第4章 光学干涉测量技术
- 格式:ppt
- 大小:8.73 MB
- 文档页数:86
光学干涉:利用光波的干涉现象进行测量光学干涉是一种利用光波的干涉现象进行测量的方法。
在这种方法中,通过观察光波的干涉条纹模式,可以得到待测物体的某些性质的信息。
在本文中,我将详细介绍光学干涉的原理、实验的准备和过程,以及该方法在科学研究和应用中的专业性角度。
光学干涉的原理可以通过两个关键定律来解释:菲涅尔原理和互补原理。
总结而言,这两个原理都指出光波在不同路径上的干涉会产生明暗相间的干涉条纹。
首先是菲涅尔原理,该原理说明了光波通过一个缝隙或其他纤细的区域时会发生衍射。
当光波通过两个或多个阵列的缝隙时,光波会在不同的路径上发生衍射,并在某些地方产生干涉、增强或减弱。
这样的干涉模式,即干涉条纹,可以通过观察和测量来获取物体的相关信息。
接下来是互补原理,该原理说明了两个不同光源的光波相互干涉时会产生明暗相间的条纹。
这种干涉是由于两个光源的波长不同,当它们在空间中重叠时,会发生相位差,从而形成干涉现象。
通过观察和测量这些干涉条纹,可以研究和测量光源的性质以及中间介质的光学特性。
在进行光学干涉实验之前,我们首先需要做一些准备工作。
这包括选择适当的光源、准备干涉装置、调整和校准实验装置等。
光源的选择是非常关键的,常见的光源有激光器和白光源。
对于一些特殊的应用,我们可以使用光谱辐射源来观察物体的光谱特性。
在实验中,光源经过干涉装置(如双缝装置或分束器)后,会形成干涉条纹。
观察和记录这些条纹的模式是实验的重要步骤。
对条纹模式的研究可以揭示出物体的尺寸、形状以及光学特性等方面的信息。
在实验中经常使用的一种方法是扫描干涉仪。
该仪器通过改变光路差来观察干涉条纹的变化。
通过记录不同条件下的条纹模式,可以计算出待测物体的相关参数。
例如,根据干涉条纹的宽度和间距,可以计算出物体的厚度和折射率,从而实现测量和分析物体的物理特性。
光学干涉在科学研究和应用领域具有广泛的应用。
在材料科学中,通过干涉条纹的形态和变化,可以研究材料的表面形态、薄膜的厚度以及材料的变形等信息。
光学实验技术中的干涉测量方法干涉测量方法是光学实验技术中一种重要的测量手段。
它通过利用光的干涉现象,实现对物体形态、尺寸和表面性质等参数的测量。
在现代科学研究和工程技术中,干涉测量方法得到了广泛的应用,涉及到光学、物理学、医学、材料科学等多个领域。
一、干涉测量方法的基本原理与分类干涉是指两束或多束光线的叠加现象。
当光线经过光学元件或物体后,它们会发生相位差,进而引起干涉现象。
干涉现象通过干涉条纹的变化来揭示光场的信息。
根据干涉条纹的产生原理,干涉测量方法主要分为两类:自发光干涉和外加光干涉。
自发光干涉是利用物体自身的发光特性产生干涉条纹,例如显微镜下的透射干涉、投影干涉和表面形貌干涉等。
外加光干涉是通过外部光源引入干涉现象,例如激光干涉、多波长干涉和相移法干涉等。
二、应用于形貌测量的干涉测量方法1. 二维轮廓测量利用激光干涉技术,可以实现对物体二维轮廓的高精度测量。
通过将物体反射的激光束与参考激光束叠加,利用干涉条纹的变化来推导出物体表面的高程信息。
2. 三维表面形貌测量三维表面形貌测量是干涉测量方法中的一个重要应用领域。
通过使用相移干涉技术,可以获取到物体表面的三维形貌信息。
相移干涉技术通过改变干涉条纹的相位来实现对物体表面形貌的测量。
3. 全息干涉术全息干涉术是一种高分辨率的干涉测量方法,常应用于光学图像的记录和再现。
通过将物体的三维信息录制在全息图上,并利用光学平台进行复原,可以实现对物体形貌的精确测量。
三、应用于材料测量的干涉测量方法1. 膜厚测量膜厚测量是干涉测量方法中的一个重要应用方向。
利用干涉技术可以测量薄膜的厚度和折射率等参数,从而评估薄膜的性能和质量。
2. 表面粗糙度测量表面粗糙度是材料表面质量的一个重要指标。
通过激光干涉技术,可以实现对材料表面粗糙度的快速测量。
激光束在入射和反射过程中会受到表面粗糙度的影响,从而引起干涉条纹的变化。
3. 液体折射率测量干涉测量方法还可以应用于液体折射率的测量。
