中国人口增长预测数学建模 (2)
- 格式:docx
- 大小:13.50 KB
- 文档页数:4
中国人口增长预测本题是一个人口发展预测的问题。
人口发展与一般种群增长一样,是由自然增长率决定的。
然而,人类个体是一种社会的个体,所以人口发展有自己的特点。
想到人口的迁移,性别比例,城镇化等。
同时,人口发展受政策的影响,例如计划生育;也要受到人们意识的影响,像生育意识等。
但是从社会层面上看,生育意识在整个社会上体现为妇女的生育模式,进而可以特别地去考虑。
思考方法:首先,数据的处理。
在经过EXCEL分析和验证后,适当修正题中的个别有误数据后,利用有效数据进行建模求解,在此过程中,我们提取出死亡率、生育率等感念,且把人的一生按年龄分为青年期、衰老期等阶段。
这是求解人口增长模型的必要过程和方法。
其次,模型建立。
和一般的预测模型一样,本模型也是个预测模型,所以考虑到用题目所给的五年的信息,来推测今后几十年的人口的总数和结构情况。
对此,我们选用差分方程模型和数据参数拟合等方法。
同时,将死亡率与出生率分开分别计算和拟合,通过五年的实际数据拟合出相应函数的参数,再利用此函数进行评估和预测。
最后,利用已有信息以及上述所求出的对应函数和方程,对中短期与长期进行估计和预测,进而得出人口结构、人口比例、人口数量等一系列的相关数据。
以下是解答过程:1.数据说明:x:表示最大的年龄;mi=1,2,3,4,5,6 其中1表示市男性,2表示市女性,3表示镇男性,4表示镇女性,5表示乡男性,6表示乡女性;A :表示婴儿性别比例矩阵;* :表示点乘;P(x,t):表示t时刻年龄为x的人口数量;ibir(x,t):表示t时刻年龄为x的出生率;i)(,i dea x t:表示t时刻年龄为x的死亡率;)(i t k:表示t时刻婴儿的死亡率;tra(x,t):表示t时刻年龄为x的人口迁出率;i2.假设条件1. 假设国内社会环境稳定,无异常大量死亡或出生情况发生,人口比例,人口总数不会出现突变状况; 2. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁移率相同; 3. 假设不考虑国家之间的迁入与迁出,把中国内部看为一个封闭的模型; 4. 对于90岁以上的人都按照90岁处理; 5. 假设只存在乡向城镇迁出,不存在其他迁移方式,且不同年龄段迁出率相同,按照0.6%均匀增长。
中国人口增长预测摘要本文从中国人口的实际情况和人口增长的特点出发,根据题目和中国统计年鉴中的相关数据,建立了两个关于中国人口增长的数学模型,并对中国人口做出了分析和预测。
模型一:利用中国统计年鉴中 2000—2005 年人口的数据,运用灰色理论的基本原理建立 GM(1,1) 模型。
该模型利用离散数据列进行生态处理,建立动态的微分方程,对我国近5年、10年、20年的总人口分别进行了预测。
又根据中国人口城乡分布不同且总趋势也不同的特点,把全国人口分为城市人口、城镇人口、乡村人口三部分分别进行灰色预测。
结果表明,该模型较好的反映并预测中国人口短中期和长期的变化情况。
模型二:按人口年龄结构特征,将人口分为幼年(0—14岁)男女、中年(15—49岁)男女、老年(50岁以上)男女。
各年龄段的人口变化是由出生率、死亡率和转化为其他年龄段的转化人数决定的。
根据各年龄段人口数量变化特点,对各年龄段转化人数引入转化因子,改进马尔萨斯模型,附带出生率、死亡率、生育率、出生性别比率等约束条件,建立了新的具有年龄结构的人口增长模型。
结合我国人口的特点,运用已知数据和利用微分方程的数值解,预测出男性和女性幼年、中年、老年的人口数量。
可反映中国不同年龄结构的人口分布情况。
关键词:灰色预测;小误差频率;微分方程组;人口模型;转移因子一.问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
因此人口预测的科学性、准确性是至关重要的。
英国人口学家马尔萨斯的人口指数增长模型和荷兰生物学家的Logistic模型都是经典的人口预测模型。
但是,影响中国人口的因素较多,人口结构较复杂,这些模型对人口预测很粗略,甚至是不准确的。
因此,我们要根据我国具体的人口结构现状(如老龄化进程加速)、人口的分布现状(如乡村人口城镇化)、人口比率现状(如出生人口性别比持续升高)等特点,来较准确、较具体地对中国人口进行预测,建立人口增长的数学模型,由此对中国人口中短期和长期增长趋势做出预测。
