七年级数学上册(冀教版 练习):检测内容二
- 格式:doc
- 大小:257.53 KB
- 文档页数:5
第二章《有理数》检测试题一、选择题(每题2分,共20分)1,在数轴上表示-10的点与表示-4的点的距离是( )A.6B.-6C.10D.-4 2,在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个 3,若a 是有理数,则4a 与3a 的大小关系是( )A.4a >3aB.4a =3aC.4a <3aD.不能确定 4,下列各对数中互为相反数的是( )A.32与-23B.-23与(-2)3C.-32与(-3)2D.(-3×2)2与23×(-3) 5,当a <0,化简a a a-得( )A.-2B.0C.1D.2 6,下列各项判断正确的是( )A.a +b 一定大于a -bB.若-ab <0,则a 、b 异号C.若a 3=b 3,则a =bD.若a 2=b 2,则a =b7,l00米长的小棒,第1次截去一半,第2次截去剩下的31,第三次截去剩下的41,如此下去,直到截去剩下的1001,则剩下的小棒长为( )米 。
A 、 20B 、15C 、 1D 、508,若a =-2×32,b =(-2×3)2,c =-(2×3)2,则下列大小关系中正确的是( )A.a >b >0B.b >c >aC.b >a >cD.c >a >b9,一张纸的厚度是0.1mm ,假如将它连续对折10次后,则它折后的高度为 ( )A.1mmB.2mmC.102.4mmD.1024mm 10.若a b b a -=-,且3=a ,2=b ,则3)(b a +的值为( )A .1或125B .-1C .-125D .-1或-12511.已知0<a <1,则a ,-a ,-a 1,a1的大小关系为( )A 、a 1>-a 1>-a >aB 、-a 1>a >-a >a 1C 、a 1>a >-a 1>-aD 、a 1>a >-a >-a112.观察图中中每一个正方形各顶点所标数字的规律,2012应标在( )A .第502个正方形左上角顶点处B .第502个正方形右上角顶点处C .第503个正方形左上角顶点处D .第503个正方形右上角顶点处 二、填空题(每题2分,共20分)13,如果盈利350元,记作:+350元,那么-80元表示__________.14,某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是___.15,一个数的相反数的倒数是-113,这个数是________.16,如图1所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为 .17,若│-a │=5,则a =________.18、已知x 与y 互为相反数,m 与n 互为倒数,且3a =,则()23a x y mn+-=___.19,用科学记数法表示13040000应记作_____ .20,.如图所示的运算程序中,若开始输入的x 的值为10,我们发现第一次输出的结果为5,第二次输出的结果为8,,则第10次输出的结果为三、解答题(共60分) 21,计算:(1)223261(3)(0.2)23(1)254-⎡⎤⎡⎤--++-⨯-÷⎣⎦⎢⎥⎣⎦; (2)2223333(2)0.12512( 1.25)32248⎡⎤⎛⎫-÷-+-⨯+÷÷⨯--⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;图1(3)24811313(1)1232442834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.22、若│a│=2,b=-3,c是最大的负整数,求a+b-c的值..23,检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?24、已知某粮库已存有粮食100吨,本周内粮库进出粮食的记录如下(运进为正):(1)通过计算,说明本周内哪天粮库剩下的粮食最多?(2)若运进的粮食为购进的,购买价格为每吨2000元,运出的粮食为卖出的,价格为每吨2300元,则这一周的利润为多少?(3)若每周平均进出的粮食大致相同,则再过几周粮库存的粮食可达到200吨?25、小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,-1,-1.5,0.8,1,-1.5,-2,1.9,0.9(1)这10枝钢笔的最高的售价和最低的售价各是几元?(2)当小亮卖完钢笔后是盈还是亏?四、拓展题26,如图2所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是____,A,B两点间的距离是_______.(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_______,A,B两点间的距离为_________.(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256 个单位长度,那么终点B 表示的数是_______,A ,B 两点间的距离是________.(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?27、已知数轴上A 、B 两点所表示的数分别为a 和b . (1)如图,a=﹣1,b=7时①求线段AB 的长;②若点P 为数轴上与A 、B 不重合的动点,M 为PA 的中点,N 为PB 的中点,当点P 在数轴上运动时,MN 的长度是否发生改变?若不变,并求出线段MN 的长;若改变,请说明理由. (2)不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、Q ,如果|a ﹣c|﹣|b ﹣c|=|a ﹣b|,那么,Q 点应在什么位置?请说明理由.28、我们知道,|a|表示数a 到原点的距离,这是绝对值的几何意义。
七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、将一副三角尺按不同位置摆放,摆放方式中∠α与∠β互余的是()A. B. C. D.2、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A. B. C. D.33、把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A-45°,∠D=30°,斜边AB=6,DC=7,把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长度为()A. B.5 C.4 D.4、下列语句错误的有①近似数0.010精确到千分位②如果两个角互补,那么一个是锐角,一个是钝角③若线段,则P一定是AB中点④A与B两点间的距离是指连接A、B两点间的线段A.4个B.3个C.2个D.1个5、如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A 点的对应点的坐标为( )A. B. C. D.6、如图,在△ABC中,∠B=90°,AB=4,BC=3,将△ABC绕点A逆时针旋转,使点B落在线段AC上的点D处,点C落在点E处,则C、E两点间的距离为()A. B.2 C.3 D.27、若∠A=30°18′,∠B=30°15′30″,∠C=30.25°,则这三个角的大小关系正确的是()A.∠C>∠A>∠BB.∠C>∠B>∠AC.∠A>∠C>∠B D.∠A>∠B>∠C8、如图,在△ABC 中,∠ABC=40°,在同一平面内,将△ABC 绕点 B 逆时针旋转 100°到△A′BC′的位置,则∠ABC′=()A.40°B.60°C.80°D.100°9、北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,過极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道在点O南偏东70°的方向上,则这条跑道所在射线与正北方向所成角的度数为()A.160°B.110°C.70°D.20°10、下列说法中正确的有( )(1)过两点有且只有一条直线(2)连接两点的线段叫两点的距离(3)两点之间线段最短(4)如果AB=BC,则点B是线段AC的中点A.1B.2C.3D.411、如图,将绕点C顺时针旋转得到,使点A的对应点D恰好落在边上,点B的对应点为E,连接.下列结论一定正确的是()A. B. C. D.12、如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是()A.αB.90°﹣αC.D.13、如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是()A.70°B.35°C.40°D.50°14、如图1,在矩形ABCD中,AB=1,BC=.将射线AC绕着点A顺时针旋转α(0°<α≤180°)得到射线AE,点M与点D关于直线AE对称.若x=,图中某点到点M的距离为y,表示y与x的函数关系的图象如图2所示,则这个点为图1中的()A.点AB.点BC.点CD.点D15、下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A. B. C. D.二、填空题(共10题,共计30分)16、40°的补角等于________;40°18′的余角等于________.17、如图中的图形绕着中心至少旋转________度能与自身重合.18、计算:=________度.19、如图所示的圆柱体中底面圆的半径是,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是________.(结果保留根号).20、如图,平分,平分,,,则的度数为________.21、一个角的余角比它的补角的还少20°,则这个角是________.22、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是________.23、如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=________度.24、如图,将Rt△ABC的斜边AC绕点C顺时针旋转()得到CD,直角边BC绕点C逆时针旋转()得到CE,若AC=5,BC=4,且,则DE=________.25、一个角的补角加上14°,等于这个角的余角的5倍,这个角的度数是________°.三、解答题(共5题,共计25分)26、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?27、如图1是三个直立于水面上的形状完全相同的几何体(下底面为圆面,单位:厘米),将它们拼成如图2的新几何体,求该新几何体的体积(结果保留π).28、已知:如图,线段MN=m,延长MN到点C,使NC=n,点A为MC的中点,点B为NC的中点,求线段AB的长.29、已知线段AB=12,点D、E是线段AB的三等分点,求线段BD的长.30、如图,已知是的余角,是的补角,且,求、的度数.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、B6、A7、D8、B9、B10、B11、D12、A13、C14、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
