优选第六章园艺植物的染色体工程
- 格式:ppt
- 大小:13.45 MB
- 文档页数:12
染色体工程的名词解释染色体工程(Chromosome Engineering),是指利用现代生物技术手段,对生物体的染色体进行人工操控和改造的过程。
通过改变染色体的结构和组成,染色体工程可以实现对生物体基因组的精确编辑和调控,从而影响生物个体的遗传特征和表达方式。
【引言】染色体是细胞核中的重要成分,携带着生物体遗传信息的基因。
染色体工程的出现,为人们深入研究基因的功能和调控机制,以及开展基因治疗、种质改良等方面的研究提供了前所未有的机会。
本文旨在对染色体工程的概念、操作方法和应用领域进行解释与阐述。
【染色体工程的概念】染色体工程源于20世纪60年代末的细胞遗传学研究,当时科学家们最早开始探索将人工合成的DNA序列导入真核细胞中的可能性。
随着技术的不断发展,染色体工程已逐渐演变为一种具有广泛应用前景的生物工程技术。
其基本原理是通过模块化设计的DNA序列和遗传载体的辅助,将人工合成的DNA片段引入目标生物的染色体中,实现对基因组的精确编辑和调控。
【染色体工程的操作方法】染色体工程的操作方法主要包括:基因克隆、DNA合成、基因导入和基因修饰等关键步骤。
首先,科学家们通过PCR、限制性内切酶和DNA合成等技术手段,将目标基因的DNA序列复制并扩增出来。
然后,利用载体(如质粒、病毒等),将目标基因导入到目标生物的染色体上。
最后,利用基因编辑工具(如CRISPR-Cas9系统),对染色体中的目标基因进行精确编辑和修饰。
【染色体工程的应用领域】染色体工程在许多领域都有广泛应用。
其中之一是基因治疗。
通过染色体工程技术,科学家们可以将治疗性基因导入到病人的染色体中,从而校正或替代患者染色体上的缺陷基因,实现对疾病的治疗和预防。
此外,染色体工程也在农业领域有着重要的应用,可以通过编辑作物染色体上的目标基因,提高农作物的产量、品质和抗逆性。
另外,染色体工程还可以用于生物工厂的构建,通过引入特定的代谢途径和基因组部件,实现对微生物的功能强化,从而生产出具有高附加值的化合物。
第六章园艺植物有性杂交育种一、名词解释1.常规有性杂交育种:根据品种选育目标,有目的地选配遗传性不同的品种、变种、亚种或种作为亲本,通过人工交配使它们的雌雄配子结合产生变异的后代,再进行一系列的培育选择,经比较鉴定后,获得遗传性相对稳定的新品种,称为有性杂交育种,也称为重组育种。
2.非轮回亲本:只参加一次杂交的亲本称为非轮回亲本。
3.合成杂交:参加杂交的亲本先两两配成单交种,两个单交种再杂交。
4.轮回亲本:多代用以回交的亲本称为轮回亲本。
5.添加杂交:多个亲本逐个依次参加杂交的称为添加杂交。
6.杂交合成群体:由二个以上自交系品种杂交后繁殖出的分离的混合群体,最后成为一个由多种纯合基因型构成的混合群体。
个体纯合,个体间异质,但主要农艺性状表现差异较小。
7.回交育种:从杂种一代起多次用杂种与亲本之一继续杂交,从而育成新品种的方法。
8.近交:指不存在杂交障碍的同一物种内,不同品种或变种间的杂交。
9.远交:指植物学上不同种、属以上类型间的杂交。
10.亲本选择:根据品种选育目标选用具有优良性状的品种类型作为杂交亲本。
11.亲本选配:是指选用那两个(或两个以上)亲本配组杂交和配组的方式(如决定父母本,多亲杂交时那两个亲本先配组等)。
12.回交:杂交后代与其亲本之一再进行杂交称为回交。
13.单交:两个亲本之间只有一次杂交。
14.系谱法:按照育种目标,以遗传力为依据,从杂种的第一次分离世代开始,代代选单株,直到选出纯合一致、性状稳定的株系后,转为株系(系统) 评定。
由于当选单株有系谱可查,故称系谱法。
15.混合-单株选择法:在杂种分离世代按杂交组合混合种植,不选单株,只淘汰明显的劣株。
直到群体中纯合体频率达到要求(一般要求80%左右)时,才开始选择一次单株,下一代种成株系,从中选择优良株系升级试验。
16.单子传代法:从杂种第一次分离世代开始,每株取1粒(或者2粒)种子混合组成下一代群体,直到纯合程度达到要求时(F6及其以后世代)再按株收获,下年种成株(穗)行,从中选择优良株(穗)系,以后进行产量比较。
一、名词解释1.常规杂交育种:按育种目标选择选配亲本,通过人工杂交的方法将亲本的优良性状集于杂交后代,再通过对杂交后代进行自交分离,选择出符合目标要求的,遗传性稳定一致的优良新品种。
2.轮回亲本:在回交过程中多次参与杂交的亲本,又是特定有利性状的接受者,也叫“受体亲本”。
3.非轮回亲本:在回交过程中只参与一次杂交的亲本,也叫“供体”或“供体亲本”。
4.杂种优势:是生物界一种普遍现象,指两个形状不同的亲本杂交产生的杂种,在生长势、生活力、繁殖力、适应性以及产量、品质等性状方面超过其双亲的现象。
5.一般配合力:指若干个自交系或品种相互杂交,其中每一个自交系或品种与其他自交系或品种所配得的F1某种性状的平均值与所能配成的全部F1总评均值相比的差值,通常用离均差表示。
6.特殊配合力:某一杂交组合的的实际配合力可能距两亲本的一般配合力之和有些离差,这离差就称为特殊配合力。
