联系;2.作连结线━━目的在于利用“连心线垂直平分公共弦”及垂径定理.3.连结圆心与两圆交点的线段━━目的在于得到等弦、等弧及相等的圆心角,•特别是一个圆的圆心在另一个圆上时,常作这种辅助线.涉及两圆相切问题时,添加的辅助线有:1.过切点作两圆的公切线,利用弦切角性质或切线的有关性质;2.作连心线,利用连心线过切点的性质,为解题提供条件.在解题过程中,我们经常遇到与外切两圆有关的两个直角三角形.(1) 如图1,⊙O 1与⊙O 2相外切于点P,AB 为两圆的外公切线,切点为A 、B,•过P 作内公切线PC 交AB 于C,则△CO 1O 2是直角三角形.解析 ∵CA=CP,C O 1平分∠ACP.同理C O 2平分∠BCP,∴∠O 1CO 2=90°,则△C O 1O 2是直角三角形.(2) 如图2,⊙O 1与⊙O 2相外切于点P,AB 为两圆的外公切线,切点为A 、B,•则△PAB 为直角三角形.(1) (2) (3)解析 过P 作内公切线PC 交AB 于点C,则CA=CP=CB,即CP=12AB, 所以△PAB 是直角三角形.(3) 若⊙O 1和⊙O 2外离,如图3,O 1O 2与⊙O 1,⊙O 2分别交于C 、D 两点,•延长AC 、BD 交于点P,AP 与BP 是否仍垂直?解析 连结A O 1,BO 2,由O 1A ⊥AB,O 2B ⊥AB 可知O 1A ∥O 2B,因此∠O 1+∠O 2=180°.而△O 1AC,△O 2B D 都是等腰三角形.∴∠A CO 1+∠BDO 2=11802O ︒-∠+21802O ︒-∠=90°. ∴∠DCP+∠CDP=90°,则∠CPD=90°,即AP ⊥BP.若⊙O 1与⊙O 2相交,如图4,O 1O 2与⊙O 1,⊙O 2分别交于点C 、D.AC 、BD 交于点P.AP 与BP 是否仍垂直?显然与上面相同的办法可证得AP ⊥BP.(4) (5)我们常把三个切点A 、B 、P 构成的三角形称作“切点三角形”.如图5,•切点三角形还具有如下性质:1.AB 边上的中线等于AB 的半;2.BP 延长线交⊙O 1于点D,则AD 必为⊙O 1的直径;3.由AP ⊥BD,AD ⊥AB.可得到若干线段的等积式.遇到涉及两圆外切一类的几何命题,运用上述这些性质就会迎刃而解.例 已知,如图,⊙O 1和⊙O 2外切于点O,以直线O 1O 2为x 轴,点O•为坐标原点建立直角坐标系,直线AB 切⊙O 1于点B,切⊙O 2于点A,交y 轴于点C(0,2),交x 轴于M,•BO 的延长线交⊙O 2于点D,且OB:OD=1:3.(1)求⊙O 2的半径长;(2)求直线AB 的解析式;(3)在直线AB 上是否存在点P,使△MO 2P 与△MBO 相似?若存在,求出点P 坐标;若不存在,说明理由.解析 (1)连结BO 1,DO 2,则∠D=∠O 1BD.∴BO 1∥DO 2,∴O 1O:O 2O=BO:OD=1:3.∵CB=CO=CA,△ABO 为直角三角形,C(0,2),∴AB=4.作O 1N ⊥AO 2于点N,设B O 1=r,则A O 2=3r,对△O 1NO 2有16r 2=4r 2+16,∴12r 2=16,r=23则∴⊙O 2的半径为(2)在Rt △O 1NO 2中,N O 2= O 1O 2,∴∠N O 1O 2=30°.∵O 1N ∥AB,∴∠CMO=30°.在Rt △COM 中,tan30°=CO OM ,∴OM=tan 30CO =︒∴点M 坐标为设直线AB 的解析式为y=kx+b,则20b b =⎧⎪⎨=-+⎪⎩∴32k b ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为y= 3x+2; (3)∵∠BO 1M =60°,O 1B=O 1O,∴∠BOM=30°.