冀教版七年级数学上册第五章达标测试卷一、选择题(每题2分,共28分)1.下列方程的解为x =1的是( )A .2x -1=2B .x +1=12C .6=5-xD .3x +2=2x +32.在方程①3x +y =4;②2x -1x =5;③3y +2=2-y ;④2x 2-5x +6=2(x 2+3x )中,是一元一次方程的有( )A .1个B .2个C .3个D .4个3.下列说法中,正确的是( )A .若ca =cb ,则a =bB .若a c =b c ,则a =bC .若a 2=b 2,则a =bD .由4x -5=3x +2,得到4x -3x =-5+24.要将等式-12x =1进行一次变形,得到x =-2,下列做法正确的是( )A .等式两边同时加32xB .等式两边同时乘以2C .等式两边同时除以-2D .等式两边同时乘以-2 5.若关于x 的方程2x -(2a -1)x +3=0的解是x =3,则a =( )A .1B .0C .2D .36.解方程x -52+x -13=1时,去分母后得到的方程是( )A .3(x -5)+2(x -1)=1B .3(x -5)+2x -1=1C .3(x -5)+2(x -1)=6D .3(x -5)+2x -1=67.若x =-2是关于x 的方程ax -b =1的解,则代数式4a +2b -3的值为( )A .1B .-3C .-1D .-58.如图,图(a )和图(b )中的天平保持左右平衡,现要使图(c )中的天平也平衡,需要在天平右盘中放入砝码的克数为( )A .25B .30C .40D .509.在下列说法中:①方程3x +14-1=x +12的解为x =5;②方程3-(1-2x )=6的解为x =-2;③方程1-2y -56=3-y 4的解为y =3;④方程6(2x -5)+20=4(1-2x )的解为x =7.正确的有( )A .1个B .2个C .3个D .4个10.若(k -5)x |k |-4-6=0是关于x 的一元一次方程,则k 的值为( )A .5B .-5C .5或-5D .4或-4 11.现定义运算“*”,对于任意有理数a ,b 满足a *b =⎩⎨⎧2a -b ,a ≥b ,a -2b ,a <b .如5*3=2×5-3=7,12*1=12-2×1=-32.若x *3=5,则有理数x 的值为( )A .4B .11C .4或11D .1或1112.某市进行商家“诚信为本”专项治理,发现某服装品牌专卖店将一套运动装售价提高60%后标价,销售时按标价打折销售,结果相对于进价仍可获利20%,则这套运动装销售时打的折扣是( )A .7.5折B .8折C .6.5折D .6折13.小明在做解方程作业时,不小心将方程中的一个常数污染了,被污染的方程是2y +1=12y -□,小明想了想后翻看了书后的答案,此方程的解是y =-53,然后小明很快补好了这个常数,这个常数应是( )A .-32B .32C .52D .214.河北省为培养学生的研究能力,中考加试理化生实验,在做实验时,考生小明将第一个量筒中的溶液全部倒入第二个量简中,如图所示,根据图中给出的信息,得到的正确方程是( )A .π×⎝ ⎛⎭⎪⎫922×x =π×⎝ ⎛⎭⎪⎫522×(x +4) B .π×92×x =π×52×(x +4)C .π×⎝ ⎛⎭⎪⎫922×x =π×⎝ ⎛⎭⎪⎫522×(x -4) D .π×92×x =π×52×(x -4)二、填空题(每题3分,共12分)15.关于x的方程3x-8=x的解为x=________.16.已知A点在数轴上对应有理数a,现将A右移5个单位长度后再向左移7个单位长度到达B点,B点在数轴上对应的有理数为-32,则有理数a=________.17.我们规定:如果关于x的一元一次方程ax=b(a,b为常数,且a≠0)的解为x =b+a,则称该方程为“和解方程”,例如:方程2x=-4的解为x=-2,而-2=-4+2,则方程2x=-4为“和解方程”.(1)关于x的一元一次方程-3x=6________(填“是”或“不是”)“和解方程”;(2)若关于x的一元一次方程-2x=m是“和解方程”,则m的值为________;(3)若关于x的一元一次方程-2x=mn+n是“和解方程”,则方程的解为x=________.18.关于x的方程9x-2=kx+7的解是自然数,则整数k的值为________.三、解答题(19题8分,20-23题每题10分,24题12分,共60分)19.解方程:(1)3x-7(x-1)=3-2(x+3);(2)x-12-2x-36=6-x3.20.2010年11月16日中国拥有自主知识产权的C919大型客机,在珠海航展上获得中外6家客户共100架订单.计划从2011年开始每年订单比上一年增加a架.(1)按照计划2020年中国C919大型客机的订单为多少架?(2)若中国计划2020年C919大型客机订单达到2 100架,求a的值.21.当k取何值时,代数式k+13的值比3k+12的值小2?22.某服装城共购入了两批A、B两款袜子.第一批购入A、B两款袜子共2 500双,A款袜子售价为每双16元,B款袜子售价为每双24元,全部售出后的销售总额为52 000元.服装城把2 500双袜子全部售出后马上购入第二批袜子.已知第二批袜子中,A款袜子的进货量比第一批减少了2 m双,售价不变;B款袜子的进货量比第一批减少了m3%,售价比原售价降低了16,两批袜子全部售出后的销售总额为94 040元.(1)服装城第一批购入A、B两款袜子各多少双?(2)该服装城第二批购入A款袜子多少双?23.某服装厂要生产某种型号的学生校服,已知3 m长的某种布料可做上衣2件或者裤子3条.一件上衣和一条裤子为一套,库存这种布料600 m.如果用这批布料做上衣和裤子恰好配套,求制作上衣所用的布料的米数.甲同学所列方程为1.5x+x=600,乙同学所列方程为y1.5=600-y.(1)甲同学所列方程中的x表示__________________;乙同学所列方程中的y表示__________________.(2)任选甲、乙两同学的其中一个方法解答这个题目.24.阅读下列材料,并回答问题.我们知道|a|的几何意义是指数轴上表示数a的点与原点的距离,那么|a-b|的几何意义又是什么呢?我们不妨考虑一下,取特殊值时的情况.比如考虑|5-(-6)|的几何意义,在数轴上分别标出表示-6和5的点(如图所示),两点间的距离是11,而|5-(-6)|=11,因此不难看出|5-(-6)|就是数轴上表示-6和5的两点间的距离.(1)|a-b|的几何意义是______________________;(2)当|x-2|=2时,求出x的值;(3)设Q=|x+6|-|x-5|,请问Q是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.答案一、1.D 2.B 3.B 4.D 5.C 6.C 7.D8.C9.A10.B11.A点拨:本题计算应分x≥3与x<3两种情况,分别代入相应的算式求解.当x≥3时,则x*3=2x-3=5,解得x=4;当x<3时,则x*3=x-2×3=5,解得x=11,但11>3,这与x<3矛盾,所以此种情况舍去.即若x*3=5,则有理数x的值为4,故选A.12.A13.B14.A二、15.416.1217.(1)不是(2)43(3)-2318.0或6或8点拨:移项,合并同类项,得(9-k)x=9.因为方程有解,所以k≠9,则系数化为1得,x=99-k.又因为关于x的方程9x-2=kx+7的解是自然数,所以整数k的值为0或6或8.三、19.解:(1)去括号,得3x-7x+7=3-2x-6.移项,合并同类项,得-2x=-10.系数化为1,得x=5.(2)去分母,得3x-3-2x+3=12-2x.移项,合并同类项,得3x=12.系数化为1,得x=4.20.解:(1)100+(2 020-2 010)a=100+10a(架).答:按照计划2020年中国C919大型客机的订单为(100+10a)架.(2)由题意得,100+10a=2 100,解得a=200.21.解:依题意得k+13=3k+12-2.去分母,得2(k+1)=3(3k+1)-12. 去括号,得2k+2=9k+3-12.移项,得2k-9k=3-12-2.合并同类项,得-7k=-11.系数化为1,得k=11 7.22.解:(1)设服装城第一批购入A 款袜子x 双,则购入B 款袜子(2 500-x )双.由题意,得16x +24(2 500-x )=52 000,解得x =1 000.所以2 500-1 000=1 500(双).答:服装城第一批购入A 款袜子1 000双、B 款袜子1 500双.(2)由题意,得16(1 000-2m )+24×⎝ ⎛⎭⎪⎫1-16×⎣⎢⎡⎦⎥⎤1 500⎝ ⎛⎭⎪⎫1-m 3%=94 040-52 000, 解得m =30.所以1 000-2×30=940(双).答:该服装城第二批购入A 款袜子940双.23.解:(1)制作上衣的件数或制作裤子的条数;制作上衣所用布料的米数(2)(选法不唯一)选乙同学的方法.y 1.5=600-y ,解得y =360.答:制作上衣所用布料的米数为360 m.24.解:(1)数轴上表示a 和b 的两点间的距离(2)由|x -2|=2,得x -2=±2,所以x =4或x =0.(3)存在.当x >5时,Q =x +6-x +5=11;当-6≤x ≤5时,Q =x +6+x -5=2x +1,此时Q 的最大值为11;当x <-6时,Q =-x -6+x -5=-11.综上,Q 的最大值为11.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( )A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16 C .6 D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103 D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________.14.如果规定符号“*”的意义是a *b =ab a +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题) 三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分)16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步=5-4……第三步=1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了;(3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
第二章《有理数》检测试题一、选择题(每题2分,共20分)1,在数轴上表示-10的点与表示-4的点的距离是( )A.6B.-6C.10D.-42,在有理数中,绝对值等于它本身的数有( )A.1个B.2个C. 3个D.无穷多个3,若a 是有理数,则4a 与3a 的大小关系是( )A.4a >3aB.4a =3aC.4a <3aD.不能确定 4,下列各对数中互为相反数的是( )A.32与-23B.-23与(-2)3C.-32与(-3)2D.(-3×2)2与23×(-3) 5,当a <0,化简a aa -得( )A.-2B.0C.1D.26,下列各项判断正确的是( )A.a+b 一定大于a -bB.若-ab <0,则a 、b 异号C.若a 3=b 3,则a =bD.若a 2=b 2,则a =b7,下列运算正确的是( )A.-22÷(-2)2=1B.3123⎛⎫- ⎪⎝⎭=-8127 C.-5÷13×35=-25 D.314×(-3.25)-634×3.25=-32.5 8,若a =-2×32,b =(-2×3)2,c =-(2×)2,则下列大小关系中正确的是( )A.a >b >0B.b >c >aC.b >a >cD.c >a >b9,若│x│=2,│y│=3,则│x+y│的值为( )A.5B.-5C.5或1D.以上都不对10,有理数依次是2,5,9,14,x ,27,……,则x 的值是( )A.17B.18C.19D.20二、填空题(每题2分,共20分)11,如果盈利350元,记作:+350元,那么-80元表示__________.12,某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是___.13,一个数的相反数的倒数是-113,这个数是________. 14,如图1所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为 .15,同学们已经学习了有理数的知识,那么全体有理数的和是___.16,-2的4次幂是______,144是____________的平方数.17,若│-a│=5,则a =________.18,绝对值小于5的所有的整数的和_______.19,用科学记数法表示13040000应记作_____,若保留3个有效数字,则近似值为______.20,定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n 2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是___.三、解答题(共60分)21,计算:(1)1-2;(2)223261(3)(0.2)23(1)254-⎡⎤⎡⎤--++-⨯-÷⎣⎦⎢⎥⎣⎦; (3)2223333(2)0.12512( 1.25)32248⎡⎤⎛⎫-÷-+-⨯+÷÷⨯--⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (4)24811313(1)1232442834⎛⎫⎛⎫⎛⎫-÷-⨯--+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 图1 26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …22,若│a│=2,b=-3,c是最大的负整数,求a+b-c的值.23,邮递员小王从邮局出发,向南走2km到达M家,继续向前1km到N家,然后折回头向北走4km到Z家,最后回到邮局.(1)Z家和M家相距多远?(2)小王一共走了多少千米?24,下表是某商店四个季度的盈亏状况(盈利为正,单位:万元)季度一二三四盈利+128.5 -140 -95.5 +280 求这个商店该年的盈亏状况.25,有6箱苹果,每箱标准质量为25kg,过秤的结果如下(单位:kg):24,24,26,26,25,25.请设计一种简单的运算方法,求出它们的总质量.26,某学校在一次数学考试中,记录了第三小组八名学生的成绩,以60分为及格,高于60分记正数,不足60分记负数,这八名学生的成绩分别为:+3分,+5分,0分,-6分,-2分,-3分,+8分,+6分,总计超过或不足多少分?这八名学生的总分是多少?27,A,B,C,D在数轴上对应的点分别是3,1,-1,-2,先画出数轴,然后回答下列问题:(1)求A和B之间的距离;(2)求C和D之间的距离;(3)求A和D之间的距离;(4)求B和C之间的距离;(5)两个点之间的距离与这两个点所对应的数差的绝对值是什么关系?28,检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?