光学干涉实验技术使用指导光学干涉实验是一种重要的实验方法,广泛应用于科学研究和实际应用中。
本文将为您提供一些关于光学干涉实验技术使用的指导,帮助您在实验中取得准确的结果。
1. 实验原理简介光学干涉实验利用光的波动性质,通过光的相位差的变化来观察和测量物体的性质或者直接研究光自身的特性。
通过光的干涉现象,可以测量光的波长、厚度、折射率等物理量。
2. 实验装置搭建光学干涉实验需要使用到一些基本的实验装置,如光源、物镜、平行光管、半反射镜、干涉片等。
在搭建实验装置时,要注意光路的对称性和稳定性,以保证实验的可行性和准确性。
3. 调节光源和平行光管在进行干涉实验前,首先需要调节光源和平行光管,以确保实验装置中的光是平行的。
调节光源的位置和角度,使光线垂直平行地射向平行光管。
调节平行光管的位置和角度,使通过平行光管的光线平行并聚焦于特定位置。
这样可以得到平行的光源,为实验的进行提供基础。
4. 干涉片的选择与使用在干涉实验中,干涉片是一个重要的装置。
干涉片的厚度、材质和透明度等特性将直接影响到实验结果的准确性。
选择合适的干涉片是至关重要的。
如果需要观察干涉条纹,应选择高透明度的干涉片。
选择干涉片时也要根据实验的需求来,如测量物体的折射率需要选择合适的干涉片。
使用干涉片时,要注意保持干涉片的平行和垂直于光路的方向。
在测量折射率时,可以根据干涉片的位置变化来推算出物体的折射率。
5. 数据记录与处理在进行光学干涉实验时,准确的数据记录和处理是非常重要的。
可以使用光探测器等设备来记录干涉条纹的位置和强度等信息。
同时,还要注意实验环境的稳定性,避免外部因素对实验结果的影响。
在数据处理方面,可以使用计算机软件进行数据的拟合和分析。
根据实验需求,可以通过对干涉条纹的分析,得到所需的物理量,并进行更精确的实验结果的推导和分析。
6. 实验安全与注意事项在进行光学干涉实验时,也要注意实验安全和仪器的保护。
避免直接观察强光源,以免对眼睛造成伤害。
目录第一章基本光学测试技术 (2)第二章光学准直与自准直 (5)第三章光学测角技术 (9)第四章:光学干涉测试技术 (12)第六章:光学系统成像性能评测 (15)第一章 基本光学测试技术• 对准、调焦的定义、目的;对准又称横向对准,是指一个对准目标(?)与比较标志(?)在垂直瞄准轴(?)方向像的重合或置中。
例:打靶、长度度量人眼的对准与未对准:对准的目的:1.瞄准目标(打靶);2.精确定位、测量某些物理量(长度、角度度量)。
调焦又称纵向对准,是指一个目标像(?)与比较标志(?)在瞄准轴(?)方向的重合。
人眼调焦:调焦的目的 :1.使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度;2.使物体(目标)成像清晰;3.确定物面或其共轭像面的位置——定焦。
121'2'1'P 2'2''•人眼调焦的方法及其误差构成;常见的调焦方法有清晰度法和消视差法。
清晰度法是以目标与比较标志同样清晰为准。
调焦误差是由于存在几何焦深和物理焦深所造成的。
消视差法是以眼镜在垂直平面上左右摆动也看不出目标和标志有相对横移为准的。
误差来源于人眼的对准误差。
(消视差法特点:可将纵向调焦转变为横向对准;可通过选择误差小的对准方式来提高调焦精确度;不受焦深影响)•对准误差、调焦误差的表示方法;对准误差的表示法:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示;调焦误差的表示法:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示;•常用的对准方式;常见的对准方式有压线对准,游标对准,夹线对准,叉线对准,狭缝叉线对准或狭缝夹线对准。
•光学系统在对准、调焦中的作用;提高对准、调焦精度,减小对准、调焦误差。
•提高对准精度、调焦精度的途径;使用光学系统进行对准,调焦;光电自动对准、光电自动调焦;•光具座的主要构造;平行光管(准直仪);带回转工作台的自准直望远镜(前置镜);透镜夹持器;带目镜测微器的测量显微镜;底座•平行光管的用途、简图;作用是提供无限远的目标或给出一束平行光。
