排队论模型及其应用
- 格式:docx
- 大小:17.58 KB
- 文档页数:4
第1篇一、实验背景排队论是运筹学的一个重要分支,主要研究在服务系统中顾客的等待时间和服务效率等问题。
在现实生活中,排队现象无处不在,如银行、医院、超市、餐厅等。
通过对排队问题的研究,可以帮助我们优化服务系统,提高顾客满意度,降低运营成本。
本实验旨在通过模拟排队系统,探究排队论在实际问题中的应用。
二、实验目的1. 理解排队论的基本概念和原理。
2. 掌握排队模型的建立方法。
3. 熟悉排队系统参数的估计和调整。
4. 分析排队系统的性能指标,如平均等待时间、服务效率等。
5. 培养运用排队论解决实际问题的能力。
三、实验内容1. 建立排队模型本实验以银行排队系统为例,建立M/M/1排队模型。
该模型假设顾客到达服从泊松分布,服务时间服从负指数分布,服务台数量为1。
2. 参数估计根据实际数据,估计排队系统参数。
假设顾客到达率为λ=2(人/分钟),服务时间为μ=5(分钟/人)。
3. 模拟排队系统使用计算机模拟排队系统,记录顾客到达、等待、服务、离开等过程。
4. 性能分析分析排队系统的性能指标,如平均等待时间、服务效率、顾客满意度等。
四、实验步骤1. 初始化参数设置顾客到达率λ、服务时间μ、服务台数量n。
2. 生成顾客到达序列根据泊松分布生成顾客到达序列。
3. 模拟排队过程(1)当服务台空闲时,允许顾客进入队列。
(2)当顾客进入队列后,开始计时,等待服务。
(3)当服务台服务完毕,顾客离开,开始下一个顾客的服务。
4. 统计性能指标记录顾客等待时间、服务时间、顾客满意度等数据。
5. 分析结果根据实验数据,分析排队系统的性能,并提出优化建议。
五、实验结果与分析1. 平均等待时间根据模拟结果,平均等待时间为2.5分钟。
2. 服务效率服务效率为80%,即每分钟处理0.8个顾客。
3. 顾客满意度根据模拟结果,顾客满意度为85%。
4. 优化建议(1)增加服务台数量,提高服务效率。
(2)优化顾客到达率,降低顾客等待时间。
(3)调整服务时间,缩短顾客等待时间。
数学建模排队论(最新版)目录一、数学建模与排队论简介二、数学建模的方法与应用三、排队论的概念及其应用四、数学建模在排队论中的应用案例五、总结正文一、数学建模与排队论简介数学建模是一种运用数学方法来描述和解决实际问题的科学方法,其目的是通过建立数学模型,揭示问题的本质,从而为解决实际问题提供理论依据。
而排队论是研究随机服务系统中顾客等待现象的一种数学理论,主要用于分析和优化服务系统的性能,以提高服务效率和顾客满意度。
二、数学建模的方法与应用数学建模的方法主要包括概率论、统计学、微分方程等。
这些方法在各个领域都有广泛的应用,如在经济学中分析市场需求、预测价格波动;在生物学中研究生物种群的数量变化等。
数学建模在排队论中也有着重要的应用,可以帮助我们理解顾客等待现象,优化服务系统。
三、排队论的概念及其应用排队论主要研究服务系统中的顾客到达、服务、离开等过程,以及顾客等待时间、服务时间等随机变量。
排队论的应用领域非常广泛,涉及到服务行业、交通工程、通信系统等。
通过排队论的分析,可以有效地优化服务系统的结构和策略,减少顾客等待时间,提高服务质量。
四、数学建模在排队论中的应用案例以一家医院挂号为例,我们可以通过数学建模和排队论来分析和优化挂号流程。
首先,我们可以建立一个概率模型,描述病人到达、挂号、就诊等过程。
然后,通过分析模型中的参数,如到达率、服务率等,可以得到病人等待时间的分布,从而为优化挂号流程提供依据。
例如,可以通过增加挂号窗口、提高挂号效率等措施,来减少病人的等待时间。
五、总结数学建模与排队论在实际应用中相辅相成,通过建立数学模型,可以更好地理解和优化排队现象。
计算机网络的排队论模型计算机网络的排队论模型是一种理论模型,用于研究计算机网络中传输数据时产生的排队现象和性能表现。
排队论模型可以帮助我们理解计算机网络中的数据传输过程,优化网络性能,提高网络的吞吐量和响应速度。
在本文中,我们将介绍计算机网络排队论模型的基本概念、分类和应用。
一、排队论模型的基本概念1.1 排队系统排队系统是指在一个服务设施之前等待服务的顾客队列。
在计算机网络中,排队系统可以看作是数据包在网络节点之间传输时产生的排队现象。
排队系统包括输入过程、服务机构和排队规则。
1.2 排队论模型排队论模型是对排队系统进行数学建模和分析的方法。
排队论模型通常包括顾客到达过程、服务时间分布、队列容量和服务规则等因素。
排队论模型可以帮助我们预测排队系统的性能表现,如平均等待时间、系统繁忙度和响应时间等指标。