7.自交不亲和:植物花期正常授粉,自交不能正常结实的特性称为自交不亲和。
具有自交不亲和的系统或品系称为自交不亲和系。
8.远缘杂交:指亲缘关系疏远类型之间的杂交。
一般认为植物学上种以上分类单位之间的杂交都是远缘杂交。
9.诱变育种:指利用理化因素诱发生物体发生变异,再通过选择培育成新品种的方法。
10.临界致死剂量:被照射生物体存活率为40%的剂量。
11.半致死剂量:被照射生物体存活率为50%的剂量。
12.多倍体:体细胞染色体组在三个(3x)或三个以上的个体。
13.同源多倍体:多倍体的几组染色体全部来自同一物种,或者说由同一个物种的染色体组加倍而成14.异源多倍体:来自不同种、属的染色体组构成的多倍体或者说由不同种、属间个体杂交得到的F1再经染色体加倍得到的多倍体15.单倍体:指由未受精的配子发育成的含有配子染色体数的体细胞或个体。
16.一元单倍体:来自二倍体植物(2n=2x)的单倍体细胞中,只有一组染色体(1x),叫做一元单倍体,简称一倍体17.多元单倍体:来自四倍体植物(2n=4x)的单倍体体细胞中,含有两组染色体(2x),叫做多元单倍体。
合肥学院Hefei University细胞工程课程综述题目: 植物染色体工程概述系别:专业:学号:姓名:2013年6月25日植物染色体工程概述李双双1002012045 生工二班摘要:植物细胞工程[1]涉及胚拯救、小孢子培养、体细胞杂交、离体受精、体细胞无性系变异、染色体工程等多方面内容。
本文是对染色体工程这方面的概述,主要内容包括加倍技术、内容、实践运用和发展方向。
关键词:染色体工程加倍技术内容实践运用发展方向染色体工程,又称染色体操作(chromosome manipulation),是人们按照一定的设计,有计划的削减、添加或代替同种或异种染色体,从而达到定向改变遗传特性和选育新品种的一种技术。
自从1879年,由德国生物学家弗莱明经过大量实验发现了染色体的存在。
由此后1883年美国学者提出了遗传基因,(所谓遗传基因,也称为遗传因子,是指携带有遗传信息的DNA或RNA序列,是控制性状的基本遗传单位。
)在染色体上的学说,科学家们对染色体的研究就从未断过,染色体工程也就不断在进展。
目前,植物学家们已经将染色体工程用于作物品种的改良,使其成为一门育种新技术,此外它也是研究基因定位和异源基因导入的有效手段。
其基本的操作程序包括如下几个步骤:杂交;依靠杂种(或亲本) 减数分裂时染色体联合的规律性变化产生具有不同染色体组成的配子;在杂种或杂种后代中通过细胞学鉴定,筛选所需要的材料。
一、染色体加倍技术[2]1 化学诱导方法1.1细胞松驰素B(cytochalasin)在细胞分裂中期使用,能抑制肌动蛋白聚合成微丝,从而抑制细胞质分裂,使用最早、最广泛,其诱导效果也最突出。
1.2秋水仙素(colchicine)在细胞分裂中期使用,阻止细胞分裂过程中的纺缍体的形成。
其特点为价格昂贵,有毒性。
2 物理学方法2.1温度休克法包括冷休克法和热休克法两种,即用略高于或略低于致死温度的冷或热休克来诱导三倍体或四倍体的方法。
第一章至第五章一、主要名词和概念:一.1. 植物细胞全能性:植物体的每一个具有完整细胞核的细胞都具有该物种全部遗传物质,在一定条件下具有发育成为完整植物体的潜在能力。
2. 脱分化:将已分化的不分裂的静止细胞放在培养基上培养后,细胞重新进去分裂状态,一个成熟细胞转变为分生状态的过程。
3. 再分化:经脱分化的组织或细胞在一定的培养条件下可转变为各种不同的细胞类型,形成完整植株的过程。
4. 器官发生途径:由外植体或愈伤组织诱导形成不定根或不定芽,再获得再生植株的方法5. 体细胞胚胎发生途径:在组织培养中起源于一个非合子细胞,经过胚胎发生和胚胎发育过程,形成具有双极性的胚状结构而发育成再生植株的途径。
6. 外植体:由活体植物体上切去下来的,用于组织培养的各种接种材料。
包括各种器官、组织、细胞或原生质体等。
7.褐化现象:指在外植体诱导初分化或再分化过程中,自身组织从表面想培养基释放褐色物质以至培养基逐渐变成褐色,外植体也随之进一步变褐而死亡的现象。
8. 看护培养:利用活跃生长的愈伤组织来看护单个细胞,使其持续分裂和增殖的培养方法。
9. 分批培养;把细胞分散在一定容积的培养基中培养,当培养物增值到一定量时,转接继代,建立起单细胞培养物。
10. 连续培养:利用特质的培养容器进行大规模细胞培养的一种培养方式。
11. 体细胞杂交:使分离出来的不同亲本的原生质体,在人工控制条件下,相互融合成一体,形成杂种细胞,并进一步发育成杂种植株的技术。
12. 雄核发育:在适宜的离体培养条件下,花粉(小孢子)的发育可偏离活体时的正常发育转向孢子体发育,经胚状体途径或器官发生途径形成完整植株。
13. 雌核发育:以未受精子房或胚珠为外植体诱导单倍体的方法。
14. 非整倍体:生物体的核内染色体数不是染色体基数整数倍,而发生个别染色体数目增减的生物体。
15. 代换系:生物体的染色体被异源种属染色体所代换的品系。
16. 易位系:某染色体的一个区段移接在非同源的另一个染色体上,具有发生染色体易位的品种。