比和比例应用题2
- 格式:doc
- 大小:39.00 KB
- 文档页数:2
比和比例应用题1、房产博览会上, 某楼盘的模型是按照1: 500的比例尺制作的, 该楼盘1号楼模型高7厘米, 它的实际高度是多少?2、兰州到乌鲁木齐的铁路长约1900千米, 在比例尺是1: 40000000的地图上, 它的长是多少?3、修一条长12千米的公路, 开工3天修了1.5千米。
照这样计算, 修完这条路还要多少天?4、专业户刘大伯家养鸡、鸭、鹅共1800只, 这三种家禽的只数比是5: 3: 1。
刘大伯家养鸡、鸭、鹅各多少只?5.把一批书按4: 5: 6的比例分给甲、乙、丙三个班, 已知甲班比丙班少分到24本, 三个班各分到多少本书?6.亮亮家造了新房, 准备用边长是0.4米的正方形地砖装饰客厅地面, 这样需要180块, 装修老师建议改用边长0.6米的正方形地砖铺地。
请你算一算需要多少块?7.一艘轮船以每小时40千米的速度从甲港开往乙港, 行了全程的20 后, 又行驶了1小时, 这时未行路程与已行路程的比是3: 1。
甲乙两港相距多少千米?8.建筑工人用水泥、沙子、石子按2: 3: 5配制成96吨的混凝土, 需要水泥、沙子、石子各多少吨?1.一个县共有拖拉机550台, 其中大型拖拉机台数和手扶拖拉机台数的比是 3: 8, 这两种拖拉机各有多少台?用84厘米长的铜丝围成一个三角形, 这个三角形三条边长度的比是3: 4: 5。
这个三角形的三条边各是多少厘米?甲、乙、丙三个数的平均数是84, 甲、乙、丙三个数的比是3: 4: 5, 甲、乙、丙三个数各是多少?乙两个数的平均数是25, 甲数与乙数的比是3: 4, 甲、乙两数各是多少?一个直角三角形的两个锐角的度数比是1: 5, 这两个锐角各是多少度?一块长方形试验田的周长是120米, 已知长与宽的比是2: 1, 这块试验田的面积是多少平方米?(1)一种药水是用药物和水按3: 400配制成的。
(2)要配制这种药水1612千克, 需要药粉多少千克?用水60千克, 需要药粉多少千克?用48千克药粉, 可配制成多少千克的药水?商店运来一批电冰箱, 卖了18台, 卖出的台数与剩下的台数比是3: 2, 求运来电冰箱多少台?纸箱里有红绿黄三色球, 红色球的个数是绿色球的, 绿色球的个数与黄色球个数的比是4: 5, 已知绿色球与黄色球共81个, 问三色球各有多少个?一幅地图, 图上20厘米表示实际距离10千米, 求这幅地图的比例尺?甲地到乙地的实际距离是120千米, 在一幅比例尺是1:6000000的地图上, 应画多少厘米?在一幅比例尺是1:300的地图上, 量得东、西两村的距离是12.3厘米, 东、西两村的实际距离是多少米?朝阳小学的操场是一个长方形, 长120米, 宽75米, 用的比例尺画成平面图, 长和宽各是多少厘米?在比例尺是1:6000000的地图上, 量得两地之间的距离是3厘米, 这两地之间的实际距离是多少千米?右图是一个梯形地平面图(单位: 厘米), 求它的实际面积修一条路, 如果每天修120米, 8天可以修完;如果每天修150米, 几天可以修完?(用比例方法解)同学们做操, 每行站20人, 正好站18行。
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b = ⇒ y b x a =; x y a b =; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;④ x a y b =,y c z d= ⇒ x ac z bd =;::::x y z ac bc bd =; ⑤ x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad. 三、按比例分配与和差关系 ⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题 例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 知识点拨 教学目标比例应用题(二)四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
比和比例(二)例题1、:六年级兴趣小组活动中,美术组与音乐组的人数比是5 :4,音乐组和体育组的人数比是3:4,美术组、音乐组和体育组的人数比是多少?分析:这类题属于求三个量的连比类问题。
会求连比对于解比例分配及其它应用题作用非常大,所以一定要掌握。
