汽车车轮与轮胎分析
- 格式:pptx
- 大小:2.28 MB
- 文档页数:20
浅谈车轮与轮胎【摘要】很早以前轮胎是用木头、铁等材料制成,第一个空心轮子是1845年英国人罗伯特·汤姆逊发明的,他提出用压缩空气充入弹性囊,以缓和运动时的振动与冲击。
1888年约翰·邓录普制成了橡胶空心轮胎,随后托马斯又制造了带有气门开关的橡胶空心轮胎,1895年随着汽车的出现,充气轮胎得到广泛的发展,首批汽车轮胎样品是1895年在法国出现的,这是由平纹帆布制成的单管式轮胎,虽有胎面胶而无花纹。
直到1908年至1912年间,轮胎才有了显著的变化,即胎面胶上有了提高使用性能的花纹,从而开拓了轮胎胎面花纹的历史,并增加了轮胎的断面宽度,允许采用较低的内压,以保证获得较好的缓冲性能。
1892年英国的伯利密尔发明了帘布,1910年用于生产,这一成就除改进了轮胎质量,扩大了轮胎品种外,还使外胎具备了模制的可能性。
1913-1926年,因发明了帘线和炭黑轮胎技术,为轮胎工业发展奠定了基础。
轮胎外缘的标准化,制造工艺的逐渐完善,生产速度比以前提高了,轮胎的产量与日俱增。
随着汽车工业的发展,轮胎技术一直不断地改进与提高,如20年代初至30年代中期轿车胎由低压轮胎过渡到超低压轮胎;40年代开始轮胎逐步向宽轮辋过渡;40年代末无内胎轮胎的出现;50年代末低断面轮胎问世等等。
许多新技术的出现都莫过于1948年法国米西林公司首创的子午线结构轮胎,这种轮胎由于使用寿命和使用性能的显著提高,特别是在行驶中可以节省燃料,而被誉为轮胎工业的革命。
【关键词】车轮轮胎影响【目录】绪论 (1)第一章轮胎 (2)1.1 概述 (2)1.2 轮胎的类型 (2)子午线轮胎 (2)无内胎轮胎 (2)宽断面轮胎 (2)轮胎规格的识别方式 (3)轮胎的规格 (4)第二章车轮 (6)2.1 车轮的类型 (6)辐板式车轮 (6)辐条式车轮 (6)国产轮辋规格表示方法概述 (6)国产轮辋轮廓类型及其代号 (6)国产轮辋的规格代号 (7)2.3 轮毂 (7)2.4 轮辋 (7)第三章车轮与轮胎的维护和保养 (9)车轮的维护和保养 (9)轮胎的保养与维护 (9)第四章结论 (11)参考文献 (12)致谢 (13)绪论很早以前轮胎是用木头、铁等材料制成,第一个空心轮子是1845年英国人罗伯特·汤姆逊发明的,他提出用压缩空气充入弹性囊,以缓和运动时的振动与冲击。
第19章车轮与轮胎车轮与轮胎是汽车的行走部件,安装在车架上,可以绕车轴转动并沿地面滚动。
轮胎及车轮连接车轴,接触地面。
轮胎及车轮将汽车发出的作用力传递给地面,同时将地面的反作用传回给汽车。
车轮与轮胎是汽车行驶系中的重要部件,其基本功用如下:1.支承汽车车体重量。
2.缓和由于路角不平引起的冲击力,接受和传递制动力和驱动力。
3.轮胎具有抵抗侧滑的能力,轮胎具有自动回下正的能力,使汽车正常转向,保持汽车直线驶。
4.有效提高通过性。
5.减小行驶阻力和能量消耗,提高运输效率。
19.1车轮现代的汽车车轮不但是安装的轮胎的骨架,也是将轮胎和车轴连接起来的旋转部件,通常车轮由轮毂、轮辋以及这两件元件之间的连接部分称为轮辐的元件所组成。
按照轮辐的结构,车轮可分为辐板式和辐条式,根据轮辋形式不同又可分为组装轮辋式,可调式车轮,对开式,可反装式车轮,根据车轮材质不同又有铝合金、镁合金、钢车轮之分。
目前在轿车和货车上广泛采用辐板式车轮。