四、拓展题(共20分)29,如图2所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是____,A ,B 两点间的距离是_______.(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_______,A ,B 两点间的距离为_________.(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256 个单位长度,那么终点B 表示的数是_______,A ,B 两点间的距离是________.(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p 个单位长度,那么请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?30,我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如,求1+2+3+4+…+n 的值,其中n 是正整数.对于这个求和问题,如果采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n 的奇偶性进行讨论.如果采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现利用图形的性质来求1+2+3+4+…+n 的值,方案如下:如图3,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n 个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n 的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n 行,每行有(n +1)个小圆圈,所以组成平行四边形小圆圈的总个数为n (n +1)个,因此,35-5-443210-1-2-3图2组成一个三角形小圆圈的个数为21)(+n n ,即1+2+3+4+…+n =21)(+n n .(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n -1)的值,其中 n 是正整数(要求:画出图形,并利用图形做必要的推理说明).(2)试设计另外一种图形,求1+3+5+7+…+(2n -1)的值,其中n 是正整数(要求:画出图形,并利用图形做必要的推理说明).参考答案:一、1,A ;2,D ;3,D ;4,C ;5,A ;6,C ;7,D ;8,C ;9,C ;10,D.二、11,亏损80元;12,评析:负数的意义,升高和降低是一对意义相反的量,借助数轴可以准确无误地得出正确结果-1℃,数无数不形象,形无数难入微,数形结合是数学的基本思想,在新课标中有重要体现,是中考命题的重要指导思想,多以综合高档题出现,占分比例较大;13,评析:利用逆向思维可知本题应填34;14,满足条件-1.3<x <2.6的整数x 的值,从而得到正确的答案是:-1,0,1,2;15,0;16,16、±12;17,±5;18,0;19,用科学记数法表示一个数,要把它写成科学记数的标准形式a×10n ,这里的a 必须满足1≤a <10条件,n 是整数,n 的确定是正确解决问题的关键,在这里n 是一个比位数小1的数,因为原数是一个8位数,所以可以确定n =7,所以13040000=1.304×107,对这个数按要求取近似值,显然不能改变其位数,只能对其中的a 取近似值,保留3个有效数字为1.30×107,而不能误认为1.30,通过这类问题,学生可概括出较大的数取近似值的基本模式应是:先用科学记数法将其表示为a×10n (1≤a <10,n 是整数),然后按要求对a 取近似值,而n 的值不变;20,因为n 为奇数时,结果为3n +5,n 为偶数时,结果为kn 2,所以当n =449时,则有如下的运算程序:图3 449 1352 169 522 第一次 F ① 第二次 F ② 第三次 F ① …所以分别有下列运算结果:输入499→1352→169→522→261→788→197→598→149→452→133→344→17→56→77→26→13→44→11→36→9→32→1→8→1→8→1→8→…,由此我们还发现:当进行第奇数次运算时,其结果是偶数,当进行到第偶数次运算时其结果为奇数.所以第449次“F 运算”的结果是8.三、21,(1)-1.(2)49-.(3)-2.(4)2;22,因为│a│=2,所以a =±2,c 是最大的负整数,所以c =-1,当a =2时,a+b -c =2-3-(-1)= 0;当a =-2时,a+b -c =-2-3-(-1)=-4;23,(1)3(km).(2)8(km);24,173(万元);25,150(kg);26,总计超过11分,总分为491分;27,如图:(1)A 和B 之间的距离为3-1=2=31-,(2)C 和D 之间的距离为-1-(-2)=1=(1)(2)---,(3)A 和D 之间的距离为3-(-2)=5=3(2)--,(4)B 和C 之间的距离为1-(-1)=2=1(1)--,(5)两个点之间的距离等于这两个点对应的数的差的绝对值;28,(1)因为8-9+4+7-2+10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,所以在A 处的东边25米处.(2)因为│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,而73×0.3=21.9升,所以从出发到收工共耗油21.9升.四、29,(1)4、7,(2)1、2,(3)-92、88,(4)(m+n -p)、│n-p│;30,(1)如图1,因为组成此平行四边形的小圆圈共有n 行,每行有[(2n -1)+1]个,即2n 个,所以组成此平行四边形的小圆圈共有(n ×2n )个,即2n 2个.所以1+3+5+7+…+(2n -1)=2112〕)—〔(+⨯n n =n 2.(2)如图2.因为组成此正方形的小圆圈共有n 行,每行有n 个,所以共有(n ×n )个,即n 2 个.所以1+3+5+7+…+(2n -1)=n ×n =n 2. ……图1图2。
第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。
要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。
A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。
冀教版数学七年级上册第一章专训1绝对值的七种常见的应用题型名师点金:绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须明确绝对值的意义和性质.对于数X而言,它的绝对值表示为|x|.送<1已知一个数求这个数的绝对值1.化简:(1)|—(+7)1;⑵一|一8|;,4(3)—+];(4)—|—a|(a<0).i表饕2:已知一个数的绝对值求这个数2.若|a|=2,则a=.3.若|x|=|y|,且x=—3,贝。
y=.4.绝对值不大于3的所有整数为5.右|一x|——(—8),则x=,右|一x|=|—2|,则x=.i遴室,绝对值在求字母的取值范围中的应用6.如果|-2a|=-2a,则a的取值范围是()A.a>0B.aNOC.asSOD.a<07.若|x|=-x,则x的取值范围是.8.若|x-2|=2-x,则x的取值范围是差.壑1绝对值在比较大小中的应用249.把—(―1),一§——5,0用"〉"连接正确的是()42A.0>-(-1)>------->-324B.0>—(—1)>—歹〉一一厅24C.一(―1)>0>—3>——§42D.—(―l)>0>—一§>—^绝对值非负性在求字母值中的应用10.(1)已知|a|=5,|b|=8,且a<b,KO a=,b=;(2)有理数a,b在数轴上的位置如图所示,若|a|=4,|b|=2,求a,b的值.b a>(第10题)11.若a—2+b—3+c—=0,求a+b—c的值.羔夷互绝对值非负性在求最值中的应用12.根据|a|NO这条性质,解答下列问题:(1)当2=时,|a-4|有最小值,此时最小值为:(2)当a取何值时,|a—1|+3有最小值?这个最小值是多少?(3)当a取何值时,4-|a|有最大值?这个最大值是多少?【导学号:11972006】奏方绝对值在实际中的应用13.某工厂生产一批零件,零件质量要求为“零件的长度可以有0.2cm的误差”.现抽查5个零件,超过规定长度的厘米数记为正,不足规定长度的厘米数记为负,检查结果如下表:零件号数①②③④⑤数据+0.13-0.25+0.09-0.11+0.23(1)指出哪些零件是合格产品(即在规定误差范围内);(2)在合格产品中,几号产品的质量最好?为什么?试用绝对值的知识说明.答案1.解:⑴原式=7.(2)原式=-8.-4(3)原式=,.(4)原式=a.2.±23.±34.0,±1,±2,±35.±8;±26.C7.xWO8.xW29.C10.解:(1)±5;8(2)a=4,b=±2.11.解:由题意得a=;,b=?,c=*1117所以a+b—c=a+厂彳=正.12.解:(1)4;0(2)因为|a—1|NO,所以当a=l时,|a—1|+3有最小值.这个最小值是3.(3)因为|a|NO,所以一|a|WO,所以当a=0时,4—|a|有最大值,这个最大值是4.13.解:(1)因为|+0.13|=0.13<0.2,|—0.25|=0.25>0.2,|+0.09|=0.09<0.2,|~0.11| =0.11<0.2,|+0.23|=0.23>0.2,所以①③④号零件是合格产品.(2)在合格产品中,③号产品的质量最好.因为|+0.09|<|—0.11|<|+0.13|.所以质量最好的产品是③号零件.专训2数轴在有理数中五种常见应用名师点金:数轴在有理数这章中有着广泛的应用,引进了数轴后,我们把数和点对应起来,也就是把“数”与“形”结合起来,常常可以使复杂的问题简单化,抽象的问题直观化.用数轴表示有理数1.如图,在数轴上表示数一2的点是()A.PB.QC.MD.NQ P(N M-2-10123,(第]题),手,-2-10123*(第2题)2.如图,数轴上点M表示的数是.3.如图,在没有标出原点的数轴上每相邻两刻度之间的距离为1个单位长度,A,B, C,D四点表示的有理数都是整数,若A,B表示的有理数a,b满足2b+a=4,那么数轴的原点只能是A,B,C,D四点中的哪个点?为什么?-4----1-----1----A——I-----1_A_I_>e*C AD B(第3题):麦室..z用数轴表示相反数4.数轴上的点A到原点的距离为9,则点A表示的数是()A.9B.-9C.9或一9D. 4.5或一4.55.己知有理数a,-3,b在数轴上对应的点的位置如图所示,在数轴上标出a,—3, b的相反数对应的点.-3―a―1—0—b—'—(第5题)谈壑3.用数轴表示绝对值6.如图,数轴的单位长度为1,如果点B表示的数的绝对值是点A表示的数的绝对值的3倍,那么点A表示的数是.A B(第6题)7.已知x是整数,且3W|x|<5,则x:如壑生用数轴比较有理数的大小8.如图,点A,B,C,D在数轴上表示的数分别是a,b,c,d,则这四个数中最大的一个是()A.aB.bC.cD.dC tD A t B-2,-l0?23*(第8题)-2-10*123*(第9题)9.如图,数轴上A,B两点分别表示数a,b,贝加与|b|的大小关系是()A.|a|>|b|B.|a|=|b|C.|a|<|b|D.无法确定10.将下列各数在数轴上表示出来,并用将它们连接起来.一5.5,4,-2, 3.25,0,-1.用数轴说明覆盖整点问题11.数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在该数轴上随意画出一条长为2016cm的线段AB,则线段AB盖住的整点有多少个?【导学号:11972007】答案1.B2.13.解:D点.理由如下:若点C为原点,则A表示1,B表示6,则2b+a=13,不符合题意;若A为原点,则A表示0,B表示5,则2b+a=10,不符合题意;若D为原点,则A表示一2,B表示3,则2b+a=4,符合题意;若B为原点,则A表示一5,B表示0,则2b+a=—5,不符合题意.故D点为原点.4.C5.解:如图所示.-=3_a-b~~0"""b-a~~3^(第5题)6.—1或27.—4或一3或3或4点拨:首先在数轴上找到符合条件的所有有理数的范围,再从其中选出整数.如图,阴影部分就是绝对值小于5,而不小于3的所有有理数的范围,观察可知,其中包含的整数有一4,-3,3, 4..........,-5-4-3-2-1012345(第7题)8.B9A10.解:如图所示.75.5-2-10 3.254-6-5-4-3-2-10123*45*(第]0题)所以一5.5<-2<-1<0<3.25<4,11.分析:线段的长端点为整点端点不为整点1cm盖住2个整点盖住1个整点2cm盖住3个整点盖住2个整点,・・,・・,・・n cm盖住(n+1)个整点盖住n个整点解:⑴当长度为2016cm的线段AB的两端点A与B均为整点时,线段AB盖住的整点有2016+1=2017(个).(2)若A点不是整点,则B点也不是整点,即当长度为2016cm的线段AB的两端点A 与B均不为整点时,线段AB盖住的整点有2016个.综上所述,线段AB盖住的整点有2017个或2016个.