2.4.3 直角投影定理
1.一直线平行投影面的垂直相交两直线的投影 垂直相交的两直线,当其中一条直线为投影面平行线时,则两直线 在该投影面上的投影也必定互相垂直.反之,若相交直线在某一投 影面上的投影互相垂直,且其中有一条直线为该平面的平行线,则 这两直线在空间也必定互相垂直.
设相交两直线AB⊥AC且AB‖H面.显然,直线AB垂直于平面ACca. 今ab⊥AB,则ab⊥平面AacC,因此,ab⊥ac,亦即∠bac=90.
2.1.2投影法的分类 投影法的分类
1.中心投影 投射线交于一点的投影,称为中心投影,如图2-3所示. 2.平行投影 假设将中心投影的光源移动到无限远时,投射线可以看做是互相平行的, 在这种情 况下得到的投影,称为平行投影.平行投影又可以分为正投影和斜投影两种. (1)正投影 投射线与投影面垂直时得到的投影,称为正投影. (2)斜投影 投射线与投影面倾斜时得到的投影,称为斜投影. 3.正投影的投影特性 (1)定比不变性 同一直线上两线段长度之比等于其投影长度之比. (2)平行性 两平行直线的投影一般仍互相平行,并且该两平行直 线段的长度之比等于其投影长度之比. (3)积聚性 直线变为线,面变为线. (4)真实性 反映直线的实长或平面的实形. (5)类似性 相类似的平面图形.表现为平面图形的边数,平行关 系,凹凸,直线边或曲线边投影后均保持定比不变性.
(2)两特殊位置平面相交 当相交两平面均为特殊位置平面时,则每一个平面必有一个投影有 积聚性,即可确定交线的一个投影,而另一个投影可以按照面上取 点,取线的方法作出.若相交两个平面同时垂直与=于同一投影面, 则交线必为这个投影面的垂直线.
�
2.4.2 直线上的点以及两直线的相对位置
1.直线上的点的特性 点在直线上,则点的投影必在该直线的同面投影上.反之,如果点 的投影均在直线的同面投影上,则点必在该直线上,否则,点不在 该直线上.