新北师大版 探索三角形全等的条件(一)
- 格式:ppt
- 大小:427.00 KB
- 文档页数:19
第二课时 探索三角形全等的条件(一)一、 学习目标:掌握三角形的“边边边”的全等条件,了解三角形的稳定性;二、温故知新:1、全等三角形的_________相等,___________相等;2、如图1,已知△AOC ≌△BOD ,则∠A=∠B ,∠C=_________, ________=∠2, 对应边有AC=________, ________=OB , ________=OD ;3、如图2,已知△AOC ≌△DOB ,则∠A=∠D ,∠C=_________, ________=∠2, 对应边有AC=________ OC=________,AO=________;4、如图3,已知∠B=∠D ,∠1=∠2,∠3=∠4,AB=CD ,AD=CB ,AC=CA ,则△_______≌△_______;图1 图2 图3三、探索新知:1、只给一个条件(一边或一个角)画出三角形时,大家画出的三角形一定全等吗?2、给出两个条件画出三角形时,有几种可能的情况?3、如果给出三个条件画三角形,你能说出有哪几种可能的情况?四、实验操作:1、画出一个三角形,使它的三个内角分别为40°,60°,80°,把你画的三角形与小组内画的进行比较,它们一定全等吗?2、画出一个三角形,使它的三边分别为3cm ,4cm ,6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?3、如图,在△ABC 与△ABD 中,五、应用新知:(三边分别相等的两个三角形全等,简写为“边边边”或“SSS ”) 例1:如图,已知AD=AC,BD=BC,则∠C=∠D ;证明:在△ABC 与△ABD 中,_____)________________(___(________)(______)______(______)____________(______)______=∠∴∆≅∆∴⎪⎩⎪⎨⎧===C ABD ABC BD AC )(_________(______)______(______)______(______)______ABD ABC BD CA AB ∆≅∆∴⎪⎩⎪⎨⎧===D CBA D CB E A 例2:生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状就固定不变了,为什么?•而用四根木条钉成的框架,它的形状却是可以改变的.三角形的这个性质叫做三角形的_____________.在日常生活中常利用三角形做支架,就是利用 ___________________________ . 请举出生活中类似的例子 ____________________________ .六、巩固新知:1、如图,已知AC=DB ,要使△ABC ≌△DCB ,有“SSS ”可知只需再补充条件( )A 、BC=CB B 、OB=OC C 、AB=DCD 、AB=BD2、如图,△ABC ,AB=AC,BE=EC,则由“SSS ”可判定( )A 、△ABD ≌△ACEB 、△ABE ≌△ACDC 、△ABE ≌△ACED 、△ABE ≌△ECB3、如图,PA=PB ,PC 是△PAB 的中线,∠A=55°,求∠B 的度数;解:∵PC 是AB 边上的中线,∴AC=__________( )在_________________________中∴________≌__________ (___________)∴________=________=________(___________)4、如图,已知AC=FE ,BC=DE ,AD=FB ,求证△ABC ≌△FDE ;证明: ∵AD=_______ ( )∴AD+______=_______+______( )∴________=__________在_________________________中∴________≌__________(_________) ⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________。
北师大新版七年级下学期《4.3 探索三角形全等的条件》同步练习卷一.选择题(共7小题)1.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部2.如图AE∥DF,CE∥BF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.∠E=∠F C.AB=BC D.AB=CD3.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 4.如图,已知AB=DE,BE=CF,添加下列条件中哪一个能使△ABC≌△DEF()A.∠A=∠D B.AB∥DE C.BE=EC D.AC∥DF5.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是()A.∠B=∠E B.∠BAD=∠EAC C.∠BAC=∠EAD D.BC=ED6.如图所示,△ABC的三条边长分别是a,b,C,则下列选项中的三角形与△ABC不一定全等的是()A.B.C.D.7.如图,AB=AC,AD=AE,下列结论错误的是()A.∠B=∠C B.BD=CE C.BE⊥CD D.△ABE≌△ACD 二.填空题(共2小题)8.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是.9.如图所示,AB=AD,∠1=∠2,在不改变图形的情况下,请你添加一个条件,使△ABC ≌△ADE,则需添加的条件是.三.解答题(共11小题)10.已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.11.如图,在△ABC中,AB=AC,BD=CD,求证:△ABD≌△ACD.12.如图,线段AD、CE相交于点B,BC=BD.(1)若∠A=60°,∠ACB=20°,求∠CDB的度数;(2)若AB=EB,求证:△ACD≌△EDC.13.已知:如图,AB∥DE,AB=DE,AC=DF.求证:△ABF≌△DEC.14.如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.15.已知,如图,AD=CB,∠1=∠2.求证:△ADC≌△CBA.16.如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:AD=BC.17.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.18.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.19.