精密测量中的光学干涉技术光学干涉技术是一种基于光的干涉现象实现测量和检测的方法。
在精密测量领域,光学干涉技术被广泛应用于长度、角度、表面形貌等参数的测量。
本文将介绍光学干涉技术在精密测量中的应用以及其原理和发展。
一、光学干涉技术的原理光学干涉是指两束或多束光波相互叠加产生干涉图样的现象。
光学干涉技术利用光的波动性和干涉现象来实现测量和检测。
其原理可以概括为以下几点:1. 波动性:光是一种电磁波,具有波动性质。
光的传播遵循波动方程,根据不同的波长和频率,光可以传播为长波、短波以及可见光等不同类型。
2. 干涉现象:当两束或多束光波相遇时,它们会相互干涉叠加,形成干涉图样。
在干涉图样中,可以观察到明暗交替的条纹,这些条纹代表了两束光波的相位差和干涉程度。
根据干涉图样的变化,可以得到被测量物体的信息。
3. 波前成像:在光学干涉技术中,光波的波前形状是重要的测量对象。
通过测量光波的波前形状,可以得到被测量物体的表面形貌、形状、尺寸等参数。
二、光学干涉技术在精密测量中的应用1. 长度测量:光学干涉技术被广泛应用于长度测量领域。
通过调节参考光路和待测光路的光程差,可以实现高精度的长度测量。
其中,白光干涉仪和激光干涉仪是常用的光学测量仪器。
2. 角度测量:在角度测量中,光学干涉技术可以通过测量旋转的圆盘或平台上条纹的变化来确定角度的大小。
例如,倾斜式干涉仪和角度干涉仪都是常见的用于角度测量的光学装置。
3. 表面形貌测量:光学干涉技术可以用于检测物体表面的形貌和形状,如光学轮廓仪、激光扫描测量仪等。
这些设备能够高精度地测量物体的表面轮廓和几何形状,应用于工业制造、医学、材料科学等领域。
4. 折射率测量:光学干涉技术还可以用于测量光学介质的折射率。
利用干涉图样的变化特征,可以计算出被测介质的折射率值。
三、光学干涉技术的发展随着科技的进步和需求的不断增加,光学干涉技术也在不断发展和改进。
以下是一些光学干涉技术的发展趋势:1. 多波长干涉技术:通过使用多个波长的光源,可以实现更高精度的干涉测量。
光学干涉测量原理及应用光学干涉测量是利用光学干涉的原理进行精确测量的一种方法。
光学干涉测量最初是由法国物理学家弗朗索瓦·阿拉戈于19世纪初提出的。
经过几十年的发展,现今光学干涉测量已广泛应用于各个领域,如工业制造业、生物医学、地球物理学等。
本文将从光学干涉测量的原理、技术架构、应用等方面进行剖析。
一、光学干涉测量的原理光学干涉测量的原理是利用光的波动特性进行非接触式的测量。
当光线通过介质时,由于介质的折射率发生改变,导致光线产生弯曲,从而出现干涉现象。
光的干涉是波动现象,干涉程度的大小取决于光波的相位差。
若两束光的相位差为0,即两束光的相位完全一致,则会形成明纹条。
若两束光的相位差为π,即两束光相位相反,则会形成暗纹条。
基于这种原理,可以利用光干涉现象进行精确测量。
二、光学干涉测量的技术架构光学干涉测量一般由相干光源、被测物、参考平面反射镜、干涉仪和检测系统等组成,通常需要在实验室等准确的环境中进行。
1. 相干光源相干光源是光学干涉测量的基础,必须保证相干性高,波长稳定,才能得出准确的结果。
常用的相干光源为氦氖激光器、半导体激光器、二极管激光器等。
2. 被测物被测物是光学干涉测量的关键之一,需要对被测物进行纳米级、亚微米级的测量。
常用的被测物有平面、球面、圆柱面等,涵盖了许多领域,如表面形貌测量、运动量测量等。
3. 参考平面反射镜参考平面反射镜是用来将被测物和反射镜所反射的光线合并,使光线趋向于同一平面。
一般采用长凳反射镜。
反射镜的平整度和厚度都会对实验结果造成影响,所以对反射镜的选择和制造都有较高的要求。
4. 干涉仪干涉仪是光学干涉测量中最基础的仪器之一。
干涉仪的作用是将参考光和反射光合并,通过相位差的变化来测量被测物的厚度、形态等。
常用的干涉仪有迈克尔逊干涉仪、弗拉门戈干涉仪等。
5. 检测系统检测系统是光学干涉测量的数据处理模块,负责信号采集和处理,以及测量结果的分析和处理。
检测系统的设计极其重要,因为它是决定实验结果准确性的关键要素。
光学干涉实验光学干涉是一种通过光的相干性产生的干涉现象来研究光的特性的方法。