19.1.1辐板式车轮图19-1 辐板式车轮1-档圈 2-轮辋 3-辐板 4-气门嘴伸出口如图19-1所示:辐板3为一般为钢质圆板,它将轮毂和轮辋连接为一体,大多是冲压制成的,少数是与轮毂铸成一体。
后者多用于重型汽车上。
辐板与轮辋是铆接或焊接在一起的,对于采用无内胎轮胎的车轮,宜采用焊接法可提高轮辋的密闭性。
轿车的辐板采用材料较薄,常冲压成起伏各样形状,以提高刚度。
辐板上开有若干孔,用以减轻质量,同时有利于制动器散热,安装时可作把手。
19.1.2辐条式车轮如图19-2所示:轮辐有钢丝辐(a),是由价格昂贵钢丝辐条编制成,维修安装不便,一般用在赛车和高级轿车上。
另一种是和轮毂铸成一体的铸造辐条(b),一般用在重型汽车上,在这种结构的车轮上,轮辋1是用螺栓了和特殊形状的衬块2固定在辐条4上,为使轮辋与辐条对中好,在轮辋和辐条上都加工出配合锥面5。
图19-2 辐条式车轮1-轮辋 2-衬块 3-螺栓 4-辐条5-配合锥面 6-轮毂19.1.3轮辋按照轮辋结构特点的不同,轮辋可分为深槽式、平底式和对开式(可拆式)等三种形式。
混动汽车的车轮与轮胎技术随着环保意识的逐渐增强,混合动力汽车(混动汽车)逐渐成为改善车辆燃油效率和减少尾气排放的一种重要选择。
在混动汽车的设计中,车轮与轮胎技术起着至关重要的作用。
本文将探讨混动汽车中的车轮与轮胎技术,以及如何提高混动汽车的性能和效率。
一、车轮技术车轮是汽车行驶过程中的主要组件之一,对车辆的性能和安全性起着至关重要的作用。
对于混动汽车来说,车轮技术的特点主要集中在以下几个方面:1. 轻量化设计:为了提高混动汽车的燃油经济性和续航里程,减轻车辆整体重量是一项重要的任务。
因此,在车轮的设计中,选用更轻量化的材料如铝合金、镁合金等,可以有效地降低车辆的整体重量,提升燃油效率。
2. 减小滚动阻力:滚动阻力是混动汽车的重要能量损失源之一。
通过研究并优化车轮胎的滚动阻力系数,可以减小车辆在行驶过程中的能量损失,提高车辆的能源利用效率。
采用特殊的轮胎胎面设计、低滚动阻力的轮胎胎面材料等方法,可以显著降低混动汽车的滚动阻力。
3. 增强刚度:混动汽车搭载的电池组往往比传统内燃机车辆更重,因此增强车轮的刚度是保证车辆操控性和稳定性的关键。
通过采用更坚固的材料和结构设计,在保证车辆安全的前提下提高车轮的刚性,可以有效地防止车轮在高速行驶或紧急制动时产生变形,提高整车的操控性和行驶稳定性。
二、轮胎技术轮胎是混动汽车行驶的重要媒介,对车辆的操控、舒适性和减震效果具有重要影响。
在混动汽车中,轮胎技术的关键点主要包括以下几个方面:1. 低滚动阻力:滚动阻力是轮胎在行驶过程中产生的阻力,它直接影响着混动汽车的燃油经济性和续航里程。
通过改进轮胎胎面材料和胎面纹理设计,可以降低轮胎的滚动阻力,提高混动汽车的能源利用效率。
2. 减少噪音:噪音污染是当今社会的一个重要问题,而轮胎噪音是汽车噪音的主要来源之一。
设计低噪音轮胎是保证混动汽车乘坐舒适性的重要手段之一。
通过优化轮胎结构、改进胎面纹理和降低材料噪音等方法,可以有效地减少轮胎在行驶过程中产生的噪音,提升车辆的乘坐舒适性。
汽车车轮实验报告引言车轮作为汽车的关键部件之一,对车辆的性能、安全以及驾驶舒适度都有着重要影响。
为了验证车轮的性能指标以及对其进行进一步改进,我们进行了一系列的实验测试。
本实验报告旨在介绍实验的目的与重要性,详细描述实验的步骤与方法,提供实验结果与数据分析,并基于实验结果提出进一步改进的建议。
实验目的本次实验的目的是评估汽车车轮在不同条件下的性能表现,包括承载能力、抗滑性、磨损等指标。