关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic 、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合, 对 2014 至 2040 年的人口数目进行了预测, 得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、 出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理 论上很好,实用性不强,有一定的局限性。
然后, 为了减少人口的出生和死亡这些随机事件对预测的影响, 本文建立了 GM(1,1) 灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的 人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测, 得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄 一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。
中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。
模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。
这里,我们采用两种算法进行人口总数的预测。
一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。
通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。
我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。
由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。
关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。
二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。
中国未富先老,对经济的发展产生很大的影响。
中国人口增长预测与控制摘要针对中国人口的实际特点,建立了中国人口增长的数学模型,得到了中国人口随年份变化的增长率,解决了中国人口中短期和长期的人口预测与控制问题,包括人口总数、年龄结构、性别比、城乡比变化等各因素的预测与控制研究。
关键词:人口控制差分模型预测拟和Leslie模型Logistic方程一、问题重述中国人口增长影响因素主要包括老龄化进程的加速、出生人口性别比的升高和乡村人口城镇化。
而老龄化程度、出生人口性别比和城镇化程度是由死亡人口、出生人口及城、镇、乡迁移人口所决定的。
因此,人口增长的根本性影响因素是环境条件(决定死亡率)及国家政策(决定出生人口数量及性别结构)。
我们要解决的问题是:首先对中国人口增长做出分析;其次建立人口增长的数学模型,对人口在一至十年的中短期内及二十五年的长期内的增长情况做出预测,并向国家提出政策上的建议;最后将此模型与经典模型做出比较,指出差异及此模型的优缺点。
二、假设和符号说明2.1 问题的假设假设一每一年的人口总数,人口结构及分布和其他有关各量仅在年末发生变化,变化顺序是:一部分人先死亡,然后一部分人生小孩,最后一部分人迁移假设二本文中所提到的婴儿出生率指的是婴儿出生且在一岁前存活的概率假设三生育妇女一年只生一胎假设四九十岁以上的人口变化对总人口变化影响不大,因此不予以考虑假设五人口的迁移路径仅考虑从村到镇,从村到城假设六国际迁入迁出对于人口的影响较小三、问题分析为了与机理分析结合求得较精确的结果,可以建立递推模型,利用附录中所给数据确定未知参数,进而确定描述中国人口增长的数学模型,并用此进行中短期、长期预测。
首先,由于人口增长受多个因素影响,我们分别建立描述各因素的数学模型,包括:死亡率模型、出生人口模型、生育性别比模型和迁移模型。
由于死亡率模型和生育性别比有性别差异,各模型皆有城、镇、乡差异,所以需将男性人口与女性人口,城、镇、乡人口分开考虑。
其次,由于中短期、长期预测时问题的复杂程度不同,侧重点不同,因此中短期、长期预测的模型有所差异。