∴△MOB 是等腰三角形,•且顶角∠MBO=120°,若存在满足条件的点P,则∠M O 2P=30°或∠M O 2P=120°.①当∠MO 2P=30°时,O 2P 是∠AO 2O 的平分线.∵OC 是∠AO 2O 的平分线,∴点P 与点C 重合,∴点P 的坐标为(0,2).②当∠M O 2P=120°时,作PH 垂直x 轴于点H,则∠PO 2H=60°.∵点P 在直线y= x+2上,∴设点P 坐标为(a, 3a+2), 则PH=3O 2H在Rt △PO 2H 中,tan ∠PO 2H=2PH O H ,2+解得∴点P 的坐标为因此在直线AB 上存在点P,使△MO 2P 与△MOB 相似,点P 坐标为(0,2)或点评(1)作两条过切点的半径,再平移外公切线,使之构成以圆心距为斜边,两条半径之差及外公切线的长分别为直角边的直角三角形,•这是两圆外切时最常见的辅助线之一;第(2)小题是(1)小题的深化;第(3)小题是一个存在性问题,其解题方法一般是:假设存在━━依假设求解或推证━━下结论.第(3)小题也是一个比较好的分类讨论问题,解答此类问题,要加倍小心,谨防失解.【好题妙解】佳题新题品味例1 如图,⊙O 和⊙O ′相交A 、B 两点,且⊙O ′过⊙O 的圆心,直线OO ′交⊙O 于C 、D 两点,交⊙O ′于点P,AB 与OO ′交于点E.求证:(1)P A 2=PE ·PO;(2)PE ·EO=CE ·ED;(3) 22PA CE PD ED =. 证明 (1)连结AO,∵PO 是⊙O ′的直径,∴∠PAO=90°,∵⊙O 与⊙O ′相交于A 、•B,∴AB ⊥PO 于点E,∴△PAO ∽△PEA.∴ PA PE PO PA=,∴PA 2=PE ·PO; (2)在⊙O ′中,PE ·EO=AE 2,在⊙O 中,AE 2=CE ·ED,∴PE ·EO=CE ·ED.(3)连结AC,AD.∵AD 切⊙O 于点A,∴∠PAC=∠D.∵∠P=∠P,∴△PAC ∽△PDA.∴PA ACPD AD=, ∴2222PA ACPD AD=∵CD是⊙O的直径,∴∠CAD=90°.∵AE⊥CD,∴△ACE∽△DCA,∴AC CE CD AC=.∴AC2=CE·CD.同理,得A D2=ED·CD.∴22AC CE CD CE AD ED CD ED ==∴22PA CE PD ED=点评(1)将P A2=PE·PO化为PA PEPO PA=,由“三点定形法”可知,能证△PAO∽△PEA就行了;第(2)小题利用公共弦进行代换,是相交两圆用的方法;第(3)•小题要证两条线段的平方比等于另两条线段的比,•用到的方法是先通过相似三角形得到恰当的四条线段的比,再将此比例式两边分别平方,•然后再将过渡的两条线的平方分别交换成两条线段的积,从而证得结论成立,这种方法是证明类似第(3)•小题的比例线段的常用方法.例2如图,⊙O1与⊙O2内切于点P,⊙O2的弦BE与⊙O1相切于点C,PB•交⊙O1于D,PC 的延长线交⊙O2于A,连结AB、CD、PE.求证:(1)①∠BPA=∠EPA,②AB BC AC BD=;(2)若⊙O1的切线BE经过⊙O2的圆心,⊙O1、⊙O2的半径分别为r、R,•其中R•≥2r,如图.求证:PC·AC为定值.证明 (1)①过点P作两圆的公切线MN,则∠MPB=∠PCD=∠A,∴CD∥AB.∴∠ABC=∠ECD.∵BC为⊙O1的切线,∴∠BCD=∠BPA,∵∠ABC=∠EPA,∴∠BPA=∠EPA.②∵∠ABC=∠BPA,∠A=∠A,∴△ABC ∽△APB,∴AB BC PA PB =, ∴ABPA BCPB =,∵CD ∥AB,∴PA AC PB BD =, ∴AB BC AC BD = 即AB BC AC BD=. (2)连结O 1C,PO 2,则PO 2过点O 1,且O 1C=r,O 1O 2=R-r.