应为美术组:音乐组=5:4,,可以将音乐组人数的份数统一,作为桥梁建立连比。
美术组人数:音乐组人数=5:4= 15 : 12音乐组人数:体育组人数= 3 : 4=12 :16所以,美术组人数:音乐组人数:体育组人数=15 : 1 2 : 16同步演练1:有一个长方体,长与宽的比是2 : 1,宽与高的比是3 : 2 ,那么这个长方体的长、宽、高的比是多少?例2:有甲、乙、丙三家超市,已知某天甲店与乙店销售额的比为3 : 4,乙店与丙店销售额的比为2.5 : 3,如果这天一店的销售额比甲、丙店的销售总额少931元,求这天三家超市的销售额各是多少元?分析:这类题属于利用连比按比例分配或用列方程的方法求未知数的和差倍问题。
要先求出甲、乙、丙的比,然后用方程解比较简便。
甲:乙=3 : 4=15:20 乙:丙=2.5 : 3=20 : 24所以,甲:乙:丙=15 : 20 : 24设每份销售额为a,则甲为15a,乙为20a,丙为24a,依题意有:20a=15a+24a-931 解得a=49甲:15a=735(元)乙:20a=980(元),丙:24a=1176(元)答:同步演练:甲、乙、丙三个工程队和修一条长70米的公路,甲、乙两个工程队修路的长度比为2 : 3,乙丙两个工程队修路的长度比是4 : 5,这三个工程队合修了多少千米?例3:甲、乙两辆汽车从相距190千米的A、B两地相向开出,在途中相遇,已知甲、乙两车的速度比是4 : 3,相遇时所用的时间比为5 : 6,求相遇时甲、乙两车各行了多少千米?分析:这类题属于行程问题中复比类问题。
可先求出两汽车所行的速度和时间的复比,进而得出它们所行路程的比,然后按比例分配解出结果。
苏教版数学六年级下册应用题特训:比和比例(专项训练)1.在比例尺是1∶500的一幅地图上,量得一块长方形菜地的周长是28厘米,已知这块菜地的长和(1)第一天和第二天行驶的路程分别与时间的比能组成比例吗?为什么?如能组成比例,请写出来.(2)两天行驶路程的比和两天行驶时间的比能组成比例吗?为什么?如能,把组成的比例写出来.9.按要求完成问题.比例尺1:20000(1)如果要从小区修一条通向学校和医院之间的公路的小路,怎样修才能使小路最短?请在途中用线段画出来.(2)医院大约在学校的()方向,它们之间的实际距离约是()米.10.甲、乙、丙三人进行200米的赛跑,甲跑到终点时,乙还剩20米未跑完,丙还剩25米未跑完.问,当乙跑到终点时,丙还剩多少米未跑完?11.在1:1800000的地图上一段6cm长的公路,在另外一幅地图上同样的这条公路长8cm,求另外这幅地图的比例尺.12.张老师到京东文具店买28支同样的钢笔,要付448元.照这样计算,如果陈老师想再多买同样的钢笔30支,他一共带了900元,够吗?13.在比例尺是1∶25000000的地图上标出甲、乙两地.已知甲、乙两地的实际距离是4500千米,图上两地相距多少厘米?14.把左边的长方形按比放大后得到右边的长方形,请写出比例,并求出x的值。
(单位:cm)15.淘气和笑笑收集的邮票张数的比是3∶5,淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】16.学校图书馆科技书本数与故事书本数的比是3∶2,故事书有180本,科技书有多少本?(用比例方法解)17.在标有的地图上,量得甲、乙两地相距9厘米.一参考答案:9.(1);(2)18【详解】圆内正方形图上对角线表示6cm,则实际长度为6m,实际面积为18m2.19.2.5小时【详解】略20.12天【详解】解:设x天可以完成任务.10x=8×15解得x=12答:12天可以修完.。
比和比例(一)一、 精学精用1、 填空(1) 两个数相除,又叫做( );( )叫做比值。
(2) 比号前面的数叫做比的( ),比号后面的数叫做比的( )。
(3) 比的前项和比的后项同时( ),( )不变,这就是比的基本性质。
(4) 把比化简成最简单的整数比,通常叫做( )。
(5) 填写下面比与除法、分数之间的关系表:(6) 甲正方体的棱长是5分米,乙正方体的棱长是甲正方体的4倍:① 甲乙两个正方体的棱长的比是( ); ② 甲乙两个正方体底面周长的比是( ); ③ 甲乙两个正方体的底面积的比是( ); ④ 甲乙两个正方体的表面积的比是( ); ⑤ 甲乙两个正方体的体积的比是( )。
