投影面平行面: 平行于某一个投影面的平面。
一般位置平面: 对三个投影面都倾斜的平面。
图2-33 平面相对于投影面的位置
c′
Z a″
c″ b″
(2)、投影面垂直面
a′ X a b b′
铅垂面
正垂面 侧垂面
YW
c
YH
投影面垂直面的投影特性
•在其垂直的投影面上的投影积聚成与该投影面内的 两根投影轴倾斜的直线;该直线与相邻投影轴的夹 角反映该平面对另两个投影面的倾角。 •另外两个投影面上的投影均为空间平面的类似形。
xA<xB
yA>yB
,
故A点在右,B点在左 ,
YW
故B点在后,A点在前
zA>zB
,
YH
故A点在上,B点在下
2.重影点 空间两点在某一投 影面上的投影重合为一 点时,则称此两点为该 投影面的重影点。 被挡住的投 影加( )
A、C为H面的重影点
a
● ●
a
c
c●
●
a (c )
●
A、C为哪个投 影面的重影点 呢?
d”
c”
d
结论:两直线不平行
2.相交 如果空间两直线相交,则它们的同面投 影必定相交,且交点符合点的投影规律;反之, 如果空间两直线的同面投影相交,且交点符合点 的投影规律,则这两直线在空间一定相交。
[例2-5]
判断两直线是否相交?
z
d'
可用两种方法判断: 方法一 分割线段成定比 方法二 画第三投影
Y
YH
2.投影面上的点
到某个投影面的距离(一个坐标值) 为零。
YW YH
Y
3.投影轴上的点 到某两个投影面的距离(二பைடு நூலகம்坐标值)