专训1巧用运算的特殊规律进行有理数计算名师点金:进行有理数的运算时,我们可以根据题目的特征,采用相应的运算技巧,这样不但能化繁为简,而且会妙趣横生,新颖别致.*5;:归类一将同类数(如正负数、整数、分数)归类计算1.计算:(一100)+70+(—23)+50+(—6).23122.计算:一厂§+5一汶+4.:戒捋Z凑整——将和为整数的数结合计算3•计算:2^+(—2%)+5|+(—《)+2|+"3奇)15*:对消将相加得零的数结合计算4.计算:350+(—26)+700+26+(—1050). 5殳:变序一运用运算律改变运算顺序5.计算:2_5J__7X(-24).5S;换位一将被除数与除数颠倒位置6.计算:1,121)我丢捋丘分解—将一个数拆分成两个或几个数之和的形式,或分解为它的因数相乘的形式7.计算:一2才+5§—4§+3§8.计算:1.1.1,1,1,1,1.1 2+6+12+20+30+42+56+72-答案1.解:原式=[(—100)+(—23)+(—6)]+(70+50)=-129+120=-9.2.解:原式=(一:—:一|'一旦+(5+4)=—2+9=7.3.解:原式=[2§+(—1$]+[(—2习+(—3习]+(5|+2§)=1+(—6)+8=3.4.解:原式=[350+700+(—1050)]+[(—26)+26]=0.一25175.解:原式=^X(—24)—gX(—24)+正X(—24)—§X(—24)=—16+20—2+21=23.6.解:因为(\,121、=lj+s亏一刃X(-30)=—10+(—5)+12+15=12,7.解:原式=(一2+5—4+3)+(—=2+=2+志=212-18・解:^^=1X2+2X3+3X41 8X9,1,11,11,,111_2+2-3+3_4+"-+8_91-989'专训2有理数中六种易错类型'、矣.鬓^对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.—a是负数C.符号不同的两个数互为相反数£).—a的相反数是a2.已知|a|=7,则a W.遴塑.2:误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()A.负数B.负数或零C.正数或零£>.正数4.巳知a=8,|a|=|b|,则b的值等于()A.8B.-8GO D.±8[轰壑普:对括号使用不当导致错误5.计算:一7—5.6.计算:2-(-§+?-£)•〔美忽略或不清楚运算顺序947.计算:—81个*X"(—16).(-5) 8.计算:(-5)-(-5)X~~~-X1010i,.鎏5;乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆9.计算:(-2^)x(—10.计算:_36乂仕_¥_1).孩如除法没有分配律11.计算:24』|—孑一3【导学号:"972016】答案1.D2+7 3.C4.D点拨:因为|a|=|b|=8,所以b=±8.5.解:原式=—7+(—5)=—12.111Q6.解:原式=2+厅一孑+万=2药.7.解:原式=一81X言X音X(—*)=l.点拨:本题易出现“原式=—81小(一16)=盖'的错误.8.解:原式=(一5)—(―5)X法X10X(—5)=(-5)-25=一30.9.解:原式=(-3)x(-孕)171~20'点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(―2»X(—3§)=—(:乂号)=—坍.7510.解:原式=—36X正一(一36)Xg—(―36)X1=-21+30+36=45.11.解:原式=24;24令=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中,从而出现“原式=24马一24土2^=72-192-144=-264”这样的错误.专训1有理数混合运算的四种解题思路名师点金:对于有理数的混合运算,根据题目特征,理清解题思路,是正确解题的关键,有理数混合运算中常见的解题思路有:弄清运算顺序,再计算;先转化,再计算;确定运算符号,再计算;找准方法,再计算.厩路1弄清运算顺序,再计算1.计算:_^x5 8'53'2.计算:—23—12:(-2+12-3).:最蹬Z 先转化,再计算3.计算:274.计算:—4X (—1参( — 1.4).:惑悠3;确定运算符号,再计算5 .计算:〔2 017—1 —2_r 3-2X (—6).6.计算:一32—(—2—5)2———X(—2)4,透殴¥:找准方法,再计算7.计算:(一§+*一习X(-24).8.计算:1—2—3+4+5—6—7+8+…+97—98—99+100.【导学号:11972020】答案3 5 5 251. 解:原式=一灵X r X r =一元.o J □ Z42. 解:原式=—8 —124-2= —14.1- 7-2- 9-4-7+- 4-9 +- 2-7原 刀牛 角 3.4板4- 7 2-72-9 +- 1-7-_23-63*4. 解:原式=_4X(—*)X(—沪一5.5. 解:原式=—1一gX(—6)=0.6. 解:原式=一9一49—4=—62.7. 解:原式=(一|)X(—24)+%X(—24)+(一£)X(—24)= 18-20+14= 12.8. 解:原式= (1—2—3+4)+(5—6—7+8)----(97—98—99+100) = 0.专训2有理数的比较大小的八种方法名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.诲1利用作差法比较大小17521.比较抬啧的大小.打/淑鼻利用作商法比较大小17342.比较一2016和—4071的大小•遂痿3利用找中间量法比较大小,007.1009,,,.3.比较床与而的大小.【遂.淑生:利用倒数法比较大小4.比较日,和土岩的大小.佥虻:利用变形法比较大小~y201414201515,.,.5.比较一2015,―任,-2016'—16的大小•,一[[/、64312,A I.6.比较一赤,—育,—yy,一石的大小.遂知:利用数轴法比较大小7.已知a>0,b<0,且|b|<a,试比较a,—a,b,—b的大小.【导学号:11972021】[拿淑芬利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a—b|,|a|+|b|的大小关系为遂碌&利用分类讨论法比较大小9.比较a与飘勺大小.答案1.解:因为普一导=普一H=尚>0,所以!1>芫・点拨:当比较的两个数的大小非常接近,无法直接比较大小时,作差比较是常采用的方 法.C 切 E 、J . 1734 17、,4 071 1 357、, 『 1734 17 ,2-解:因为 2 016^4 071-2 016 X 34 -1 344>1,所以 2 016>4 07T 所以 2016<344 071'点拨:作商比较法是比较两个数大小的常用方法,当比较的两个正分数作商易约分时, 作商比较往往能起到事半功倍的效果;当这两个数是负数时,可先分别求出它们的绝对值, 再作商比较它们绝对值的大小,最后根据绝对值大的反而小下结论.3. 解:因为芸普<§,滞>§,所以器滞.点拨:对于类似的两数的大小比 较,我们可以引入一个中间量,分别比较它们与中间量的大小,从而得出问题的答案.4. 解:若%的倒数是lOy%, 土号■的倒数是lO^.因为1高>i 总,所以吾1<浩¥点拨:利用创邈迭比较两个正数的大小时,需先求出其倒数,再根据倒数大的反而小, 从而确定这两个数的大小.5. 解:每个分数都加1,分别得云东,%,2016' 土,因为击<赤4<%'所以—辿v —辿< _15 _14所以 2 016 2015 16 15-点拨:本题直接比较很困难,但通过把这些数适当变形,再进行比较就简单多了.•"中* 6 12 4 12 3 12 12 一 12 一 12 一 12 而 e 6-解:因为—23=-46' —17=一氟,—TT=一苞’一荫〈一话〈一行〈―豆,所以计算量太大,可以把分子变为相同的,再进行比较.一b 在数轴上表示出来,如图所示,根据数轴可得一a<b<-b ~b ~~0 -b ~~a * 第 7 题)点拨:本题运用了爨级性比较有理数的大小,在数轴上找出这几个数对应的点的大致位 置,即可作出判断.8. |a+b|<|a-b| = |a| + |b|3 右 6 12 ±一TT<一有<一节<一讦点拨:此题如果通分,7.解:把 a, —a, b,<a.点拨:已知a,b异号,不妨取a=2,b=—1或a=—1,b=2.当a=2,b=—1时,|a +b|=|2+(—1)|=1,|a—b|=|2—(—1)|=3,|a|+|b|=|2|+|一l|=3;当a=~l,b=2时,|a +b|=|—1+2|=1,|a—b|=|—1—2|=3,|a|+|b|=|一1|+|2|=3.所以|a+b|<|a—b|=|a|+|b|.方法总结:本题运用及好迭解题,取特殊值时要注意所取的值既要符合题目条件,又要考虑可能出现的多种情况.以本题为例,可以分为a正、b负和a负、b正两种情况.9.解:分三种情况讨论:①当a>0时,a>p②当a=0时,a=|;a a③当a<0时,|a|>3-贝'J a<3-专训3数轴、相反数、绝对值的综合应用名师点金:数轴是“数”与“形”结合的工具,有了数轴可以由点读数,也可以由数定点,还可以从几何意义上去理解相反数和绝对值;同时利用数轴可以求相反数,化简绝对值等.总之,这三者之间是相互依存,紧密联系的.盏成I点、数对应问题题型1数轴上的整数点的问题1.某同学在做数学作业时,不小心将墨水洒在所画的数轴上,如图,被墨水污染部分的整数点有个.-12.2^7.309.:9?^6.2(第]题)2.在数轴上任取一条长为2016?个单位长度的线段,则此线段在数轴上最多能盖住的整数点的个数为()A.2017B.2016C.2015D.2014题型2数轴上的点表示的数的确定3.已知数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A,B两点分别表示的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C表示的数./冬取.求值问题题型1利用数轴求值4.如图,巳知数轴上的点A和点B分别表示互为相反数的两个数a,b,且a<b,A,B 两点间的距离为*,求a,b的值.A Ba0b(第4题)题型2绝对值非负性的应用5.已矢口|15—a|+|b—12|=0,求2a_b+7的值.6.当a为何值时,|1—a|+2有最小值?并求这个最小值.7.当a为何值时,2—14—a|有最大值?并求这个最大值.[应星3:化简问题8.三个有理数a,b,c在数轴上的对应点的位置如图所示,其中数a,b互为相反数.试求解以下问题:a c b(第8题)(1)判断a,b,c的正负性;(2)化简|a—b|+2a+|b|..•成••祖••实际应用问题9.一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,—3,+12,—11,—13,+3,—12, -18,请问小王将最后一位乘客送到目的地时,一共行驶了多少千米?【导学号:11972022]答案1.12点拨:被墨水污染部分对应的整数有一12,—11,—10,~9,-8,10,11, 12,13,14,15,16,共12个.2.A3.解:(1)A点表示的数为一8,B点表示的数为24.(2)由已知得,当点C在原点左边时,点C到原点的距离为12个单位长度;当点C在原点右边时,点C到原点的距离为6个单位长度.综上所述,点C表示的数为6或一12.4.解:因为a与b互为相反数,所以|a|=|b|=4;:2=2§.又因为a<b,所以a=—2^,b =2I5.解:由|15—a|+|b—12|=0,得15—a=0,b—12=0,所以a=15,b=12,所以2a一b+7=2X15—12+7=25.6.解:当a=l时,|1—a|+2有最小值,这个最小值为2.7.解:当a=4时,2—14—a|有最大值,这个最大值为2.8.解:(l)a<0,b>0,c<0.(2)因为a,b互为相反数,所以b=—a.又因为a<0,b>0,所以|a—b|+2a+|b|=|2a|+2a+|b|=—2a+2a+b=b.点拨:本题中虽没有标出数轴上原点的位置,但由已知条件a,b互为相反数,即可确定出原点位置在表示数c和数b的两点之间,从而可以确定出a,b,c的正负性.(2)题化简时,既用到了a,b的正负性,同时还利用了a,b互为相反数这一条件.9.解:1+151+1—3|+|+12|+|—11|+|—13|+|+3|+|—12|+|—18|=15+3+12+11+ 13+3+12+18=87(千米).答:一共行驶了87千米.点拨:利用绝对值求距离、路程问题中,当出现用“+”“一”号表示带方向的路程时,求一共行驶的路程时,实际上是求绝对值的和.冀教版数学七年级上册第二章专训1线段或角的计数问题名师点金:1.几何计数问题应用广泛,解决方法是“有序数数法",数数时要做到不重复、不遗漏.2.解决这类问题要用到分类讨论思想及从特殊到一般的思想.3.回顾前面线段、直线的计数公式,比较这些计数公式的区别与联系.羽房鱼魂线段条数的计数问题1.先阅读文字,再解答问题.I I_1______I________-1---------------------—Ai Ai Ai A2Aa A i A2As At①②③Al血A3A a A5二;―i―二一④⑤(第1题)如图①,在一条直线上取两点,可以得到1条线段,如图②,在一条直线上取三点可得到3条线段,其中以Ai为端点的向右的线段有2条,以A2为端点的向右的线段有1条,所以共有2+1=3(条).