2、求下列各比的比值105:35 2.4:8 70:0.5 12:48 105:51:二、 活学活用1、 求比的未知项X:18.4=141 1255:x=0.26 x:531212= 158542=X :2、 化简下列各比 8:0.5 69232.5:23.1:18.6 51:173、 求下列各比的比值3:45 18:4 0.25:12 6:61 3192:4、 配制一种糖水,在150克的水中,放了25克的糖。
(1)写出糖和水的质量的比,并化简。
(2)写出糖和糖水的质量的比,并化简。
(3)写出水喝糖水的质量的比,并化简。
比和比例(二)3、精学精练(3)填空 (1)()211530÷==( )÷( )=()35(2) 一辆汽车3小时行了195千米,汽车所行的路程和所用的时间的比是( )。
(3) 某班有男生18人,女生22人,男生和全班人数的比是( )。
(4) 甲数是乙数的1.5倍,甲数和乙数的比是( )。
(5) 直角三角形的两个锐角的比是2:3,它的两个锐角分别是( )度和( )度。
(6) 男生占全班人数的60%,女生人数和男生人数的比是( )。
(7) 大圆与小圆的半径的比是2:1,小圆与大圆的面积的比是( )。
1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有: 一、比和比例的性质性质1:若a : b =c :d ,则(a + c ):(b + d )= a :b =c :d ;性质2:若a : b =c :d ,则(a - c ):(b - d )= a :b =c :d ;性质3:若a : b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a : b =c :d ,则a ×d = b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例① x a y b = ⇒ y b x a =; x y a b=; a b x y =; ② x a y b = ⇒ mx a my b =; x ma y mb=(其中0m ≠); ③ x a y b = ⇒ x a x y a b =++; x y a b x a--=; x y a b x y a b ++=-- ;L ④ x a y b =,y c z d = ⇒ x ac z bd=;::::x y z ac bc bd =; ⑤ x 的c a等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad . 三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个. ⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的知识点拨教学目标比例应用题(二)元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值. 四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。
例如:公式,其中公式是前项,公式是后项,公式是比号。
- 比值是比的前项除以后项所得的商,如公式的比值为公式。
2. 比例的意义- 表示两个比相等的式子叫做比例。
例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。
- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。
如在公式中,公式。
二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。
- 然后计算每份的本数:公式(本)。
- 四年级分得的本数:公式(本)。
- 五年级分得的本数:公式(本)。
- 六年级分得的本数:公式(本)。
2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。
设甲、乙两地的实际距离是公式厘米。
- 可得公式,根据比例的基本性质公式厘米。
- 因为公式千米公式厘米,所以公式厘米公式千米。
3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。
设公式小时行驶公式千米。
- 速度公式路程公式时间,先求出速度为公式(千米/小时)。
- 可列出比例公式,根据比例的基本性质公式,解得公式千米。
- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。
- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。
- 边长为公式分米的方砖面积为公式平方分米。
比 应用题关键:(1)确定单位“1”,(2)找到数量对应的分率。
练习题一、比的性质、比与分数的关系1、甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2、在3:5里,如果前项加上6,要使比值不变,后项应加 。
3、89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
4、把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
5、甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
【一】已知两数比和其中一个数,求另一个数。
1. 田甜和航航走路的速度比是5:4,已知航航每分钟走80米,那么田甜每分钟走多少米?2. 乐乐和笑笑的压岁钱之比是6:7,已知乐乐有180元钱,那么笑笑有多少钱?【二】已知两数比和两数和,求这两个数。
1.乙两数的比3:4,它们的和是21.甲、乙两数分别是多少?2.一套校服的总价是144元,其中衣服与裤子的价格比是7:9,那么衣服与裤子的价格分别是多少元?3.一个直角三角形的周长是84厘米,三条边的长度比是3:4:5,这个直角三角形的面积是多少平方厘米?4.A、B、C三个影厅的座位数之比为3:5:4,已知平均每个影厅有320个座位,求三个影厅给油多少个座位?5.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.要在框架的表面糊上一层纸,糊纸的面积是多少?6.王大伯家共有菜地400m2,其中种西红柿,剩下的按3:2的面积比种黄瓜和茄子.三种蔬菜的面积分别是多少平方米?7.甲、乙、丙三人合买国库券,甲所付的钱是乙、丙总和1:2,乙所付的钱和甲、丙付钱的总和的比是2 :7。
已知丙付了280元:,那么甲和乙分别付了多少饯?8.红、白、黄三种玻璃珠放在一起,其中红珠占25%,白珠与另外两种珠的个数比是3 :5,黄珠有60个,三种珠共有多少个?9.果园里栽了苹果树、梨树、橘子树三种果树,苹果树栽了360棵,占果树总棵树的,梨树与橘子树棵树的比是5:4,梨树有多少棵?【三】已知两数比和两数差,求这两个数。
比和比例应用题比例尺:图上间隔和实际间隔的比叫作这幅图的比例尺。
比例尺是一个最简洁的整数比,它没有计量单位,也不能是一个详细的数。
比例尺=图上间隔÷实际间隔;图上间隔=实际间隔×比例尺;实际间隔=图上间隔÷比例尺典型例题一、请用比例的方法试解下列应用题:1、配制一种农药,药粉和水的比是1:500.(1) 现有水6000千克,配制这种农药须要药粉多少千克(列比例)(2) 现有药粉3.6千克,配制这种农药须要水多少千克(列比例)2、学校买来161米塑料绳子,剪下21米,做12根跳绳,照这样计算,剩下的塑料绳还可以剪几根跳绳?(列比例)3、一个房间,用面积为9平方分米的方砖铺地需240块,假如改用边长4分米的砖铺地,需多少块?(列比例)4、服装厂原来消费一套成人西服用布2.5米,改良裁剪方法后,每套节约用布20%,原来消费240套西服的布,如今可消费多少套?(列比例)二、应用题:用适宜的方法进展求解3、在比例尺是 的地图上,量得甲乙两地的间隔 为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
已知客车每小时行65千米,则这辆货车每小时行多少千米?4、在比例尺是1:3000000的地图上,量得A 、B 两城之间的间隔 是2.4厘米。
在A 、B 两城之间有一中途停靠站C ,A 、B 两城到C 站的间隔 比是7:5。
一辆汽车从B 城到C 站共用了0.6小时,求这辆汽车的速度。
6、小调皮看一本科技书,第一天看了全书的61,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?7、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,外表积总和增加了30平方厘米。
求截成的较长一个圆柱的体积。
