初中数学圆与圆的位置关系 ppt课件
- 格式:ppt
- 大小:149.50 KB
- 文档页数:7
3·6圆和圆的位置关系1.圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.外离和内含都没有公共点;外切和内切都有一个公共点,相交有两个公共点.因此只从公共点的个数来考虑,可分为相离、相切、相交三种.(2)相交2.两圆相内切或外切时,两圆的连心线一定经过切点,都是轴对称图形,对称轴是它们的连心线.3.在图(1)中,两圆相外切,切点是A.因为切点A在连心线O1O2上,所以O1O2=O1A+O2A =R+r,即d=R+r:反之,当d=R+r时,说明圆心距等于两圆半径之和,O1、A、O2在一条直线上,所以⊙O1与⊙O2只有一个交点A,即⊙O1与⊙O2外切.在图(2)中,⊙O1与⊙O2相内切,切点是B.因为切点B在连心线O1O2,所以O1O2=O1B-O2B,即d=R-r:反之,当d=R-r时,圆心距等于两半径之差,即O1O2=O1B-O2B,说明O1、O2、B在一条直线上,B既在⊙O1上,又在⊙O2上,所以⊙O1与⊙O2内切.当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切 d=R+r当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切d =R-r.设两圆半径分别为R和r,圆心矩为d,那么(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r<d<R=r(R≥r)(4)两圆内切d=R-r(R>r)(5)两圆内含d<R-r(R>r)同心圆d=04.定理:相交两圆的连心线垂直平分两圆的公共弦.1.两个同样大小的肥皂泡黏(点O,O′是圆心),分隔两个肥皂泡的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.【解析】∵OP =OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2× 90°-60°=120°.2.如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm.求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?【解析】(1)设⊙O与⊙P外切于点A.∴ PA=OP-OA=8-5,∴ PA=3cm.(2)设⊙O与⊙p内切于点B.∴ PB=OP+OB=8+5,∴ PB=13cm.(3)如图7-101,⊙O2与以O1为圆心的同心圆相交于A、B、C、D.3.求证:四边形ABCD是等腰梯形.分析:欲证明四边形ABCD是等腰梯形,只需证明AB∥CD,AD=BC且AB≠CD即可.【解析】证明:连结O1O2,∵⊙O2与以O1为圆心的圆相交于A、B、C、D,∴ AB⊥O1O2,DC⊥O1O2.∴ AB∥CD.在⊙O2中,∵AB∥CD,又∵ AB≠CD,∴四边形ABCD是等腰梯形.4.已知:如图7-102,A是⊙O1、⊙O2的一个交点,点P是O1O2的中点.如果过A的直线MN垂直于PA,交⊙O1于M,交⊙O2于N.那么AM与AN有什么关系呢?是O1O2中点,由平行线等分线段定理可得AC=AD,而得结论.【解析】证明:过点O1、O2分别作O1C⊥MN,O2D⊥MN,垂足为C、D,又∵ PA⊥MN,∴ PA∥O1C∥O2D,∵O1P=O2P,∴ AC=AD.∴ AM=AN.。
课时教案课次:33教务主任签名:一、选择1. (泸州)已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距020=7cm ,则两圆的位置关系为( )A .外离B .外切C .相交D .内切2. (滨州)已知两圆半径分别为2和3,圆心距为,若两圆没有公共点,则下列结论正确的是( ) A . B . C .或 D .或3.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离4. .(益阳市)已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是5.(肇庆)10.若与相切,且,的半径,则的半径是( )A .3B . 5C . 7D . 3 或76. (遂宁)如图,把⊙O 1向右平移8个单位长度得⊙O 2,两圆相交于A.B ,且O 1A ⊥O 2A ,则图中阴影部分的面积是A.4π-8B. 8π.16π- 7.(常德市)如图4,两个同心圆的半径分别为3cm 和5cm ,弦AB 与小圆相切于点C ,则AB 的长为( )A .4cmB .5cmC .6cmD .8cm8.(荆州年)如图,两同心圆的圆心为O ,大圆的弦AB 切小圆于P ,两圆的半径分别为6,3,则图中阴影部分的面积是( ) A . B . C . D . 9.(乌鲁木齐市)若相交两圆的半径分别为1和2,则此两圆的圆心距可能是( ).A .1B .2C .3D .4 10.(陕西省)图中圆与圆之间不同的位置关系有 ( )A .2种B .3种C .4种D .5种二、填空 11.(济宁市)已知两圆的半径分别是2和3,圆心距为6,那么这两圆的位置关系是 . 12. (齐齐哈尔市)已知相交两圆的半径分别为和,公共弦长为,则这两个圆的圆心距是_____________.13.(锦州)如图所示,点A.B 在直线MN 上,AB=11cm ,⊙A 、.⊙B 的半径均为1cm ,⊙A以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(cm)与时间t(秒)之间的关系式为r=1+t(t≥0),当点A 出发后____秒两圆相切.14. (重庆)已知的半径为3cm ,的半径为4cm ,两圆的圆心距为7cm ,则与的位置关系是 .15. (莆田)已知和的半径分别是一元二次方程的两根,且则和的位置关系是 . 16.(宜昌)如图,日食图中表示太阳和月亮的分别为两个圆, 这两个圆的位置关系是 .B . D . A .C .17.(绍兴市)如图,,的半径分别为1cm ,2cm ,圆心距为5cm .如果由图示位置沿直线向右平移3cm ,则此时该圆与的位置关系是__________.18.(威海)如图,⊙O 1和⊙O 2的半径为1和3,连接O 1O2,交⊙O 2于点P ,O 1O 2=8,若将⊙O 1绕点按顺时针方向旋转360°,则⊙O 1与⊙O 2共相切_______次.19.(大兴安岭)已知相切两圆的半径分别为和,这两个圆的圆心距是 . 20.(佛山市)已知的三边分别是,两圆的半径,圆心距,则这两个圆的位置关系是 . 三、解答 21.(兰州)如图16,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A .与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC .AD .BC 之间的数量关系,并说明理由; (3)若,求大圆与小圆围成的圆环的 面积.(结果保留π)22.(凉山州)如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于两点,过作直线与轴负方向相交成60°的角,且交轴于点,以点为圆心的圆与轴相切于点.(1)求直线的解析式;23.(枣庄市) 如图,线段AB 与⊙O 相切于点C ,连结OA ,OB ,OB 交⊙O 于点D ,已知6OA OB ==,AB =(1)求⊙O 的半径;(2)求图中阴影部分的面积.第23题图COABD。