(1)如图③,在一条直线上取四个点,以Ai为端点的向右的线段有—条,以A2为端点的向右的线段有—条,以A3为端点的向右的线段有条,共有++ =(条);(2)如图④,在一条直线上取五个点,以Ai为端点的向右的线段有条,以A?为端点的向右的线段有条,以A3为端点的向右的线段有条,以A4为端点的向右的线段有条,共有+++=(条);(3)如图⑤,在一条直线上取n个点(nN2),共有条线段;(4)某学校七年级共有6个班进行辩论赛,规定进行单循环赛(每两个班赛一场),那么该校七年级的辩论赛共要进行多少场?研房鱼魂2:平面内直线相交所得交点与平面的计数问题2.为了探究同一平面内的几条直线相交最多能产生多少个交点,能把平面最多分成几部 分,我们从最简单的情形入手,如图所示.1 2(第2题)列表如下:(1)当直线条数为5时,最多有 个交点,可写成和的形式为;把平直线条数最多交点个数把平面最多分成的部分数102214337,・・,・・,・・面最多分成 部分,可写成和的形式为;(2) 当直线条数为10时,最多有 个交点,把平面最多分成 部分;(3) 当直线条数为n 时,最多有多少个交点?把平面最多分成多少部分?【导学号:53482038]•溯痍顶度壬关于角的个数的计数问题3.有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,如图,如果过角的顶点A:(1)在角的内部作一条射线,那么图中一共有几个角?(2)在角的内部作两条射线,那么图中一共有几个角?(3)在角的内部作三条射线,那么图中一共有几个角?(4)在角的内部作n条射线,那么图中一共有几个角?①②③(第3题)答案1.解:(1)3;2;1;3;2;1;6(2)4;3;2;1;4;3;2;1;10n(n—1)⑶(4)七年级有6个班,类似于一条直线上有6个点,每两个班赛一场,类似于两点之间有一条线段,那么七年级的辩论赛共要进行&乂(厂1)=15(场).2.解:(1)10;1+2+3+4;16;1+1+2+3+4+5(2)45;56⑶当直线条数为n时,最多有l+2+3+.“+(n_l)=n(丁)(个)交点;把平面最多分成1+1+2+3——n=n (n+1)2""卜1部分.3.解:(1)如题图①,已知ZBAC,如果在其内部作一条射线,显然这条射线就会和ZBAC 的两条边都组成一个角,这样一共就有1+2=3(个)角.(2)题图①中有1+2=3(个)角,如果再在题图①的角的内部增加一条射线,即为题图②,显然这条射线就会和图中原来的三条射线再组成三个角,即题图②中共有1+2+3=6(个)角.(3)如题图③,在角的内部作三条射线,即在题图②中再增加一条射线,同样这条射线就会和图中原来的四条射线再组成四个角,即题图③中共有1+2+3+4=10(个)角.(4)如果在一个角的内部作n条射线,则图中共有1+2+3+•••+n+(n+l)=(n+1)(n+2)•(个)角.2专训2分类讨论思想在线段和角的计算中的应用名师点金:解答有关点和线的位置关系、线段条数或长度、角的个数或大小等问题时,由于题目中没有给出具体的图形,而根据题意又可能出现多种情况,就应不重不漏地分情况加以讨论,这种思想称为分类讨论思想.需要进行分类讨论的题目,综合性一般较强.汐;费遗度1分类讨论思想在线段的计算中的应用1.已知线段AB=12,在AB上有C,D,M,N四点,且AC:CD:DB=1:2:3,AM =§AC,DN=|d B,求线段MN的长.2.如图,点O为原点,点A对应的数为1,点B对应的数为一3.(1)若点P在数轴上,且PA+PB=6,求点P对应的数;(2)若点M在数轴上,且MA:MB=1:3,求点M对应的数;(3)若点A的速度为5个单位长度/秒,点B的速度为2个单位长度/秒,点O的速度为1个单位长度/秒,A,B,O同时向右运动,几秒后,点。
冀教版七年级数学上册第二章达标测试卷一、选择题(每题2分,共28分)1.在下列立体图形中,只要两个面就能围成的是()A.B.C.D.2.如图,钟表上10点整时,时针与分针所成的角是()A.30°B.60°C.90°D.120°3.下列说法正确的是()A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2 cm4.能用∠AOB,∠O,∠1三种方法表示同一个角的图形是() A.B.C.D.5.如图,若AC=BD,则AB与CD的大小关系是()A.AB>CD B.AB<CD C.AB=CD D.不能确定6.有一个几何体,萌萌,琳琳,佳佳分别做了如下的描述,萌萌:有五个面;琳琳:有四个面是三角形;佳佳:有8条棱.这个几何体可能是() A.圆锥B.正方体C.四棱锥D.三棱柱7.将一副三角尺按如图所示的方式放置,则∠AOB=()A.30°B.45°C.75°D.80°8.如图,直线m外有一点O,点A是m上一点,当点A在m上运动时,下列选项中一定成立的是()A.∠α>∠βB.∠α<∠βC.∠α=∠βD.∠α+∠β=180°9.下列时刻,时针和分针所成角最大的是()A.1:30 B.10:10 C.2:50 D.6:4010.如图是一根长为10 cm的木棒,木棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有()A.7个B.6个C.5个D.4个11.下列说法正确的是()A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.如果∠α、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互余12.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则线段AD的长是()A.2(a-b) B.2a-b C.a+b D.a-b13.如图,把∠APB放置在量角器上,读得射线P A,PB分别经过刻度117和153,把∠APB绕点P顺时针旋转得到∠A′PB′,下列三个结论:①∠AP A′=∠BPB′;②若射线P A′经过刻度27,则∠B′P A与∠A′PB互补;③若∠APB′=12∠AP A′,则射线P A′经过刻度45.其中正确的是()A.①②B.①③C.②③D.①②③14.石家庄为了改善大气环境,工厂迁出市区,大力发展旅游业,某游乐中心的摩天轮,以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30 m in.若此时21号车厢运行到最高点,且至少经过x m in后,9号车厢才会运行到最高点,则x等于()A.10 B.20 C.152D.452二、填空题(每题3分,共12分)15.如图,在此图中小于平角的角的个数是________.16.一副三角尺按如图方式放置,若∠α=23°27′,则∠β的度数是________.17.如图,将三角形ABC绕点A顺时针旋转得到三角形ADE,且点D恰好在AC上,∠BAE=∠CDE=136°,则∠C的度数是________.18.点C在直线AB上,AB=5,BC=2,点C为BD的中点,则AD的长为________.三、解答题(19题9分,20题10分, 21题9分,22、23题每题10分,24题12分,共60分)19.计算:(1)131°28′-51°32′15″;(2)58°38′27″+47°42′40″;(3)34°25′×3+35°42′.20.已知:如图,AC=2BC,D为AB的中点,BC=3,求CD的长.21.按要求解答:(1)如图,按要求画图.①画直线AB;②画射线CD;③连接AD,BC相交于点P;④连接BD并延长至点Q,使DQ=BD.(2)由(1)所画图形中,以点P为顶点且小于平角的角有哪些?若形成的锐角为80°,求它的余角和补角的度数.22.阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.解:过点O作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=∠AOM-∠MOD=∠AOM-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.23.如图,线段AB=6cm,C是AB的中点,D是BC的中点,E是AD的中点.(1)求线段AE的长;(2)求线段EC的长.24.将一副直角三角尺按如图①所示方式摆放在直线AD上,保持三角尺OBC 不动,将三角尺MON绕点O以每秒8°的速度按顺时针方向旋转t s.(1)如图②,当t=________时,OM平分∠AOC,此时∠NOC-∠AOM=________;(2)继续旋转三角尺MON,如图③,使得OM,ON同时在直线OC的右侧,猜想∠NOC与∠AOM有怎样的数量关系?并说明理由(数量关系中不能含t).(3)直线AD的位置不变,若在三角尺MON开始顺时针旋转的同时,另一个三角尺OBC也绕点O以每秒2°的速度按顺时针方向旋转,当OM旋转至射线OD上时,两个三角尺同时停止运动.当t=________时,∠MOC=15°.答案一、1.D 2.B 3.A 4.D 5.C 6.C7.C8.D9.C10.B点拨:因为图中共有3+2+1=6(条)线段,这6条线段分别长2 cm、3 cm、5 cm、7 cm、8 cm、10 cm,所以能量出6个长度,故选B.11.B12.B点拨:因为MN=MB+CN+BC=a,BC=b,所以MB+CN=a-b.因为M是AB的中点,N是CD的中点,所以AB+CD=2(MB+CN)=2(a-b),所以AD=AB+CD+BC=2(a-b)+b=2a-b.故选B.13.D点拨:由题意可知∠APB=∠A′PB′=36°,∠BPB′=∠APB+∠APB′,∠AP A′=∠A′PB′+∠APB′,所以∠AP A′=∠BPB′,故①正确;若射线P A′经过刻度27,则∠B′P A=117°-27°-36°=54°,∠A′PB=153°-27°=126°,所以∠B′P A+∠A′PB=180°,即∠B′P A与∠A′PB互补,故②正确;若∠APB′=12∠AP A′,则∠A′PB′=∠APB′,所以∠AP A′=2∠A′PB′=72°,所以射线P A′与刻度0所在直线所成锐角的度数为117°-72°=45°,所以射线P A′经过刻度45,故③正确.故选D.14.B二、15.1116.66°33′17.24°点拨:因为将三角形ABC绕点A顺时针旋转得到三角形ADE,所以∠BAC=∠DAE,∠C=∠E.因为∠BAE=136°,所以∠DAE=12(360°-∠BAE)=12×(360°-136°)=112°.因为∠CDE+∠ADE=180°,∠DAE+∠E+∠ADE=180°,所以∠CDE=∠E+∠DAE,所以∠E=∠CDE-∠DAE=136°-112°=24°,所以∠C=24°. 18.1或9三、19.解:(1)131°28′-51°32′15″=79°55′45″.(2)58°38′27″+47°42′40″=106°21′7″.(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.20.解:因为AC=2BC,BC=3,所以AC=6,所以AB=AC+BC=9.又因为D为AB的中点,所以BD=12AB=4.5,所以CD=BD-BC=4.5-3=1.5.21.解:(1)如图所示.(2)以点P为顶点且小于平角的角有∠APB,∠BPD,∠CPD,∠APC.若形成的锐角为80°,则它的余角为90°-80°=10°,补角为180°-80°=100°. 22.解:(1)由题可知∠AOD=∠AOM-∠BOC,所以如果∠BOC=60°,那么∠AOD=180°-60°=120°.如果∠BOC=n°,那么∠AOD=(180-n)°.(2)因为∠AOB=∠DOC=x°,∠AOD=y°,且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=(2x-y)°.23.解:(1)因为C是AB的中点,AB=6 cm,所以AC=BC=12AB=3cm.又因为D是BC的中点,所以BD=CD=12BC=1.5cm,所以AD=AB-BD=6-1.5=4.5(cm).因为E是AD的中点,所以AE=12AD=2.25cm.(2)由(1)可知AE=2.25cm,AC=3cm,所以EC=AC-AE=3-2.25=0.75(cm).24.解:(1)4516;45°(2)∠NOC-∠AOM=45°.理由:因为∠AON=90°+8°·t,所以∠NOC=∠AON-∠AOC=90°+8°·t-45°=45°+8°·t.因为∠AOM=8°·t,所以∠NOC-∠AOM=45°+8°·t-8°·t=45°.(3)5或10七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( )A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×1014 3.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16 C .6 D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a 8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103 D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1.(1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm),所以CA -AB 的值不会随着t 的变化而改变.。