8、某车间消费了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比080 160 240 320千米是3∶2,丙种机件比甲种多80只,丙种机件消费了多少只?9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?10、客货两车的速度比是3:2,货车行完甲乙两地全程要6小时。
比例应用题(二)教学目标1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a :b =c :d ,则(a +c ):(b +d )=a :b =c :d ;性质2:若a :b =c :d ,则(a -c ):(b -d )=a :b =c :d ;性质3:若a :b =c :d ,则(a +x c ):(b +x d )=a :b =c :d ;(x 为常数)性质4:若a :b =c :d ,则a ×d =b ×c ;(即外项积等于内项积)正比例:如果a ÷b =k (k 为常数),则称a 、b 成正比;反比例:如果a ×b =k (k 为常数),则称a 、b 成反比.二、主要比例转化实例①x a y b =⇒y b x a =;x y a b=;a b x y =;②x a y b =⇒mx a my b =;x ma y mb=(其中0m ≠);③x a y b =⇒x a x y a b =++;x y a b x a--=;x y a b x y a b ++=--; ④x a y b =,y c z d =⇒x ac z bd=;::::x y z ac bc bd =;⑤x 的c a 等于y 的d b ,则x 是y 的ad bc ,y 是x 的bc ad.三、按比例分配与和差关系⑴按比例分配例如:将x 个物体按照:a b 的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x 的比分别为():a a b +和():b a b +,所以甲分配到ax a b +个,乙分配到bx a b+个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A 、B ,元素的数量比为:a b (这里a b >),数量差为x ,那么A 的元素数量为ax a b -,B 的元素数量为bx a b-,所以解题的关键是求出()a b -与a 或b 的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l ”。
比与比例应用题(二)
1.某天王华与李芳两人进行跑步锻炼,王华跑的路程比李芳多
1
14
,而李芳用的时间比王
华多
1
16
,求王华与李芳的速度比。
2.甲、乙两人各带了一些钱去买书,甲买书用去18元,乙买书用去24元,这时两人剩
下的钱数与原来总钱数的比是4:7,问原来两人共带了多少元钱?
3.张家与李家本月的收入钱数之比是8:5,本月开支的钱数之比是8:3,月底张家节
余240元,李家节余510元。
问本月每家各收入多少元?
4.甲种糖每千克
5.1元,乙种糖每千克8.9元。
现在要求混合后的糖价为每千克5.4元。
甲、乙两种糖的重量比是多少?
5.小明看一本书,已读的页与未读的页数之比是1:5,如果再读30页,那么已读的页
数与未读的页数的比是3:5。
这本书共有多少页?
6.妈妈买了一些水果,其中苹果与荔枝的重量之比是5:7,而单价之比是3:8,那么
苹果与荔枝的总价之比是多少?
7.有甲、乙、丙三个互相咬合的齿轮。
甲、乙、丙齿轮的齿数的比是5:7:9。
当甲轮
转了1260圈时,乙轮和丙轮各转了多少圈?
8.一段路程为上坡、平路、下坡三段,各段路程比依次为2:3:4,王强走这三段路所
用的时间比依次为4:5:6。
已知他上坡速度是每小时4千米,路程总长36千米,王强走完全程要多少小时?
9.甲、乙、丙三人进行100米赛跑(假设他们的速度保持不变),当甲到终点时,乙还
差20米,丙离终点还有25米,当乙到达终点时,丙离终点还有多少米?
10.苹果树与桃树棵数的比为7:3,工人每天给31棵苹果树和15棵桃树喷药,几天后,
当给桃树喷完药时,发现苹果树还有24棵没有喷药。
果园里有这两种果树各多少棵?
11.甲、乙两个瓶子装的酒精溶液体积的比是2:5,甲瓶中酒精与水的体积比是3:1,
乙瓶中酒精与水的体积比是4:1,现在把两瓶溶液倒入一大瓶中混合,这时酒精与水的体积比是多少?
12. (78.60.7862575%21.4)152001
-⨯+⨯÷⨯
13.1
9.8110%98.10.049981
2
⨯+⨯+⨯。