∵BE 与⊙O 1相切,∴O 1C•⊥BE,在Rt △CO 1O 2中CO 2, ∴BC=BO 2+CO 2=,EC=E O 2-CO 2.∵PC ·AC=EC ·)=2Rt),∴PC ·AC 为定值.点评圆与圆的相交,相切等问题是研究圆与圆位置关系的重点,•解题时要熟练地掌握两圆的位置关系的判定,能灵活地用于解题中,•特别是对带有规律性的辅助线的添加更应熟悉.中考真题欣赏例1 (2003年天津市中考题)已知,如图,⊙O 1与⊙O 2外切于点A,BC•是⊙O 1和⊙O 2的公切线,B 、C 为切点.求证:(1)AB ⊥AC;(2)若r 1,r 2分别为⊙O 1,⊙O 2的半径,且r 1=2r 2,求AB AC的值. 证明:过点A 作两圆的内公切线交BC 于点O. ∵OA 、OB 是⊙O 1的切线,∴OA=OB.同理OA=OC,∴OA=OB=OC,于是,△BAC 是直角三角形,∠BAC=90°,∴AB ⊥AC.解析:(2)连结OO 1,OO 2,与AB 、AC 分别交于点E 、F,∵OA,OB 是⊙O 1的切线,∴O O 1⊥AB,同理OO 2⊥AC.根据(1)的结论AB ⊥AC,可知四边形OEAF 是矩形,有∠EOF=90°.连结O 1O 2,有OA ⊥O 1O 2,在Rt △O 1OO 2中,有Rt △O 1AO ∽Rt △OAO 2.∴12O A OA O A OA=,于是O A 2=O 1A·O 2A=r 1·r 2=2r 22. ∴又∵∠ACB 是⊙O 2的弦切角,∴∠ACB=∠A O 2O.在Rt △OAO 2中,tan ∠A O 2O=2OA O A∴AB AC=tan ∠ACB=tan ∠AO 2点评•作两圆的公切线和与外切两圆有关的两个直角三角形是解两圆相切问题的关键. 例2 (2002年山西省中考题)如图,已知,A 是⊙O 1、⊙O 2的一个交点,•点M 是O 1O 2的中点,过点A 的直线BC 垂直于MA,分别交⊙O 1、⊙O 2于B 、C.(1)求证:AB=AC.(2)若O 1A 切⊙O 2于点A,弦AB,AC 的弦心距分别为d 1,d 2,求证:d 1+d 2=O 1O 2.(3)在(2)的条件下,若d 1d 2=1,设⊙O 1、⊙O 2的半径分别为R 、r.求证:R 2+r 2=R 2r 2.证明:(1)分别作O 1D ⊥AB 于点D,O 2E ⊥AC 于点E,则AB=2AD,AC=2AE.∵AM ⊥BC,∴O 1D ∥AM ∥O 2E.∵M 为O 1O 2的中点,∴AD=AE,∴AB=AC; (2)∵O 1A 切⊙O 2于点A,∴O 1A ⊥O 2A .又∵M 为O 1O 2的中点,∴O 1O 2=•2AM.•在梯形O 1O 2E D 中,O 1D+O 2E=2AM,O 1D+O 2E=O 1O 2.即d 1+d 2=O 1O 2. (3)∵O 1A ⊥O 2A,∴∠AO 1D=∠O 2AE.∴Rt △O 1AD ∽Rt △AO 2E.∴1122O D O A AD O E AE O A==, 即12d AD R d AE r==∴AD ·AE=d 1·d 2=1. 由(1),(2)知AD=AE=1,O 1O 2=d 1+d 2.∴d 1=R r ,d 2=r R, ∴R 2+r 2=O 1O 22=(d 1+d 2)2=(R r +r R )=22222()R r R r , ∴R 2+r 2=R 2r 2.点评构建直角梯形O 1DEO 2,可证AD=AE,从而可得AB=AC.对于(2)因为△AO 1O 2为Rt △,AM 为△AO 1O 2斜边上的中线,所以O 1O 2=2A M,从而不难证明O 1D+O 2E =2AM.对于(3)•可构建以R 、r 为边的相似三角形,由(1)(2)的结论,可证得R 2+r 2=R 2r 2.