通过实验结果的分析,可以优化车轮设计并提升汽车的性能和安全水平。
实验方法与步骤1. 材料准备本次实验中所使用的材料包括标准轮胎、试验车辆、试验台、传感器装置等。
2. 承载能力测试首先进行承载能力测试。
在试验台上固定车辆,然后逐渐增加车轮上施加的荷载,并记录荷载与车轮滑动之间的关系。
3. 抗滑性测试在实验平台上设置不同的路面摩擦系数,然后通过传感器装置记录并分析车轮在不同摩擦系数下的滑动情况。
4. 磨损测试通过长时间运行车辆,观察车轮的磨损情况。
记录磨损程度,并与事先设定的指标进行比较。
5. 数据分析与结果根据实验得到的数据进行分析与结果总结。
对车轮的承载能力、抗滑性以及磨损情况进行评估。
实验结果与数据分析1. 承载能力测试经过承载能力测试,我们得到了车轮承载能力与施加荷载之间的关系曲线。
曲线显示在荷载增加过程中,车轮的滑动速度逐渐增加,并在一定阈值处开始滑动。
通过分析得到的曲线,我们可以得出车轮的最大承载能力以及其载荷下滑动的情况。
2. 抗滑性测试在抗滑性测试中,我们设置了不同的路面摩擦系数,并记录了车轮在不同摩擦系数下的滑动情况。
通过分析记录的数据,我们得出了不同摩擦系数下车轮的抗滑性能。
结果表明车轮在较高的摩擦系数下具有更好的抗滑性能。
3. 磨损测试通过长时间运行车辆,并观察车轮的磨损情况,我们记录了车轮的磨损程度。
结果显示,在不同路况下,车轮的磨损情况有所差异。
通过进一步分析磨损情况与不同因素的关系,可以找到最优的车轮设计以减少磨损。
汽车轮胎性能分析通过介绍轮胎基本知识、轮胎与汽车行驶跑偏的原因,分析对轮胎性能要求对如何评价轮胎性能有一定帮助。
标签:轮胎;跑偏;花纹1轮胎基础知识车轮与轮胎是汽车行驶系中的重要部件,现代汽车几乎都采用充气轮胎。
轮胎安装在轮辋上,直接与路面接触,它的作用是:(1)和汽车悬架共同来.缓和汽车行驶时所受到的冲击,并衰减由此而产生的振动,以保证汽车有良好的乘坐舒适性和行驶平顺性。
(2)保证车轮和路面有良好的附着性,以提高汽车的牵引性、制动性和通过性。
(3)承受汽车的重力,并传递其它方向的力和力矩。
2轮胎与汽车行驶跑偏汽车行驶跑偏是指汽车在平直的路面上行驶,双手松开方向盘后,汽车偏离了原直线行驶方向。
GB7258-97《机动车运行安全技术条件》中5.7规定:机动车在平坦、硬实、干燥和清洁的道路上行驶不得跑偏。
汽车行驶跑偏的原因十分复杂,主要包括:(1)轮胎的不均匀性(锥度效应)。
(2)前轮定位(前束、前轮外倾、主销内倾、主销后倾)。
(3)一些使用和调整因素(如左右轮胎气压不相等、前制动器分离不彻底、前轮轴承过紧等)。
(4)车辆零部件损坏所导致(如前弹簧减振器失效、车身底部或车架变形等)轮胎锥度对跑偏的影响:一般而言,轮胎红点既表示径向力一次偕波最大点,同时表示红点所在面为锥度力负值面。
径向力表示的是圆度均匀性,锥度效应表示的是圆柱度均匀性。
装车的时候,一般前轴两轮红点要么同时朝外,要么同时朝内。
目前供应商黄点一般和红点打在同一侧,如果黄点和车轮蓝点对齐,则可保证两侧轮胎的红点均在外侧,抵消锥度效应引起的侧向力。
行驶跑偏90%是由于轮胎的锥度效应引起,所以确定跑偏原因首先应从轮胎锥度考虑。
3轮胎性能对于现代、高速汽车而言,轮胎是一个在行走机构中极其重要的部件,它们必须有弹性,而又减震。
它们必须保证汽车直行,而又具有良好的圆周方向旋转性:它们必须具备长久的使用寿命。
轮胎首先必须承受并传播车辆前进方向的纵向力和垂直于车辆前进方向横向力。