二、排队论模型的分类2.1 M/M/1排队模型M/M/1排队模型是最简单的排队论模型之一,其中"M"代表顾客到达过程和服务时间满足指数分布,"1"代表只有一个服务设施。
M/M/1排队模型可以用来分析单一服务节点的性能表现,如平均等待时间和系统繁忙度等指标。
2.2 M/M/C排队模型M/M/C排队模型是相对复杂一些的排队论模型,其中"C"代表有C个服务设施。
M/M/C排队模型可以用来分析多个服务节点的性能表现,如系统的吞吐量和响应时间等指标。
2.3 其他排队模型除了M/M/1和M/M/C排队模型,还有很多其他类型的排队论模型,如M/M/∞排队模型、M/G/1排队模型和多类别排队模型等。
每种排队模型都有其独特的特点和适用范围,可以根据实际情况选择合适的模型进行性能分析。
三、计算机网络排队论模型的应用3.1 网络流量建模计算机网络排队论模型可以用来建模网络中的数据传输过程,分析网络节点的繁忙度和数据包的平均等待时间。
通过对网络流量进行建模,可以优化网络拓扑结构、改进路由算法和提高网络性能。
数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。
数学的统计排队论在现实生活中,我们经常会遇到需要排队等候的情况,比如买票、办理业务等。
而数学中的统计排队论就是研究这些排队问题的一门学科。
统计排队论主要涉及到排队的平均等待时间、服务设备的利用率以及排队系统的稳定性等问题。
本文将介绍统计排队论的基本理论和应用,以及一些与排队相关的数学模型。
1. 排队系统的基本模型在排队论中,有三个基本模型被广泛应用,它们分别是M/M/1模型、M/M/c模型和M/M/c/c模型。
M/M/1模型指的是具有泊松到达率和指数服务率的单一服务通道排队系统。
在这个模型中,到达时间和服务时间都符合泊松分布和指数分布,即到达时间和服务时间是随机的。
M/M/1模型的特点是排队系统的平均等待时间可以通过使用里特方程(也称为相关公式)进行计算。
M/M/c模型是指具有泊松到达率和指数服务率,且有c个并行服务通道的排队系统。
这意味着在该系统中,可以同时有多个顾客被服务。
M/M/c模型的特点是可以通过使用平稳分析法计算出顾客的平均等待时间和系统设备的利用率。
M/M/c/c模型是指具有泊松到达率和指数服务率,同时还考虑了顾客有限等待区域的排队系统。
在M/M/c/c模型中,顾客在进入排队系统之前需要在一个有限的等待区域等待。
该模型的特点是可以通过使用排队论的边界理论计算出系统性能指标。
2. 统计排队论的应用统计排队论的研究成果可以应用于各个领域,比如交通运输、通信网络、医疗服务等。
以下是一些典型的应用场景:2.1 公共交通系统公共交通系统中的排队问题很常见,比如地铁站的进站口、公交车站的上车口等。
统计排队论可以帮助交通管理者合理设置服务通道和优化乘客的等待时间,提高公共交通系统的效率。
2.2 电话交换系统电话交换系统中的呼叫中心是一个典型的排队系统。
通过使用统计排队论的模型和理论,电话交换系统的设计者可以合理设置服务通道数量和系统容量,以提供更好的服务质量和用户体验。
2.3 服务行业在一些服务行业,比如银行、医院等,排队问题也是一个重要的考虑因素。
运筹学中的排队论分析与应用运筹学是一门研究如何最优化决策的学科。
在现代社会中,许多场景下都存在排队现象,例如银行、超市、机场等场所。
排队论作为运筹学的一个重要分支,专门研究如何通过合理的排队策略来优化服务效率与用户体验。
本文将介绍排队论的基本原理、应用场景以及如何利用排队论进行实际问题的分析与解决。
一、排队论的基本原理排队论是研究排队系统的理论与方法,其基本原理包括排队模型、排队规则以及排队指标。
1. 排队模型排队模型是对排队系统进行抽象和建模的过程,常用的排队模型有M/M/1、M/M/c、M/G/1等。
其中,M表示顾客到达过程符合泊松分布,而服务过程符合指数分布;1表示一个服务台,c表示多个服务台;G表示总体服从一般分布。
2. 排队规则排队规则是指在排队系统中,顾客到达和离开的规则。
常用的排队规则有先到先服务(First-Come-First-Serve,简称FCFS)、最短作业优先(Shortest Job First,简称SJF)、优先级法则等。
3. 排队指标排队指标是对排队系统性能的度量,常用的排队指标包括平均等待时间、平均逗留时间、系统繁忙度等。
这些指标可以帮助我们评估排队系统的效率,并进行比较和优化。
二、排队论的应用场景排队论的应用场景非常广泛,几乎可以涵盖各个行业。