竞赛样题展示例1 (2000年全国初中联赛试题)如图,⊙O 1与⊙O 2内切于点P,⊙O 2•的一弦AB 与⊙O 1相切于点Q,PQ 连线与⊙O 2相交于R,连结BR.求证:(1)AR=BR;(2)B R 2=PR ·QR.证明 (1)因⊙O 1,⊙O 2内切于点P,故O 2、O 1、P 三点共线,分别连结O 2P,O 2R,•O 1Q. 因AB是⊙O 1的切线,∴O 1Q ⊥AB.在等腰△O 1PQ 和等腰△O 2PR 中,∵∠O 1PQ=•∠O 2PR,∴∠PO 1Q=∠PO 2R,即有O 1Q ∥O 2R ,但O 1Q ⊥AB,∴O 2R ⊥AB,于是AR=BR.(2)连结PB,∵AR=BR,∴∠RBQ=∠RPB. 又∵∠BRQ=∠PRB,∴△BRQ ∽△PRB.∴BR:PR=QR:BR,故B R 2=PR ·QR.点评对于(1),连O 2R,利用同圆半径构成等腰三角形来证明.对于(2),连结BP,•证△BRQ ∽△PRB 即可.例2 (2001年第二届全澳门校际初中数学竞赛)如图,设大圆半径为R,•大圆内三个小圆两两相切,且都与大圆相切,它们的半径分别为2r,r 和r,试求r R之值. 解析 如图,点O 、B 均在图A 和图A ′的公切线上,•所以只需考虑图形的一半即可.设MO=x,MB=y,则MN=x+R.又∵MN=y+2r,于是,由x+R=y+2r,得x=y-R+2r.又AO=•OP-AP=R-r,AB=AK+KB=3r,由勾股定理,得y 2=MB 2=AB 2-A M 2=8r 2,即从而 类似地,x 2=MO 2=AO 2-A M 2=R 2-2Rr.故]2=R 2-2Rr即2r,∴r R =点评由圆的对称性只研究图形一半即可,通过两圆内切,•外切半径圆心距之间的关系,由勾股定理建立起方程,从而使问题获解.全能训练A 卷1.如果两圆相切,它们半径分别为3和5,那么它们的圆心距为________.2.已知⊙O 1与⊙O 2外切,半径分别为1cm,3cm,那么半径为5cm,且与⊙O 1、•⊙O 2都相切的圆可以共作出_________个.3.已知两圆相交,半径分别为5cm 和4cm,公共弦长为6cm,求这两圆的圆心距.4.已知两相交圆的半径分别为2,3,求圆心距d 的取值范围.5.如图,⊙O 1与⊙O 2相互外切且半径之比为2:3,O 1M 切⊙O 2于M,•O 2N •切⊙O 1于N, 笔求21O N O M的值.6.如图,已知⊙O 与⊙O ′相交于A 、B 两点,过点A 作⊙O ′的切线交⊙O 于点C,过点B 作两圆的割线分别交⊙O 、⊙O ′于点E 、F,EF 与AC 相交于点P.(1)求证: 22PE PF PC PB; (2)当⊙O ′与⊙O 为等圆且PC:CE:EP=3:4:5时,求△ECP 与△FAP 的面积的比值.A卷答案:1.8或2,当两圆外切时,圆心距为8;当两圆内切时,圆心距为2.2.4个.①与⊙O1,⊙O2都外切的圆有两个;②与⊙O1外切,与⊙O2•内切的圆有一个;③与⊙O1内切,与⊙O2外切的圆有一个.3.(1)当O1O2在公共弦AB的同侧时,O1O2(2)当O1、O2在公共弦AB•的异侧,O1O24.1<d<5.5.连结O1O2,O1N,O2M,则O1N⊥O2N,O2M⊥O1M.设⊙O1、⊙O2的半径分别为2x,•3x,则O1O2=5x,∴N O21∴2144O NO M x==.6.(1)连结AB,有∠CEB=∠F,∴EC∥AF.∴PE PFPC PA=,即2222PE PFPC PA=.又∵PA2=PB·PF,∴22PE PF PC PB=;(2)连结AE,由(1)可知△PEC∽△PFA,PC:CE:EP=3:4:5,∴PA:FA:PF=3:4:•5.