在光学实验中,光学干涉实验是一项重要的实验,广泛应用于物理、光学和工程等领域。
本文将详细介绍光学干涉实验的原理、装置和实验步骤,以及实验结果的分析和讨论。
一、实验原理光学干涉是基于光的波动性质的实验。
当两束光线相遇时,如果它们的相位差满足一定条件,就会产生干涉现象。
光的相位差是指两束光线的相位差,即两束光线在空间中的波峰或波谷之间的相位差。
光的相位差可以通过以下公式计算:Δφ = 2πΔL / λ其中,Δφ为相位差,ΔL为两束光线的光程差,λ为光的波长。
当两束光线的相位差为整数倍的2π时,它们处于同一相位,会产生互相加强的干涉现象,称为构成干涉条纹的波峰和波谷。
当相位差为奇数倍的π时,两束光线处于相位反向的情况,会产生互相抵消的干涉现象,消失在黑暗。
二、实验装置实验装置主要包括以下部分:1. 光源:使用一束单色光源,如激光器或单色LED,保证光的波长相对单一。
2. 光源照明系统:使用准直镜和聚焦镜组成的光学系统,将光源发散的光线变为平行光线。
3. 干涉装置:可以使用分光镜、半反射镜、透射板和反射镜等光学元件构造Michelson干涉仪或Young双缝干涉装置。
4. 探测器:使用光敏电子器件,如光电二极管或CCD相机,可以测量干涉条纹的强度和位置。
三、实验步骤1. 搭建干涉实验装置,确保所有光学元件的位置和角度正确调整。
2. 打开光源,调整光源的亮度和位置,使其在光学装置中形成合适的光束。
3. 根据所选择的干涉装置类型,观察和记录干涉条纹的形状、亮度和位置。
4. 对干涉条纹进行定性和定量的分析,可以使用干涉仪的动态观察功能或记录数字图像进行后续分析。
5. 改变干涉装置中的相关参数,如光路长度、光源波长或角度,观察干涉条纹的变化。
四、实验结果分析和讨论根据实验结果可以定性和定量地分析干涉条纹的特性。
干涉条纹的间距与光源波长和光路长度有关。
光学干涉测量法
光学干涉测量法是一种利用光的干涉现象进行长度、表面形貌、折射率等物理量测量的方法。
其基本原理是当两束或多束相干光波在空间某一点叠加时,它们的光程差将引起光强的变化,形成干涉现象。
通过测量干涉条纹的移动和变化,可以精确地计算出相关物理量的变化。
在光学干涉测量法中,通常需要使用到一些特殊的干涉仪,如迈克尔逊干涉仪、马赫-曾德尔干涉仪等。
这些干涉仪能够将待测光束分成两束或多束相干光波,并在特定的反射或透射路径上传播,最终再次相遇并形成干涉。
通过调整干涉仪的参数,如反射镜或透镜的位置,可以改变相干光波的相对光程,从而产生不同的干涉条纹。
当待测物理量发生变化时,干涉条纹也会随之移动或变化。
通过精确测量干涉条纹的位置或移动距离,可以计算出待测物理量的变化。
光学干涉测量法具有高精度、高分辨率和高灵敏度的优点,因此在科学研究、工业生产和计量测试等领域得到了广泛的应用。
例如,在光学薄膜厚度测量、表面粗糙度检测、折射率测量等方面,光学干涉测量法都发挥着重要的作用。
总的来说,光学干涉测量法是一种基于光的干涉现象进
行测量的方法,具有高精度、高分辨率和高灵敏度的优点,广泛应用于各个领域。
干涉测量技术(冶金与能源工程学院)摘要:干涉测量技术已经得到相当广泛的应用。
一方面因为微电子、微机械、微光学和现代工业提出了愈来愈高的精度和更大的量程,其它方法难以胜任;另一方面因为当代干涉测量技术本身具有灵敏度高、量程大、可以适应恶劣环境、光波和米定义联系而容易溯源等特点,因而在现代工业中应用非常广泛。
本论文阐述了干涉测量技术的光学原理,测试条件,并以迈克尔逊干涉仪为典型,阐明干涉测量技术的应用,迈克尔逊干涉仪是一种利用分割光波振幅的方法实现干涉的精密光学仪器关键词:干涉测量光学原理迈克尔逊干涉仪PSInSARSUN Ya Juan(Metallurgy and energy engineering institute,Kunming university of science and technology)Abstract:Interference measuring technology has been quite a wide range of applications,On