下面以几个典型的应用场景为例,介绍排队论在其中的分析与应用。
1. 银行排队银行是排队论的典型应用场景之一。
通过排队论的分析,银行可以确定合理的柜台数量和工作人员配置,以减少客户的等待时间和提高服务效率。
此外,银行还可以考虑引入预约系统、自助服务等方式,进一步优化排队系统。
2. 售票窗口排队售票窗口也是一个常见的排队场景,如电影院、火车站等。
利用排队论,可以根据顾客到达的速率和服务时间的分布,预测等待时间,并提前安排足够的窗口进行服务,以提高售票效率和用户体验。
3. 交通信号灯优化交通信号灯的优化也可以借助排队论的方法。
通过对道路上车辆到达和通过的流量进行统计和分析,可以调整信号灯的信号周期和配时方案,以减少交通拥堵和减少等待时间。
运筹学排队论引言排队论是运筹学中的一个重要分支,它研究的是如何优化排队系统的设计和管理。
排队论广泛应用于各个领域,如交通流量控制、银行业务流程优化、生产线调度等,对于提高效率和降低成本具有重要意义。
本文将介绍排队论的基本概念、排队模型以及应用案例,帮助读者了解运筹学中排队论的基本原理和应用方法。
什么是排队论排队论是一门研究排队现象的数学理论,它通过定义排队系统的各个要素,如顾客到达率、服务率、队列容量等,建立数学模型分析和优化排队系统的性能指标。
排队论主要研究以下几个方面:•排队系统的模型:包括单服务器排队系统、多服务器排队系统、顾客数量有限的排队系统等。
•排队系统的性能指标:包括平均等待时间、系统繁忙率、系统容量利用率等。
•排队系统的优化方法:包括服务策略优化、系统容量规划等。
排队论的基本概念到达过程排队论中的到达过程是指顾客到达排队系统的时间间隔的随机过程。
常用的到达过程有泊松过程、指数分布等。
到达过程的特征决定了顾客到达的规律。
服务过程排队论中的服务过程是指服务器对顾客进行服务的时间间隔的随机过程。
常用的服务过程有指数分布、正态分布等。
服务过程的特征决定了服务的速度和效率。
排队模型排队模型是排队论中的数学模型,用于描述排队系统的性能和行为。
常用的排队模型有M/M/1模型、M/M/s模型等。
这些模型分别表示单服务器排队系统和多服务器排队系统。
性能指标排队系统的性能指标用于评估系统的性能,常见的性能指标有平均等待时间、系统繁忙率、系统容量利用率等。
这些指标可以帮助决策者优化排队系统的设计和管理。
排队模型与分析M/M/1模型M/M/1模型是排队理论中最简单的排队系统模型,它是一个单服务器、顾客到达过程和服务过程均为指数分布的排队系统。
M/M/1模型的性能指标可以通过排队论的公式计算得出。
M/M/s模型M/M/s模型是排队理论中的多服务器排队模型,它是一个多个服务器、顾客到达过程和服务过程均为指数分布的排队系统。
排队论的应用引言排队论是一种用于研究排队系统行为的数学模型和方法。
排队论广泛应用于交通系统、生产线、客户服务等领域,以帮助分析和优化系统的性能。
本文将介绍排队论的基本概念和原理,并探讨其在实际应用中的重要性和效果。
排队论的基本概念排队论是以排队系统为研究对象的数学理论。
排队系统由顾客、服务设备和队列组成。
顾客以一个特定的速率到达系统并等待服务。
服务设备以一定的速率为顾客提供服务。
排队论研究如何通过合理地分配服务设备和管理队列来达到最佳的系统效果。
排队论的基本概念包括:1.到达过程:描述顾客到达系统的规律,通常使用到达率来描述。
到达过程可以是常数过程、泊松过程或其他形式。
2.服务时间分布:描述服务设备为顾客提供服务所需要的时间,通常使用服务时间的均值和方差来描述。
服务时间可以是固定的、随机的或符合特定概率分布的。
3.服务台数:指的是系统中可同时提供服务的服务设备数量。
服务台数的多少直接影响到系统的性能。
排队论的原理排队论的基本原理是根据排队系统的参数,使用数学模型和方法来分析和优化系统的性能指标。
常见的性能指标包括顾客的平均等待时间、平均逗留时间和系统的利用率。
排队论的常用模型包括:1.M/M/1模型:该模型是最简单和最常用的排队论模型。
M/M/1模型假设到达过程和服务时间分布均符合指数分布,服务台数为1。
根据该模型,可以计算出系统的平均等待时间和平均逗留时间。
2.M/M/c模型:该模型是在M/M/1模型的基础上引入了多个服务台,用于分析多个服务设备对系统性能的影响。
通过该模型,可以评估并优化系统的利用率和服务设备的数量。
3.M/G/1模型:该模型适用于到达过程符合泊松分布、服务时间分布为一般概率分布的情况。
M/G/1模型的分析方法相对复杂,通常使用数值计算或仿真方法来求解。