•设PC=3x,CE=4x,PE=5x,PA=3y,FA=4y,PF=5y,则EP2=PC2+CE2,PF2=PA2+FA2,∴∠C=90°,∠CAF=90°.∴AE为⊙O的直径,AF为⊙O′的直径,又⊙O与⊙O′是等圆,∴AE=AF=•4y,∵A C2+CE2=AE2,∴(3x+3y)2=(4y)2-(4x)2.∴25x2+18xy-7y2=0.∴25x=7y,725xy=,∴S△ECP:S△FAP=x2:y2=49:625.B 卷1.如图1,半径为R 和r(R>r)的两圆⊙O 1与⊙O 2相交,公切线与连心线的夹角为30°,那么两圆公切线的长AB 等于( )A. 12(1) (2) (3)2.如图2,⊙O 1和⊙O 2内切于点P,⊙O 2的弦AB 经过⊙O 1的圆心O 1,交⊙O 1•于C 、D 点,其中AC:CD:DB=3:4:2,则⊙O 1和⊙O 2的直径之比为( )A.2:7B.2:5C.1:4D.1:33.如图3,⊙O 1与⊙O 2外切于点A,两圆的一条外公切线与⊙O 1相切于点B.若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为( )A.1:2B.3:4C.1:3D.2:54.如图,⊙O 与⊙O 1内切于点A,直线OO 1交⊙O 于点B,交⊙O 1于另一点F.•过B 点作⊙O 1的切线,切点为D,交⊙O 于点C,DE ⊥AB,垂足为E.(1)求证:CD=DE;(2)将两圆内切改为外切,其他条件不变,(1)中的结论是否成立?•请证明你的结论.5.如图,已知⊙O1和⊙O2外切于点A,BC是⊙O1和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O1于D,过D作CB的平行线交⊙O2于点E、F.(1)求证:CD是⊙O1的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.6.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论.(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.B卷答案:1.C.连O1A,O2B,过O2作O2E⊥O1A,在Rt△O1O2E中,可得R-r).2.D.过P作⊙O2的直径交⊙O2于Q,∵AC:CD:DB=3:4:2,可设AC=3k,CD=4k,DB=2k,AO1·O2B=O1P·O1Q,AO1=5k,O1B=4k,O1P=2k,∴5k·4k=2k·O1Q,∴O1Q=10k,∴⊙O2•直径PQ=12k,∴CD:PQ=4k.12k=1:3.3.C.连结O1C,O2D,过O1作O2D的垂线,垂足为E,两圆半径分别为r1,r2,由对称性可得∠C O1B=∠CO1A=∠AO1B=120°.故∠O2O1E=30°,于是r1+r2=2(r2-r1)•,•∴r1:r2=1:3.4.(1)连结DF,AD,AC,证Rt△EDA≌Rt△CDA即可.(2)成立,画图,证法同(1).5.(1)过点A作外公切线,连结AC,可证BA⊥AC,连结CD,则CD所对的圆周角为90°,故CD是⊙O1的直径.(2)BE=BF=BC.连结AE,△EBA∽△DBE,B E2=BA·BD.又BC2=BA·BD,∴BE=•CB.•∵∠CBE=∠BEF,∠CBE=∠EFB,∴∠EFB=∠BEF.∴BF=BE.6.(1)两圆外切,作⊙ABD的切线L交DE于H,延长BA交⊙AEC于F,可证∠HAE=∠C.•再证AH也是⊙AEC的切线.(2)延长DA交⊙AEC于G,连结GF,可证△ADB∽△AGF,∴AB:AF=2(等于两圆的半径)∵AB=4,∴AF=2.∵BA·BF=BE·BC,∴BE=4.。