the one hand for microelectronics, micro mechanical, diffractive and modern industry and put forward high precision and greater range, other methods are hard to do the job,On the other hand because contemporary interference measuring technology itself has a high sensitivity, range, and can adapt to bad environment, light and meters contact and easy to trace the definition, etc, thus in the modern industry is widely used.This paper expounds the interference of measuring technology of optical principle, test conditions, and with Michelson interferometer is typical, expounds the application of interference measuring technology, Michelson interferometer is a use of segmentation method of realization of light amplitude precision optical instrument interferenceKey words: Interferometry Principles of Optics Michelson interferometer0 、引言光的干涉现象是光的波动性的一种表现。
光学干涉测量技术——干涉原理及双频激光干涉1、干涉测量技术干涉测量技术和干涉仪在光学测量中占有重要地位。
干涉测量技术是以光波干涉原理为基础进行测量的一门技术。
相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。
当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为:122I I I πλ=++式中△是两束光到达某点的光程差。
明暗干涉条纹出现的条件如下。
相长干涉(明):min 12I I I I ==+, (m λ=)相消干涉(暗):min 12I I I I ==+-, (12m λ⎛⎫=+ ⎪⎝⎭) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。
通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。
按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。
按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。
按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。
下图是通过分波面法和分振幅法获得相干光的途径示意图。
光学测量常用的是分振幅式等厚测量技术。
图一 普通光源获得相干光的途径与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。
干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。
在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索干涉仪、泰曼-格林干涉仪等;随着激光技术的出现及其在干涉测量领域中应用,使干涉测量技术在量程、分辨率、抗干涉能力、测量精度等方面有了显著的进步。