排队论的应用领域排队论广泛应用于各个领域,包括但不限于以下几个方面:1.交通系统:排队论可用于分析城市交通系统中的拥堵问题。
医院排队论模型(1)医院排队论模型指的是人在医院排队就诊的过程中,如何利用排队论模型来优化排队过程,提高就诊效率,降低排队时间。
下面从排队论模型的三要素(到达率、服务率、队列容量)出发,探讨在医院排队过程中如何优化流程。
第一、到达率到达率指的是单位时间内到达就诊的人数。
在医院排队过程中,到达率的分析可以帮助医院预测每天需要接待的患者数量,从而根据就诊人数、科室人员数量等资源来合理安排诊疗流程,避免出现拥堵的情况。
在医院安排就诊计划时,可以根据就诊需求、人员数量、诊室开放时长等来制定排班计划,如早上安排主诊医生接待复杂病人,下午安排副诊医生接待一般患者等。
第二、服务率服务率指的是单位时间内完成服务的人数。
在医院排队过程中,每个病人的就诊时间不同,有的患者需要进行详细检查、化验,需要较长时间,有的患者可能只需要短暂检查,大约十几分钟左右。
因此,为了提高个体效率,医院可以根据病人种类、健康状况等特不同性制定不同的服务时间,避免患者等待时间过久。
医院服务行业,提高服务水平可以吸引更多患者就诊,轻松排队也能提高了患者就诊时的舒适度和安全感。
第三、队列容量队列容量指的是医院可以容纳等待就诊人数和等待空间。
医院到达的患者数量与就诊人数不匹配,往往会造成人流混乱,交通拥堵等问题。
因此,医院应该合理利用队列容量,充分利用场地现有资源,设置等待区域、设立排队标识等措施,通过这些技术手段,既可以避免人流混乱,也可以避免就诊过程中因不注意安全方面出现不必要的伤害。
以上是基本的医院排队论模型,通过对到达率,服务率和队列容量的分析可以合理安排医院就诊计划,优化流程,提高服务水平、减少等待时间,使得医院就诊流程得到良性循环。
排队论模型及其应用
摘要:排队论是研究系统随机服务系统和随机聚散现象匸作过程中的的数学理论和方法,乂叫随机服务的系统理论,而且为运筹学的一个分支。
乂主要称为服务系统,是排队系统模型的基本组成部分。
而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。
比如:学校超市的排队现象或岀行车辆等现象,。
排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。
后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统讣平衡模型,并山此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。
关键词:出行车辆;停放;排队论;随机运筹学
引言:排队论既被广泛的应用于服务排队中,乂被广泛的应用于交通物流领域。
在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。
然而有基于扩展原理乂对模糊排队进行了一定的分析。
然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。
对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为陷而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。
一.排队模型
排队论是运筹学的一个分支,乂称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。
它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。
一般排队系统有三个基本部分组成⑴:
(1)输入过程:
输入过程是对顾客到达系统的一种描述。
顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。
(2)排队规则:
排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。
排队
规则可以分为3种制式:
a损失制系统一…顾客到达服务系统时,如果系统中的所有服务窗均被占用,则顾客即时离去,不参与排队,因为这种服务机制会失掉许多顾客,故称损失制系统;
b等待制系统-顾客到达服务系统时,虽然发现服务窗均忙着,但系统设有场地供顾客排队等候之用,于是到达系统的顾客按先后顺序进行排队等候服务。
通常的
服务规则有先到先服务,后到后服务、随机服务、优先服务等;
C混合制系统-它是损失制与等待制混合组成的排队系统。