冀教版七年级数学上册第四章达标测试卷一、选择题(每题2分,共28分) 1.下列整式中,不属于单项式的是( ) A .5x 3yB .x 2y +4C .-8ab 2D .3ab 32.23xy 2z 3的次数是( ) A .3B .5C .6D .93.下列关于整式说法正确的是( ) A .-12不是整式B .整式不是单项式就是多项式C .整式中一定不含分母D .x 2和2x 都是整式4.已知2x n +1y 3与13x 4y 3是同类项,则n 的值是( ) A .2B .3C .4D .55.已知M =a 2+ab ,N =ab -b 2,M 和N 的大小关系是( ) A .M >NB .M <NC .M ≥ND .M ≤N6.两个三次多项式相加,和的次数是( ) A .三B .六C .大于或等于三D .小于或等于三7.若|m -3|+(n +2)2=0,则m -2mn +4n +2(mn -m )的值为( ) A .-4B .-11C .0D .48.下列各式计算正确的是( )A .2(m -1)-3(m -1)=-m -3B .a -[-(-b -c )]=a -b -cC .a -(-2a +b )=3a +bD .(x +y )-(y -x )=09.一个多项式加上-2a +7等于3a 2+a +1,则这个多项式是( ) A .3a 2-a -6 B .3a 2+3a +8 C .3a 2+3a -6D .-3a 2-3a +610.已知m -n =100,x +y =-1,则代数式(n +x )-(m -y )的值是( ) A .99B .101C .-99D .-10111.若A =x 2y -2xy ,B =xy 2-3xy ,则计算3A -2B 的结果是( ) A .2x 2yB .3x 2y -2xy 2C .x 2yD .xy 212.已知关于x的多项式(2mx2+5x2+3x+1)-(6x2+3x)化简后不含x2项,则m 的值是()A.0 B.0.5 C.3 D.-2.513.如图,从边长为a+5的正方形纸片中剪去一个边长为a+1的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方形的周长为()A.2a+6 B.2a+8C.2a+14 D.4a+2014.有一道题目是一个多项式A减去多项式2x2+5x-3,小胡同学将2x2+5x-3抄成了2x2+5x+3,计算结果是-x2+3x-7,这道题目的正确结果是() A.x2+8x-4 B.-x2+3x-1C.-3x2-x-7 D.x2+3x-7二、填空题(每题3分,共12分)15.同时符合下列条件:①同时含有字母a,b;②常数项是-12,且最高次项的系数是2的一个四次二项式,请你写出满足以上条件的一个整式:. 16.观察下列单项式:-x,3x2,-5x3,7x4,-9x5,…,可以猜想第n个单项式是________________.17.石家庄地铁3号线正式通车当天,某列地铁在市二中站到站前,原有(3a+b)人,到站时下去了(a+2b)人,又上来了一些人,此时地铁上共有(8a-5b)人.在市二中站上地铁的人数是________.18.某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三名同学相同数量的扑克牌(假定发到每名同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出两张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为________.三、解答题(19题8分,20-23题每题10分,24题12分,共60分)19.已知关于x,y的多项式x4+(m+2)x n y-xy2+3.(1)当m,n为何值时,它是五次四项式?(2)当m,n为何值时,它是四次三项式?20.先化简,再求值:2(3x2-2xy-y)-4(2x2-xy-y),其中x=-3,y=1.21.已知x,y互为相反数,且|y-3|=0,求2(x3-2y2)-(x-3y)-(x-3y2+2x3)的值.22.小丽同学准备化简:(3x2-6x-8)-(x2-2x□6) ,算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x2-6x-8)-(x2-2x×6);(2)若x2-2x-3=0,求(3x2-6x-8)-(x2-2x-6)的值;(3)当x=1时,(3x2-6x-8)-(x2-2x□6)的结果是-4,请你通过计算说明“□”所代表的运算符号.23.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如图.(1)求所捂的二次三项式;(2)若x=-1,求所捂二次三项式的值.24.阅读材料:我们知道,4x-2x+x=(4-2+1)x=3x,类似地,我们把a+b看成一个整体,则4(a+b)-2(a+b)+(a+b)=(4-2+1)(a+b)=3(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,合并3(a-b)2-6(a-b)2+2(a-b)2的结果是________.(2)已知x2-2y=4,求3x2-6y-21的值;(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.答案一、1.B 2.C 3.B 4.B 5.C 6.D 7.B 8.B 9.C 10.D 11.B 12.B 13.D 点拨:根据题意得,长方形的周长为2(a +1+a +5+4)=2(2a +10)=4a+20.故选D.14.B 点拨:由题意可得,A -(2x 2+5x +3)=-x 2+3x -7,则A =-x 2+3x -7+2x 2+5x +3=x 2+8x -4, 故这道题目的正确结果是x 2+8x -4-(2x 2+5x -3) =x 2+8x -4-2x 2-5x +3 =-x 2+3x -1.故选B . 二、15.2a 2b 2-12(答案不唯一) 16.(-1)n (2n -1)x n 17.6a -4b18.7 点拨:设每名同学有扑克牌x 张,B 同学从A 同学处得到两张扑克牌,又从C 同学处得到三张扑克牌后,则B 同学有(x +2+3)张扑克牌,A 同学有(x -2)张扑克牌,那么给A 同学后,B 同学手中剩余的扑克牌的张数为x +2+3-(x -2)=x +5-x +2=7. 三、19.解:(1)因为多项式是五次四项式,所以n +1=5,m +2≠0. 所以n =4,m ≠-2.(2)因为多项式是四次三项式,所以m +2=0,n 为任意有理数.所以m =-2,n为任意有理数.20.解:原式=6x 2-4xy -2y -8x 2+4xy +4y =-2x 2+2y .当x =-3,y =1时,原式=-2×9+2×1=-16. 21.解:因为x ,y 互为相反数,且|y -3|=0,所以y =3,x =-3.2(x 3-2y 2)-(x -3y )-(x -3y 2+2x 3) =2x 3-4y 2-x +3y -x +3y 2-2x 3 =-y 2-2x +3y ,当x =-3,y =3时,原式=-32-2×(-3)+3×3=6.22.解:(1)(3x2-6x-8)-(x2-2x×6)=(3x2-6x-8)-(x2-12x)=3x2-6x-8-x2+12x=2x2+6x-8.(2)(3x2-6x-8)-(x2-2x-6)=3x2-6x-8-x2+2x+6=2x2-4x-2,因为x2-2x-3=0,所以x2-2x=3,所以2x2-4x-2=2(x2-2x)-2=6-2=4.(3)当x=1时,原式=(3-6-8)-(1-2□6),由题意得,-11-(1-2□6)=-4,整理得,1-2□6=-7,所以-2□6=-8,易得“□”所代表的运算符号是“-”.23.解:(1)所捂的二次三项式为x2-5x+1+3x=x2-2x+1.(2)当x=-1时,所捂二次三项式的值为1+2+1=4.24.解:(1)-(a-b)2(2)因为x2-2y=4,所以原式=3(x2-2y)-21=3×4-21=-9.(3)因为a-2b=3,2b-c=-5,c-d=10,所以a-c=(a-2b)+(2b-c)=3-5=-2,2b-d=(2b-c)+(c-d)=-5+10=5,所以原式=-2+5-(-5)=8.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示()A.支出800元B.收入800元C.支出200元D.收入200元2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为()A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a 2b +3ab 2-2b 3+a 3按a 的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m 2,则用科学记数法表示FAST 的反射面总面积约为____________m 2.(精确到万位)13.若|x +2|+(y -3)4=0,则x y =________.14.如果规定符号“*”的意义是a *b =aba +b,则[2*(-3)]*(-1)的值为________. 15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a 的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝ ⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了;(3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:售出套数7 6 7 8 2售价(元) +5 +1 0 -2 -5则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm),所以CA -AB 的值不会随着t 的变化而改变.。
七年级上册数学单元测试卷-第二章几何图形的初步认识-冀教版(含答案)一、单选题(共15题,共计45分)1、在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐2、能解释:“用两个钉子就可以把木条固定在墙上”,这实际问题的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直3、从3时到6时,钟表的时针旋转角的度数是()A.30°B.60°C.90°D.120°4、下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完全重合的是()A. B. C. D.5、如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.160°C.125°D.105°6、如图,四边形ABCD中,∠DAB=30°,连接AC,将ABC绕点B逆时针旋转60°,点C与对应点D重合,得到EBD,若AB=5,AD=4,则AC的长度为()A.5B.6C.D.7、下面四幅图中,用量角器测得∠AOB度数是40°的图是()A. B. C.D.8、如图,△ABC中,AB=AC,点P为△ABC内一点,∠APB=∠BAC=120°.若AP+BP=4,则PC的最小值为()A.2B.C.D.39、将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A. B. C. D.10、如图所示,OB,OC 是∠AOD 的任意两条射线,OM 平分∠AOB,ON 平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都错误11、如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16B.30C.32D.3412、围成圆柱的面有()A.1个B.2个C.3个D.4个13、如图,等腰直角△ABC中,∠ACB=90°,点E为△ABC内一点,且∠BEC=90°,将△BEC绕C点顺时针旋转90°,使BC与AC重合,得到△AFC,连接EF交AC于点M,已知BC=10,CF=6,则AM:MC的值为()A.4:3B.3:4C.5:3D.3:514、如图,小明从点A向北偏东80°方向走到B点,又从B点向南偏西25°方向走到点C,则∠ABC的度数为()A.55°B.50°C.45°D.40°15、如图,小明用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离二、填空题(共10题,共计30分)16、如图,将△ABC绕点A逆时针旋转65°得△ADE,若∠E=70°,AD⊥BC,则∠BAC =________.17、计算⑴5400″=________°.⑵32°49'+25°51'=________;⑶180°﹣56°23'=________.18、如图,数轴上线段AB=2,CD=4,点A在数轴上的数是-10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同事线段CD以2个单位长度/秒的速度向左匀速运动,点P是线段AB上一点,当点B运动到线段CD上,且BD=3PC+AP,则线段PC的长为________.19、角度换算:45.18度=________度________分________秒.20、在图形的平移、旋转、轴对称变换中,其相同的性质是________.21、如图1,在直线MN的异侧有A,B两点,要在直线MN上取一点C,使AC+BC最短.小明的作法是连接线段AB交直线MN于点C,如图2.这样作图得到的点C,就使得AC+BC最短,依据是________.22、如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP'重合,若PB = 3,则PP' = ________23、如图,将一副直角三角板如图放置,若∠AOD=18°,则∠BOC的度数为________.24、数轴上与-2相距3个单位长度的点表示的数是________,长度为5个单位长的木条放在数轴上,最多能覆盖________个整数点.25、如图,将长方形纸片进行折叠,为折痕,与与与重合,若,则的度数为 ________三、解答题(共5题,共计25分)26、计算:(1)﹣22÷﹣(﹣)×(﹣3)2(2)16°51′+38°27′×3﹣35°29′.27、请估计下面角的大小,然后再用量角器测量.28、如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.29、如图,已知点M是线段AB的中点,点N在线段MB上,MN=AM,若MN=3cm,求线段AB和线段NB的长.30、如图,AD⊥BC于点D,EF⊥BC于点F,∠BDG=∠C.试说明∠1=∠2.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、B5、C6、D7、A8、B10、A11、D12、C13、A14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
