排队论模型
- 格式:ppt
- 大小:556.50 KB
- 文档页数:40
排队论模型随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。
排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。
随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。
随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。
排队论模型及其在医院管理中的作用每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。
排队论就是对排队进行数学研究的理论。
在医院系统内,“三长一短”的现象是司空见惯的。
由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。
但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。
一、医院系统的排队过程模型医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。
如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。
图1 医院系统的多级排队过程模型二、排队系统的组成和特征一般的排队系统都有三个基本组成部分:1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。
2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。
排队的列数还分单列和多列。
3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。
mm1n排队论模型参数
M/M/1 排队论模型是一种简单的排队系统模型,用于分析单一服务台、顾客到达服从泊松分布、服务时间服从指数分布的系统。
在M/M/1 模型中,有三个主要参数:
1. 到达率(λ):表示单位时间内到达系统的顾客数的期望值,服从参数为λ的泊松分布。
到达率决定了系统中的顾客数量变化速率。
2. 服务率(μ):表示单位时间内一个顾客被服务完成的期望值,服从参数为μ的指数分布。
服务率决定了系统中顾客等待服务的速度。
3. 顾客到达和服务时间是独立的:这个条件表明顾客的到达和服务的完成之间没有影响,使得模型更具有现实意义。
通过平衡方程法,可以对M/M/1 模型进行稳态分析,计算出以下几个重要性质:
1. 队长(Ls):表示系统中的顾客数(n)的期望值。
2. 排队长(Lq):表示系统中排队等待服务的顾客数(n)的期望值。
3. 逗留时间(Ws):指一个顾客在系统中的全部停留时间,为期望值。
4. 等待时间(Wq):指顾客在系统中等待服务的時間,为期望值。
了解这些参数后,可以对M/M/1 模型进行评估和优化,以提高系统的效率和服务质量。
M/M/1 模型虽然简单,但在实际应用中具有广泛的价值,如电话交换系统、计算机网络、银行窗口等。
掌握M/M/1 模型的基本原理和分析方法对于学习排队论和实际应用具有重要意义。
第四章 排队模型两类排队模型:1. Markov 排队模型2. 非Markov 排队模型Markov 排队模型:4-0 Little 定理1961 年 J.D.Little 证明 1974 年 S.Slidhan 一般性证明定理 : 在极限平稳状态下,排队系统内顾客平均数L 系 和 顾客在系统内平均逗留时间W 系 之间的关系,不管到达流的分布如何,也不管服务规则如何,均有以下关系:为到达流的强度系系λλ14.-=L W证明:设 X(t) ---- t 时刻前到达的瞬时顾客数, Y(t)--- t 时刻前离开的瞬时顾客数.Y(t)在稳定后,流入与流出的顾客数应相等, 则在t 时刻留在系统内的顾客数为:Z(t)=X(t)-Y(t)在足够长的时间T 来考虑有:队队系系系系同理可以证明所以有逗留时间系统内每个顾客的平均时间的总和所有顾客在系统内逗留时间个顾客在系统内的逗留第其中的小面积的总和高度为长度为阴影部分的面积W L W L W Tt t i t t Tt T t T T dtt Z T L iiii i iiii i T.:.:...,:.11]1*[1][1)(10λλλλλ==--=--=⨯====∑∑∑∑⎰4-1 M/M/1/0 (单通道损失制)服务员数:n=1 队长:m=0M -- 到达流为Poisson,流强λM -- 服务时间服从指数分布:)0()(>=⋅-t e t f t μμ 状态为系统内顾客数,I={0,1}"0"表示服务员闲,其概率为:P 0(t);"1"表示服务员忙,其概率为:P 1(t); 状态转换图:Fokker-Plank k 方程:可得:)0(1)0(:341)()(24)()()(14)()()(1010011100==-=+-+-=-+-=∙∙P P t P t P t P t P t P t P t P t P 初始条件λμμλ联立求解4-1与4-3得:λμλλμλμμλλμλλλμλλμμμμλμλμλμλ+=∞+=∞∞→==+-+=-=+++=-++-=-+-=+----+-∙∙)(,)()0(,1)0(0)(1)()(44)()()()(1[)()(1010)(01)(000000P P t P P t e t P t P e t P t P t P t P t P t P tt定义:系统负载能力:μλρ=指标:(1) ρμλμ+=+===110P Q 请求服务的顾客数被服务顾客数 (2) 绝对通过能力:ρλμλλμλ+=+===1Q A 数单位时间被服务的顾客(3) 损失概率(即顾客来时,系统服务员忙,顾客离去)ρρμλλμλμ+=+=+-=-==1111Q P P 损例一:一条电话线,呼叫率为:0.8次/分(λ=0.8),每次平均通话时间为:τ=1.5分。