中国人口增长预测数学建模引言中国作为世界人口最多的国家之一,人口增长一直是一个备受关注的话题。
为了能够合理规划和管理资源,预测中国人口的增长趋势对决策者来说至关重要。
本文将运用数学建模的方法,通过分析历史数据,来预测中国人口的增长。
数据收集与处理为了进行人口增长预测,首先需要收集和处理相关的数据。
我们可以通过查阅统计年鉴、人口普查数据等公开的数据来获取所需信息。
然后,需要对数据进行清洗和整理,以便进行后续的分析和建模工作。
人口增长模型选择人口增长涉及到多个因素的复杂影响,如出生率、死亡率、迁移率等。
为了能够对中国人口的增长进行模型化,我们需要选择适合的数学模型。
常用的人口增长模型有Malthusian模型、Logistic模型等。
在选择模型时,需要考虑模型的适用性和可解释性。
Malthusian模型Malthusian模型是由英国经济学家Malthus提出的,他认为人口增长是按指数规律进行的。
该模型是基于以下假设:1.出生率和死亡率是恒定的;2.人口的增长率与人口规模成正比。
Malthusian模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP $$其中,P为人口规模,P为时间,P为每个个体的平均增长率。
根据该模型,人口规模以指数形式增长。
Logistic模型Logistic模型是在Malthusian模型的基础上发展起来的,它考虑到了环境资源的有限性对人口增长的限制。
Logistic模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP(1 - \\frac{{P}}{{K}}) $$其中,P为人口规模,P为时间,P为每个个体的平均增长率,P为环境资源的极限容量。
该模型认为人口规模在达到环境资源的极限容量时,增长率将逐渐减小。
变量的估计和参数的拟合在建立模型之后,需要对模型进行参数估计和拟合。
可以利用历史数据来对模型中的参数进行估计,并通过优化算法来拟合模型与实际数据的拟合度。
摘要:人口的增长是当前世界上引起普遍关注的问题作为世界上人口最多的国家,我国的人口问题是十分突出的由于人口基数大尽管我国已经实行了20多年的计划生育政策人口的增长依然很快,巨大人口压力会给我国的社会 政治经济医疗就业等带来了一系列的问题。
因此研究和解决人口问题在我国显得尤为重要。
我们经常在报刊上看见关于人口增长预报,说到本世纪,或下世纪中叶,全世界的人口将达到多少亿。
你可能注意到不同报刊对同一时间人口的预报在数字商场有较大的区别,这显然是由于用了不同的人口整张模型计算出来的结果。
人类社会进入20世纪以来,在科学和技术和生产力飞速发展的同时世界人口也以空前的规模增长。
人口每增加十亿的时间,有一百年缩短为十几年。
我们赖以生存的地球已经携带着他的60亿子民踏入下一个世纪。
长期以来,人类的繁殖一直在自然地进行着,只是由于人口数量的迅速膨胀和环境质量的急剧恶化,人们才猛然醒悟,开始研究人类和自然的关系、人口数量的变化规律以及如何惊醒人口控制等问题。
本文件里两个模型: (1):中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2):中国人口的Logistic 图形,标出中国人口的实际统计数据进行比较。
而且利用MATLAB 图形 ,标出中国人口的实际统计数据,并画出两种模型的预测曲线和两种预测模型的误差比较图,并分别标出其误差。
关键词:指数增长模型 Logistic 模型 MATLAB 软件 人口增长预测1.问题的提出下表列出了中国1982-1998年的人口统计数据,取1982年为起始年(0=t ),1016540=N 万人,200000=m N 万人。
要求:(1)建立中国人口的指数增长模型,并用该模型进行预测,与实际人口数据进行比较。
(2)建立中国人口的Logistic 模型,并用该模型进行预测,与实际人口数据进行比较。
(3)利用MA TLAB 图形,标出中国人口的实际统计数据,并画出两种模型的预测曲线。
答疑解惑239以人口预测为例初试数学建模★纪秀浩本文研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,然后建立leslie 模型,将用灰色预测模型算出来的数据代入leslie 模型中,得到leslie 矩阵,进而预测出未来30年我国的人口数;通过搜集中国统计局各个年龄段的结构比例以及老年人口占全部人口的比重,预测未来30年老龄化程度。