冀教版七年级数学上册第二章达标测试卷一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.下列图形中,与其他三个不同类的是( )2.下列说法中,正确的是( )A.若PA=12AB,则P是线段AB的中点B.两点之间,线段最短C.直线的一半是射线D.平角就是一条直线3.借助一副三角尺,你不能画出的角的度数是( )A.75°B.65°C.135°D.150°4.一个锐角的补角比它的余角大( )A.45°B.60°C.90°D.120°5.如图,A,B,C,D是直线l上的四个点,图中共有线段( )A.3条B.4条C.6条D.8条6.下列说法中,正确的是( )A.角的大小和开口的大小无关B.互余、互补是指两个角之间的数量关系C.单独的一个角也可以叫余角或补角D.若三个角的和是90°,则它们互余7.如图所示,M是AC的中点,N是BC的中点,若AB=5 cm,MC=1 cm,则NB 的长是( )A.1.5 cm B.2.5 cm C.2 cm D.3 cm8.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是( )A.20°B.25°C.30°D.70°9.某学校的学生每天上午8时45分下第一节课,此时时钟的时针与分针所成的角为( )A.10°B.7°30′C.12°30′ D.90°30′10.依据下列线段的长度,能确定点A,B,C不在同一直线上的是( ) A.AB=8 cm,BC=19 cm,AC=27 cmB.AB=10 cm,BC=9 cm,AC=18 cmC.AB=11 cm,BC=21 cm,AC=10 cmD.AB=30 cm,BC=12 cm,AC=18 cm11.如图,将一副三角尺按下面的位置摆放,其中∠α与∠β互余的是( )12.如图所示,已知∠1=∠2,∠3=∠4,则下列结论中正确的有( )①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.A.1个B.2个C.3个D.4个13.如图,OB是∠AOC的平分线,OD是∠COE的平分线.若∠AOB=40°,∠COE =60°,则∠BOD的度数为( )A.50°B.60°C.65°D.70°14.如果∠1与∠2互余,∠1与∠3互补,且∠2与∠3的和为一个周角的13,那么这三个角分别是( )A.75°,15°,105°B.60°,30°,120°C.50°,40°,130°D.70°,20°,110°15.如图,在正方形网格中,将三角形ABC绕点A旋转后得到三角形ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°16.两根木条,一根长20 cm,另一根长24 cm,将它们的一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2 cm B.4 cmC.2 cm或22 cm D.4 cm或44 cm二、填空题(17题3分,18、19题每题4分,共11分)17.工程队开挖水渠时,会先在两端立柱拉线,然后沿线开挖,其中的道理是______________________.18.往返于甲、乙两地的火车中途要停靠三个站,则有________种不同的票价,需准备________种车票.(来回票价一样,且不同两站之间的票价不同) 19.过点O引三条射线OA,OB,OC,使∠AOC=2∠AOB,若∠AOB=30°,则∠BOC的度数为________.三、解答题(20题8分,21~23题每题9分,24~25题每题10分,26题12分,共67分)20.(1)0.75°等于多少分?等于多少秒?(2)将50°22′48″用度表示;(3)将42.34°用度、分、秒表示.21.计算:(1)143°19′42″+26°40′28″;(2)90°3″-57°21′44″.22.已知线段a,b(a<b),如图所示,求作线段c,使c=2b-a.23.如图,C为线段AD上一点,点B为CD的中点,且AD=8 cm,BD=2 cm.(1)图中共有多少条线段?(2)求AC的长;(3)若点E的直线AD上,且EA=3 cm,求BE的长.24.如图所示,线段AD=6 cm,线段AC=BD=4 cm,E,F分别是线段AB,CD 的中点,求线段EF的长.25.如图所示,射线OC和OD把平角∠AOB三等分,OE平分∠AOC,OF平分∠BOD.(1)求∠COD的度数;(2)写出图中所有的直角;(3)写出∠COD的所有余角和补角.26.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)∠MON=________°;(2)将OC绕O点向下旋转,使∠BOC=2x°,其他条件不变,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由;(3)若∠AOB=α,∠BOC=β,仍然分别作∠AOC,∠BOC的平分线OM,ON,能否求出∠MON的度数?若能,求出∠MON的度数;若不能,试说明理由.答案一、1.C 2.B3.B 提示:15°整数倍的角,都可以用一副三角尺画出来.4.C 5.C 6.B 7.A 8.D9.B 提示:时针从8时到8时45分旋转45×0.5°=22.5°,而分针在8时45分时指向“9”,因此时针与分针所成的角为30°-22.5°=7.5°=7°30′.10.B 提示:本题可采用排除法.11.C 12.B13.D 提示:因为OB 是∠AOC 的平分线,所以∠BOC =∠AOB =40°.因为OD 是∠COE 的平分线,所以∠COD =12∠COE =12×60°=30°.所以∠BOD =∠BOC +∠COD =40°+30°=70°.14.A 15.B 16.C二、17.两点确定一条直线 18.10;2019.30°或90° 提示:本题要运用分类讨论思想.若射线OB 在∠AOC 的内部,则∠BOC =30°;若射线OB 在∠AOC 的外部,则∠BOC =90°.三、20.解:(1)0.75°=60′×0.75=45′,0.75°=60″×45=2 700″.(2)48″=⎝ ⎛⎭⎪⎫160′×48=0.8′,22′+0.8′=22.8′,22.8′=⎝ ⎛⎭⎪⎫160°×22.8=0.38°.所以50°22′48″=50.38°.(3)60′×0.34=20.4′,60″×0.4=24″,所以42.34°=42°20′24″.21.解:(1)143°19′42″+26°40′28″=169°59′70″=170°10″.(2)90°3″-57°21′44″=89°59′63″-57°21′44″=32°38′19″.22.解:如图所示.作法:①画射线OA .②在射线OA 上顺次截取点B ,C ,使OB =BC =b .③在线段CB 上截取点D ,使CD =a ,则OD 就是所求作的线段c .23.解:(1)图中共有6条线段.(2)因为点B 为CD 的中点,所以CD =2BD =4 cm.所以AC =AD -CD =8-4=4(cm).(3)当E 在点A 的左边时,BE =BA +EA ,因为BA =AD -BD =6 cm ,EA =3 cm ,所以BE =9 cm.当E 在点A 的右边时,BE =AB -EA ,因为AB =AD -BD =6 cm ,EA =3 cm ,所以BE =3 cm.综上,BE 的长为9 cm 或3 cm.24.解:因为AD =6 cm ,AC =BD =4 cm ,所以BC =AC +BD -AD =4+4-6=2(cm).所以AB +CD =AD -BC =6-2=4(cm).又因为E ,F 分别是线段AB ,CD 的中点,所以EB =12AB ,CF =12CD , 所以EB +CF =12AB +12CD =12(AB +CD )=2cm. 所以EF =EB +BC +CF =2+2=4(cm).即线段EF 的长为4 cm.25.解:(1)因为射线OC 和OD 把平角∠AOB 三等分,所以∠COD =13×180°=60°. (2)∠DOE 与∠COF .(3)∠COD 的余角:∠AOE ,∠EOC ,∠DOF ,∠FOB ;∠COD 的补角:∠AOD ,∠EOF ,∠BOC .26.解:(1)45(2)能.因为∠AOB =90°,∠BOC =2x °, 所以∠AOC =90°+2x °.因为OM ,ON 分别平分∠AOC ,∠BOC ,所以∠MOC =12∠AOC =12(90°+2x °)=45°+x °,∠CON =12∠BOC =x °.所以∠MON =∠MOC -∠CON =45°+x °-x °=45°.(3)能.因为∠AOB =α,∠BOC =β,所以∠AOC =α+β.因为OM ,ON 分别平分∠AOC ,∠BOC ,所以∠MOC =12∠AOC =12(α+β) ,∠CON =12∠BOC =12β. 所以∠MON =∠MOC -∠CON =12(α+β)-12β=12α.冀教版七年级数学上册第二章达标测试卷一、选择题(每题2分,共28分)1.在下列立体图形中,只要两个面就能围成的是( )A .B .C .D .2.如图,钟表上10点整时,时针与分针所成的角是( )A.30° B.60° C.90° D.120°3.下列说法正确的是( )A.直线BA与直线AB是同一条直线B.延长直线ABC.射线BA与射线AB是同一条射线D.直线AB的长为2 cm4.能用∠AOB,∠O,∠1三种方法表示同一个角的图形是( )A. B. C. D.5.如图,若AC=BD,则AB与CD的大小关系是( )A.AB>CD B.AB<CD C.AB=CD D.不能确定6.有一个几何体,萌萌,琳琳,佳佳分别做了如下的描述,萌萌:有五个面;琳琳:有四个面是三角形;佳佳:有8条棱.这个几何体可能是( )A.圆锥 B.正方体 C.四棱锥 D.三棱柱7.将一副三角尺按如图所示的方式放置,则∠AOB=( )A.30° B.45°C.75° D.80°8.如图,直线m外有一点O,点A是m上一点,当点A在m上运动时,下列选项中一定成立的是( )A.∠α>∠β B.∠α<∠β C.∠α=∠β D.∠α+∠β=180°9.下列时刻,时针和分针所成角最大的是( )A.1:30 B.10:10 C.2:50 D.6:4010.如图是一根长为10 cm的木棒,木棒上有两个刻度,若把它作为尺子,量一次要量出一个长度,能量的长度共有( )A.7个 B.6个 C.5个 D.4个11.下列说法正确的是( )A.如果一个角有补角,那么这个角必是钝角B.一个锐角的余角比这个角的补角小90°C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.如果∠α、∠β互余,∠β、∠γ互余,那么∠α与∠γ也互余12.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN =a,BC=b,则线段AD的长是( )A.2(a-b) B.2a-b C.a+b D.a-b13.如图,把∠APB放置在量角器上,读得射线PA,PB分别经过刻度117和153,把∠APB绕点P顺时针旋转得到∠A′PB′,下列三个结论:①∠APA′=∠BPB′;②若射线PA′经过刻度27,则∠B′PA与∠A′PB互补;③若∠APB′=12∠APA′,则射线PA′经过刻度45.其中正确的是( )A.①② B.①③ C.②③ D.①②③14.石家庄为了改善大气环境,工厂迁出市区,大力发展旅游业,某游乐中心的摩天轮,以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30 m in.