顾客到达服务系统时,若服务员都不空但有排队位置,就排队,如果服务员都不空且排队位置已满,顾客就立即离去。
(3)服务窗
a系统可以无窗口、一个窗口或多个窗口为顾客进行服务;
b在多个服务窗情形,顾客排队可以平行多队排列,串列或者并帘同时存在的混合排队:
c 一个服务窗可以为单个顾客或成批顾客进行服务;
d各窗口的服务时间可以为确定性或者随机型,服务时间往往假定是平稳的;
(4)排队系统中的口标参量
排队论中儿个性能指标:系统中的平均排队长度Lq,表示系统内排队等候顾客数的均值;顾客在系统中的平均等待时间Wq,顾客在系统中的平均逗留时间Ws,系统中的平均顾客数Ls;
排队论中儿个常用的数量指标:平均到达率入,平均服务率系统中并联服务台的数LI S,服务台强度,即每个服务台单位时间间隔内的平均服务时间P,系统的稳态概率P0和繁忙概率P。
二.M/M/s 模型
排队系统的一般形式符号为:X/Y/Z/A/B/Co
其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表示服务台的个数;A表示系统的容量,即可容纳的最多顾客数:B表示顾客源的数LI; C表示服务规则。
排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。
当系统运行一定时间达到平稳后,对任一状态n来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流
入二流出”。
据此,可得任一状态下的平衡方程如下:
0:"的二无几
1:心“ ♦地戸=(占+刈)必
2:右》4"的=(色+坯)化
n~i: <21\< + "心=(A-I 4 如)也
2 A,""十—% M (人十心)几
—•• • • • • • ••・•
由上述平衡方程,可求的:
平衡状态的分布为:p n = Cgn =1,2, (1)
其中:C” = C”-2 %,〃= 1,2,……⑵
“如…从
0C 00
有概率分布的要求:$>”=1,有:l + £c”几=1 ,则有:
n-0 _ ?r=O .
Po = --- 1 ..... (3)
i +》c”
D
8 X
注意:(3)当式只有当级数£c,r收敛时才有意义,即当£c\a时才能由
Hi 11^0
上述公式得到平稳状态的概率分布。
三.超市模型举例
假定去那个青岛农业大学歌斐木超市的学生在峰期这段时间达到的人数
9 ■
I* b
是无限的,并且一次以参数2的泊松过程达到,达到的时间间隔是随机的,服从负指数分布。
每个服务台以并联的方式连接,且每个服务台对学生来说都是一样的,服务时间服从参数为“的负指数分布。
超市实行先来先服务原则,且顾客可自由在队列间进行转移,并总向最短的对转移,没有顾客会因为队列过长而离去,故可认为排队方式是单一队列等待制。
以下数据来源于网络
高峰期超市的顾客流分布情况:共统汁了3059人次的数据(以10秒为一个
单位),见下表:表一 每10秒到达人数
1 2 3 1 5 7 频数
257 111
894 956 350 161 由概率论的知识可知,若分布满足-^=-,则该分布为泊松分布。
(其中p k
P k -i k
为泊松分布的密度,兄为泊松分布的参数)
由上表可知兄二3. 39o
3. 2模型建立及求解
基于以上的假设,我们的模型符合排队论中的多服务台等待模型(M/Nf/s ). 该模型的特点是:服务系统中有s 个窗口 (B|J s 个服务员),顾客按泊松流来到服 务系统,到达强度为几;服务员的能力都是“,服务时间服从指数分布,每个顾 客的平均服务时间人当顾客到达时,如果所有服务员都忙着,顾客便参加排队 等待服务,一直等到有服务员为他服务为止。
由我的调查数据可知兄=3.39』=1.5,£ = 6(食堂现有窗口 6个)带入以上各 式可得:
服务员能力:“ = 1 = 0.67 t
系统服务强度:p = - = 5.09,因为A =£ = 122 = O .85<1,所以极限存在。
//
s 6 系统中排队顾客的平均数:"畀茶27
L 97 顾客平均排队时间:唁十磊“96
顾客平均逗留时间:VV =W+1 = 7.96 +1.5 = 9.46 系统中顾客的平均数:厶=5+0 = 27 + 5.09 = 32.09
山此可见,当我们在这个时间段超市买东西时,一进门就会发现里面已经是人满 为患了,儿乎不可能找到空闲的服务台。
而且,已经有32个顾客在排队付款, 27个人这在排队等待,平均一个窗口 5人。
当我们开始排队时要过80秒钟才轮 到我们,要过95秒钟才能付钱。
空闲概率: 川("一 Q )
= 0.031 几=。