本课题是研究单独二胎和全面二胎对未来人口的影响,所以我们要用到最新的数据并对未来30年做一个预测,由于需要的数据很少,所以我们必须用已有的数据做一些预测,本次预测方法采用灰色模型矩阵来进行预测,灰色模型它的优点就在于根据已有的少量数据,对事物的发展规律做一个模糊性的描述,来预测后边未知的数据,当然在此之前我们还要把之前的数据进行一些累加,以弱化原始数据的影响,而且大大的减少了原始数据的随机性,从而呈现出比较明显的变化规律。
得到了一个初步的数据后,我们可以用Leslie 模型在MATLAB 的基础上编程求解,在图中呈现不开放二胎和单独二胎政策和全面二胎政策的一些发展趋势,并定量的分析两种政策下对未来国家总人口及老龄化的影响。
一、灰色GM(1,1)模型为了研究“二孩”政策对我国人口发展的影响问题,对于预测未来30年人口数的问题,通过搜集统计局近5年的数据人口[1],分别对“单独二孩”和“全部二孩”政策首先建立灰色预测模型,将近5年的人口数据做累加合成,得到近似指数规律的数据,将已知的2006年至2010年出生人口性别比数据作为已知数据向量0x ,(0)125{(0),(0),,(0)}x x x x = ,先对五年的数据进行一次累加。
以减少对后边数据的影响,并得到新的向量表达式:1(1)(0) (1,2,,30),kk jj x xk ===∑ 令x为生成的新向量,(1)1230{(1),(1),,(1)}x x x x = ,在新向量x 的基础上建立灰色方程为(t)(1)dx cx v d t+= (1)式(1)为灰色一阶微分方程,一般记做(1,1)G M,其中,c v为未知参数。
中国人口增长预测数学建模
引言
中国作为世界上人口最多的国家之一,人口增长一直是一个备受关注的问题。
人口数量的增长对于国家的经济、社会、环境等方面都有着重要的影响。
因此,预测中国人口的增长趋势对于未来的发展规划具有重要意义。
本文将介绍一种基于数学建模的方法,用于预测中国人口的增长情况。
方法
数据收集
为了进行人口增长预测的数学建模,我们需要收集一系列历史人口数据。
这些数据可以从各种统计年鉴、人口普查、政府发布的数据等渠道获取。
通常,我们需要收集的数据包括中国的总人口数量、出生率、死亡率、迁入率和迁出率等。
建立数学模型
基于收集到的数据,我们可以建立一个数学模型来描述中国人口的增长情况。
常用的数学模型包括指数增长模型、
Logistic增长模型等。
在本文中,我们以Logistic增长模型为例。
Logistic增长模型基于以下假设: 1. 人口增长率与当前人口数量成正比; 2. 当人口数量接近一定的上限时,人口增长率会逐渐减小。
Logistic增长模型的公式可以表示为:
dP/dt = r*P*(1-P/K)
其中,P表示人口数量,t表示时间,r表示人口增长率,K表示人口的上限。
参数估计
为了应用Logistic增长模型进行人口预测,我们需要估计模型中的参数。
参数估计可以通过拟合历史数据来完成。
常用的参数估计方法包括最小二乘法、最大似然估计等。
模型验证
一旦完成参数估计,我们可以使用模型预测未来的人口变化情况。
为了验证模型的准确性,我们可以将预测结果与实际观测数据进行比较。
如果预测结果与实际观测数据较为接近,说明模型具有较好的预测能力。
预测未来人口增长
利用建立的数学模型和参数估计,我们可以进行未来人口增长的预测。
通过不同的假设和参数值,我们可以探讨不同因素对人口增长的影响。
例如,我们可以考虑不同的出生率和死亡率情况下的人口增长,或者研究不同人口政策下的人口增长趋势。
结论
本文介绍了一种基于数学建模的方法,用于预测中国人口的增长情况。
该方法利用历史数据建立数学模型,并通过参数估计和模型验证对未来人口增长进行预测。
这种方法可以为政府和决策者提供重要的参考,帮助他们制定合理的人口政策和发展规划。
参考文献
1.陈可,胡花果,刘进登. 人口数学模型与预测[M]. 高
等教育出版社, 2013.
2.李健,孙德友,彭建权. 人口增长模型中的数学建模
的研究[J]. 数学的实践与认识, 2015(4): 53-55.
3.蒋炜,孟月. 一种改进的Logistic人口增长模型及其预测[J]. 数学的实践与认识,2017(17): 138-140.。