若此时21号车厢运行到最高点,且至少经过x m in后,9号车厢才会运行到最高点,则x等于( )A.10 B.20 C.152D.452二、填空题(每题3分,共12分)15.如图,在此图中小于平角的角的个数是________.16.一副三角尺按如图方式放置,若∠α=23°27′,则∠β的度数是________.17.如图,将三角形ABC绕点A顺时针旋转得到三角形ADE,且点D恰好在AC 上,∠BAE=∠CDE=136°,则∠C的度数是________.18.点C在直线AB上,AB=5,BC=2,点C为BD的中点,则AD的长为________.三、解答题(19题9分,20题10分 , 21题9分, 22、23题每题10分,24题12分,共60分)19.计算:(1)131°28′-51°32′15″;(2)58°38′27″+47°42′40″;(3)34°25′×3+35°42′.20.已知:如图,AC=2BC,D为AB的中点,BC=3,求CD的长.21.按要求解答:(1)如图,按要求画图.①画直线AB;②画射线CD;③连接AD,BC相交于点P;④连接BD并延长至点Q,使DQ=BD.(2)由(1)所画图形中,以点P为顶点且小于平角的角有哪些?若形成的锐角为80°,求它的余角和补角的度数.22.阅读解题过程,回答问题.如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD 的度数.解:过点O作射线OM,使点M,O,A在同一直线上.因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,所以∠AOD=∠AOM-∠MOD=∠AOM-∠BOC=180°-30°=150°.(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.23.如图,线段AB=6cm,C是AB的中点,D是BC的中点,E是AD的中点.(1)求线段AE的长;(2)求线段EC的长.24.将一副直角三角尺按如图①所示方式摆放在直线AD上,保持三角尺OBC不动,将三角尺MON绕点O以每秒8°的速度按顺时针方向旋转t s.(1)如图②,当t=________时,OM平分∠AOC,此时∠NOC-∠AOM=________;(2)继续旋转三角尺MON,如图③,使得OM,ON同时在直线OC的右侧,猜想∠NOC与∠AOM有怎样的数量关系?并说明理由(数量关系中不能含t).(3)直线AD的位置不变,若在三角尺MON开始顺时针旋转的同时,另一个三角尺OBC也绕点O以每秒2°的速度按顺时针方向旋转,当OM旋转至射线OD上时,两个三角尺同时停止运动.当t=________时,∠MOC=15°.答案一、1.D 2.B 3.A 4.D 5.C 6.C 7.C 8.D 9.C10.B 提示:因为图中共有3+2+1=6(条)线段,这6条线段分别长2 cm、3 cm、5 cm、7 cm、8 cm、10 cm,所以能量出6个长度,故选B.11.B12.B 提示:因为MN=MB+CN+BC=a,BC=b,所以MB+CN=a-b.因为M是AB的中点,N是CD的中点,所以AB+CD=2(MB+CN)=2(a-b),所以AD=AB+CD+BC=2(a-b)+b=2a-b.故选B.13.D提示:由题意可知∠APB=∠A′PB′=36°,∠BPB′=∠APB+∠APB′,∠APA′=∠A′PB′+∠APB′,所以∠APA′=∠BPB′,故①正确;若射线PA′经过刻度27,则∠B′PA=117°-27°-36°=54°,∠A′PB=153°-27°=126°,所以∠B′PA+∠A′PB=180°,即∠B′PA与∠A′PB互补,故②正确;若∠APB′=12∠APA′,则∠A′PB′=∠APB′,所以∠APA′=2∠A′PB′=72°,所以射线PA′与刻度0所在直线所成锐角的度数为117°-72°=45°,所以射线PA′经过刻度45,故③正确.故选D. 14.B二、15.1116.66°33′17.24°提示:因为将三角形ABC绕点A顺时针旋转得到三角形ADE,所以∠BAC=∠DAE,∠C=∠E.因为∠BAE=136°,所以∠DAE=12(360°-∠BAE)=12×(360°-136°)=112°.因为∠CDE+∠ADE=180°,∠DAE+∠E+∠ADE=180°,所以∠CDE=∠E+∠DAE,所以∠E=∠CDE-∠DAE=136°-112°=24°,所以∠C=24°. 18.1或9三、19.解:(1)131°28′-51°32′15″=79°55′45″.(2)58°38′27″+47°42′40″=106°21′7″.(3)34°25′×3+35°42′=103°15′+35°42′=138°57′. 20.解:因为AC=2BC,BC=3,所以AC=6,所以AB=AC+BC=9.又因为D为AB的中点,所以BD=12AB=4.5,所以CD=BD-BC=4.5-3=1.5. 21.解:(1)如图所示.(2)以点P为顶点且小于平角的角有∠APB,∠BPD,∠CPD,∠APC.若形成的锐角为80°,则它的余角为90°-80°=10°,补角为180°-80°=100°.22.解:(1)由题可知∠AOD=∠AOM-∠BOC,所以如果∠BOC=60°,那么∠AOD=180°-60°=120°.如果∠BOC=n°,那么∠AOD=(180-n)°.(2)因为∠AOB=∠DOC=x°,∠AOD=y°,且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=(2x-y)°.23.解:(1)因为C是AB的中点,AB=6 cm,所以AC=BC=12AB=3cm.又因为D是BC的中点,所以BD=CD=12BC=1.5cm,所以AD=AB-BD=6-1.5=4.5(cm).因为E是AD的中点,所以AE=12AD=2.25cm.(2)由(1)可知AE=2.25cm,AC=3cm,所以EC=AC-AE=3-2.25=0.75(cm).24.解:(1)4516;45°(2)∠NOC-∠AOM=45°.理由:因为∠AON=90°+8°·t,所以∠NOC=∠AON-∠AOC=90°+8°·t-45°=45°+8°·t.因为∠AOM=8°·t,所以∠NOC-∠AOM=45°+8°·t-8°·t=45°.(3)5或10。
检测内容:第二章
姓 名
得 分
卷后分
老师评价
一、选择题(每小题3分,共30分)
1.一个立体图形由两个平面和一个曲面围成,则这个立体图形可能是( C ) A .正方体 B .棱柱 C .圆柱 D .圆锥
2.给出下列命题:①绷紧的琴弦可近似看作线段;②手电筒射出的光线可近似看作射线;③自来水管从高处流出的水可近似看作射线;④用一个2倍的放大镜观察一个10°的角,看到的角是20°.其中,正确的个数有( C )
A .1个
B .2个
C .3个
D .4个 3.下列算式正确的是( D )
①33.33°=33°3′3″;②33.33°=33°19′48″;③50°40′30″=50.43°;④50°40′30″=50.675°. A .①和② B .①和③ C .②和③ D .②和④
4.将两块完全相同的直角三角尺的直角顶点重合,如图所示,若∠BOC =70°,则∠AOD 的度数为( B )
A .140°
B .110°
C .50°
D .35°
5.如图,两个完全相同的长方形ABCD 与CDEF ,如果旋转长方形ABCD 能和长方形CDEF 重合,则可以作为旋转中心的点是( C )
A .点C
B .点D
C .线段C
D 的中点 D .点A ,B ,C ,D 中的任意一个
6.线段AB =12 cm ,点C 在AB 上,且AC =1
3BC ,M 为BC 的中点,则AM 的长为( C )
A .4.5 cm
B .6.5 cm
C .7.5 cm
D .8 cm 7.如果∠α=3∠β,∠α=2∠θ,则必有( C )
A .∠β=12∠θ
B .∠β=13∠θ
C .∠β=23∠θ
D .∠β=4
3
∠θ
,第4题图) ,第5题图)
,第9题图)
8.若∠1和∠2互为补角,且∠1>∠2,则∠2的余角是( D ) A.12∠1 B.12∠2 C.12(∠1+∠2) D.1
2
(∠1-∠2) 9.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以A 为中心( D )
A .顺时针旋转60°得到
B .顺时针旋转120°得到
C .逆时针旋转60°得到
D .逆时针旋转120°得到
10.某人下午6点多钟外出买东西时,看表上的时针和分针的夹角是110°,下午近7点回家时,发现时针的夹角又是110°,则此人外出用了( B )
A .30 min
B .40 min
C .50 min
D .60 min 二、填空题(每小题3分,共30分)
11.某工程队在修建高速公路时,有时需将弯曲的道路改直以缩短路程,这样做的理论依据是__两点之间线段最短__.
12.请阅读下列语句:
①射线AB 与射线BA 是两条相同的射线;②如果C 点在线段EF 上(不与点E ,F 重合),那么EC <EF ;③5′49″的角是锐角;④一条直线可以看成一个平角;⑤43°50′=43.5°;⑥钝角大于直角.其中正确的序号为__②③⑥__.
13.57.32°=__57__度__19__分__12__秒;17°14′24″=__17.24__度.
14.如图,AB ∶BC ∶CD =2∶3∶4,AB 的中点M 与CD 的中点N 的距离是3 cm ,则BC =__1.5_cm __.
15.如果两个角互补,并且它们的差是30°,那么较大的角是__105__°.
16.已知A ,B ,C 是直线l 上的三点,且线段AB =9 cm ,BC =1
3AB ,那么A ,C 两点
的距离是__6_cm 或12_cm __.
,第14题图) ,第17题图)
,第18题图)
17.如图所示,将三角形ABC 绕A 点按顺时针方向旋转到三角形ADE 的位置,使得点C ,A ,D 在同一条直线上,如果∠BAC =56°,∠C =90°,那么旋转角最小等于__124°__.
18.把一张长方形纸条按如图的方式折叠后,量得∠AOB ′=110°,则∠B ′OC =__35°__.
19.从O 点引三条射线OA ,OB 和OC ,若∠AOB =60°,∠BOC =20°,则∠AOC 的度数为__40°或80°__.
20.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票__20__种.
三、解答题(共60分)
21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点).画出△ABC 绕点O 逆时针旋转90°后的△A ′B ′C ′.
解:如图:
22.(10分)如图,∠AOC 为直角,OC 是∠BOD 的平分线,且∠AOB =35°,求∠AOD 的度数.
解:因为∠BOC =∠AOC -∠AOB =90°-35°=55°,又OC 平分∠BOD ,所以∠COD =∠BOC =55°,所以∠AOD =∠AOC +∠COD =90°+55°=145°
23.(12分)已知线段AC 和BC 在一条直线上,如果AC =5 cm ,BC =3 cm ,求线段AC 和线段BC 的中点间的距离.
解:设AC ,BC 的中点分别为M ,N ,由线段中点定义得AM =MC =1
2AC ,BN =CN
=12
BC
由图①,得:MN =MC +CN =12AC +12BC =12(AC +BC )=1
2×8=4(cm );由图②,得:
MN =MC -CN =12AC -12BC =12(AC -BC )=1
2
×2=1(cm )
24.(13分)如图,正方形ABCD ,E 是CD 边上一点,△ADE 经过旋转后到达△ABF 的位置.
(1)旋转中心是哪一点? (2)旋转角度是多少度?
(3)旋转后的线段与原线段的位置有何关系?
(4)如果M 是AE 的中点,那么经过上述旋转后,点M 转到了什么位置?
解:(1)A 点 (2)90° (3)互相垂直 (4)AF 的中点
25.(15分)如图,∠AOB =90°,∠AOC 为∠AOB 外的一个锐角,且∠AOC =30°,射线OM 平分∠BOC ,ON 平分∠AO C.
(1)求∠MON 的度数;
(2)如果(1)中∠AOB =α,其他条件不变,求∠MON 的度数;
(3)如果(1)中∠AOC =β(β为锐角),其他条件不变,求∠MON 的度数; (4)从(1),(2),(3)的结果中,你能看出什么规律?
(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.请你模仿(1)~(4)设计一道以线段为背景的计算题,并写出其中的规律.
解:(1)因为∠AOB =90°,∠AOC =30°,所以∠BOC =120°.因为OM 平分∠BOC ,所以∠COM =12∠BOC =60°.因为ON 平分∠AOC ,所以∠CON =12∠AOC =1
2×30°=
15°,所以∠MON =∠COM -∠CON =60°-15°=45° (2)当∠AOB =α,其它条件不变时,仿(1)可得∠MON =1
2α (3)仿(1)可求得∠MON =∠COM -∠CON =90°+β2-β2
=
45°(4)从(1)(2)(3)的结果中,可以得出一般规律:∠MON的大小总等于∠AOB的一半,与锐角∠AOC的大小无关(5)问题可设计为:已知:线段AB=a,延长AB到点C,使BC=6,点M,N分别为AC,BC的中点,求MN的长.规律是:MN的长度总等于AB 的长度的一半,而与BC的长度无关。