优先权排队论模型带优先权的排队论模型在优先权排队模型中,队中的成员被服务的顺序基于他们被赋予的优先级。
相⽐⼀般的排队模型,很多真实存在的排队系统实际上更符合带优先权的排队论模型,⽐如紧急⼯作的招聘优先于其他⼀般的⼯作;VIP客户较其他⼀般客户,在服务上享有优先权等等。
因此,带优先权的排队论模型有其实际意义。
这⾥介绍两种最基本的优先权排队模型——⾮强占性优先权模型和强占性优先权模型。
两个模型除优先权⾏使⽅式之外,其他假设均⼀致。
我们⾸先描述这两个模型,之后分别给出其结论,最后通过⼀个案例来阐述其在实际中的应⽤。
1.模型公共假设:(1)两个模型都存在N个优先级(1级代表最⾼)(2)服务顺序⾸先基于优先级,同⼀优先级内,依据“先到先服务”(3)对任意优先级,顾客到达服从Poisson分布,服务时间服从负指数分布(4)对任意优先级顾客的服务时间相同(5)不同优先级顾客的平均到达率可以不同⾮强占性优先权(Nonpreemptive Priorities)是指,即使⼀个⾼优先级的顾客到达,也不能强制让⼀个正在接受服务的低优先级顾客返回排队。
也就是说,⼀旦服务员开始对⼀个顾客服务,这项服务就不能被打断直⾄服务结束。
强占性优先权(Preemptive Priorities)是指,⼀旦有⾼优先级的顾客到达,服务员即中断对低优先级顾客的服务(这名顾客重新回到排队中),并马上开始为⾼优先级顾客服务。
结束这项服务后,再按照公共假设中的原则选取下⼀个被服务的顾客。
(这⾥由于负指数分布的⽆记忆性,我们不必关注被中断顾客的服务进度,因为剩余服务时间的分布与从起点开始的服务时间的分布总是相同的。
)对这两个模型来说,如果忽略顾客的优先级,它们是完全等同于⼀般的M/M/s排队模型的。
因此,当计算整个队列中顾客的总⼈数(L,L q)时,M/M/s模型的结论是适⽤的;实际上,若随机选择⼀个顾客,其等待时间(W,W q)也可以通过Little公式计算得出。
计算机网络的排队论模型计算机网络的排队论模型是一种理论模型,用于研究计算机网络中传输数据时产生的排队现象和性能表现。
排队论模型可以帮助我们理解计算机网络中的数据传输过程,优化网络性能,提高网络的吞吐量和响应速度。
在本文中,我们将介绍计算机网络排队论模型的基本概念、分类和应用。
一、排队论模型的基本概念1.1 排队系统排队系统是指在一个服务设施之前等待服务的顾客队列。
在计算机网络中,排队系统可以看作是数据包在网络节点之间传输时产生的排队现象。
排队系统包括输入过程、服务机构和排队规则。
1.2 排队论模型排队论模型是对排队系统进行数学建模和分析的方法。
排队论模型通常包括顾客到达过程、服务时间分布、队列容量和服务规则等因素。
排队论模型可以帮助我们预测排队系统的性能表现,如平均等待时间、系统繁忙度和响应时间等指标。
二、排队论模型的分类2.1 M/M/1排队模型M/M/1排队模型是最简单的排队论模型之一,其中"M"代表顾客到达过程和服务时间满足指数分布,"1"代表只有一个服务设施。
M/M/1排队模型可以用来分析单一服务节点的性能表现,如平均等待时间和系统繁忙度等指标。
2.2 M/M/C排队模型M/M/C排队模型是相对复杂一些的排队论模型,其中"C"代表有C个服务设施。
M/M/C排队模型可以用来分析多个服务节点的性能表现,如系统的吞吐量和响应时间等指标。
2.3 其他排队模型除了M/M/1和M/M/C排队模型,还有很多其他类型的排队论模型,如M/M/∞排队模型、M/G/1排队模型和多类别排队模型等。
每种排队模型都有其独特的特点和适用范围,可以根据实际情况选择合适的模型进行性能分析。
三、计算机网络排队论模型的应用3.1 网络流量建模计算机网络排队论模型可以用来建模网络中的数据传输过程,分析网络节点的繁忙度和数据包的平均等待时间。
通过对网络流量进行建模,可以优化网络拓扑结构、改进路由算法和提高网络性能。
数学建模排队论模型排队论模型是一种数学建模方法,用于研究排队系统中的等待时间、服务效率和资源利用率等问题。
排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
本文将介绍排队论模型的基本概念和应用。
一、排队论模型的基本概念排队论模型的基本概念包括:顾客到达率、服务率、队列长度、等待时间、系统利用率等。
顾客到达率是指单位时间内到达系统的顾客数量,通常用λ表示。
服务率是指单位时间内一个服务员能够完成服务的顾客数量,通常用μ表示。
队列长度是指系统中正在等待服务的顾客数量。
等待时间是指顾客在队列中等待服务的时间。
系统利用率是指系统中所有服务员的利用率之和。
排队论模型可以分为单队列模型和多队列模型。
单队列模型是指系统中只有一个队列,多个服务员依次为顾客提供服务。
多队列模型是指系统中有多个队列,每个队列对应一个服务员,顾客可以选择任意一个队列等待服务。
二、排队论模型的应用排队论模型可以应用于各种领域,如交通运输、医疗服务、银行业务等。
下面以银行业务为例,介绍排队论模型的应用。
在银行业务中,顾客到达率和服务率是两个重要的参数。
顾客到达率受到银行营业时间、银行位置、顾客数量等因素的影响。
服务率受到银行服务员数量、服务质量、服务时间等因素的影响。
为了提高银行的服务效率和资源利用率,可以采用排队论模型进行优化。
首先需要确定银行的顾客到达率和服务率,然后根据排队论模型计算出等待时间、队列长度、系统利用率等指标。
根据这些指标,可以制定相应的服务策略,如增加服务员数量、优化服务流程、提高服务质量等。
例如,如果银行的顾客到达率较高,服务员数量较少,导致顾客等待时间较长,可以考虑增加服务员数量或优化服务流程,以缩短顾客等待时间。
如果银行的服务率较低,导致服务员利用率较低,可以考虑提高服务质量或增加服务时间,以提高服务员利用率。
三、排队论模型的局限性排队论模型虽然可以应用于各种领域,但也存在一些局限性。
首先,排队论模型假设顾客到达率和服务率是稳定的,但实际情况中这些参数可能会发生变化。