如图,已知CA=CD,AB=DE,∠A=∠D,求证:∠BCE=∠ACD.20.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.北师大新版七年级下学期《4.3 探索三角形全等的条件》2019年同步练习卷参考答案与试题解析一.选择题(共7小题)1.下列说法正确的是()A.三角形的三条中线交于一点B.三角形的三条高都在三角形内部C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部【分析】依据三角形角平分线、中线以及高线的概念,即可得到正确结论.【解答】解:A.三角形的三条中线交于一点,正确;B.锐角三角形的三条高都在三角形内部,错误;C.三角形一定具有稳定性,错误;D.三角形的角平分线一定在三角形的内部,错误;故选:A.【点评】本题主要考查了三角形角平分线、中线以及高线的概念,锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.2.如图AE∥DF,CE∥BF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.∠E=∠F C.AB=BC D.AB=CD【分析】依据AE∥DF,CE∥BF,即可得到∠A=∠D,∠ACE=∠DBF,根据两角及其夹边分别对应相等的两个三角形全等,即可得出结论.【解答】解:∵AE∥DF,CE∥BF,∴∠A=∠D,∠ACE=∠DBF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:D.【点评】本题主要考查全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等,掌握全等三角形的判定方法是解题的关键.3.如图,已知点B、E、C、F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DE B.AC=DF C.∠A=∠D D.∠ACB=∠F 【分析】根据全等三角形的判定方法逐项判断即可.【解答】解:∵BE=CF,∴BE+EC=EC+CF,即BC=EF,且∠ABC=∠DEF,∴当AC=DF时,满足SSA,无法判定△ABC≌△DEF,故B不能;当AB=DE时,满足SAS,可以判定△ABC≌△DEF,故B可以;当∠ACB=∠F时,满足ASA,可以判定△ABC≌△DEF,故C可以;当∠A=∠D时,满足AAS,可以判定△ABC≌△DEF,故D可以;故选:B.【点评】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.4.如图,已知AB=DE,BE=CF,添加下列条件中哪一个能使△ABC≌△DEF()A.∠A=∠D B.AB∥DE C.BE=EC D.AC∥DF【分析】根据条件求出BC=EF,再根据全等三角形的判定定理判断即可.【解答】解:∵BE=CF,∴BE+CE=CF+CE,∴BC=EF,当AB∥DE时,∠B=∠DEF,依据SAS即可得到△ABC≌△DEF;当∠A=∠D或BE=EC或AC∥DF时,不能使△ABC≌△DEF;故选:B.【点评】本题全等三角形的判定的应用,全等三角形的5种判定方法中,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC≌△AED的是()A.∠B=∠E B.∠BAD=∠EAC C.∠BAC=∠EAD D.BC=ED【分析】全等三角形的判定中,若已知两边对应相等,则找它们的夹角或第三边对应相等.【解答】解:∵AB=AE,AC=AD,∴当∠BAD=∠EAC或∠BAC=∠EAD,依据SAS即可得到△ABC≌△AED;当BC=ED时,依据SSS即可得到△ABC≌△AED;当∠B=∠E时,不能判定△ABC≌△AED.故选:A.【点评】本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.如图所示,△ABC的三条边长分别是a,b,C,则下列选项中的三角形与△ABC不一定全等的是()A.B.C.D.【分析】根据趋势进行的判定定理判断即可.【解答】解:A、根据全等三角形的判定定理(SSS)A选项中的三角形与△ABC全等,B、∵∠C=180°﹣80°﹣43°=57°,∴根据全等三角形的判定定理(SAS)B选项中的三角形与△ABC全等;C、∵∠C=180°﹣80°﹣43°=57°,∴根据全等三角形的判定定理(AAS)C选项中的三角形与△ABC全等;D、D项中的三角形与△ABC不一定全等;故选:D.【点评】本题考查了全等三角形的判定定理,熟记全等三角形的判定定理是解题的关键.7.如图,AB=AC,AD=AE,下列结论错误的是()A.∠B=∠C B.BD=CE C.BE⊥CD D.△ABE≌△ACD 【分析】依据SAS即可得判定△ABE≌△ACD,再根据全等三角形的性质,即可得到正确结论.【解答】解:∵AB=AC,AD=AE,∠A=∠A,∴△ABE≌△ACD(SAS),故D选项正确;∴∠B=∠C,故A选项正确;∵AB﹣AD=AC﹣AE,∴BD=CE,故B选项正确;∵∠AEB不一定是直角,∴BE⊥CD不一定成立,故C选项错误;故选:C.【点评】本题主要考查了全等三角形的判定与性质,解题时注意:两边及其夹角分别对应相等的两个三角形全等.二.填空题(共2小题)8.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是三角形具有稳定性.【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.【解答】解:这种方法应用的数学知识是:三角形的稳定性,故答案为:三角形具有稳定性.【点评】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.9.如图所示,AB=AD,∠1=∠2,在不改变图形的情况下,请你添加一个条件,使△ABC ≌△ADE,则需添加的条件是AC=AE或∠B=∠DA或∠ACB=∠AED(填对其中一个均可).【分析】根据全等三角形的判定方法即可解决问题.【解答】解:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,∵AB=AD,∴根据SAS只要添加AC=AE即可,根据ASA只要添加∠B=∠D即可,根据AAS只要添加∠C=∠E即可.故答案为:AC=AE或∠B=∠DA或∠ACB=∠AED【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(共11小题)10.已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.【分析】依据中线的定义,即可得到BD=CD,再根据SAS即可判定△ACD≌△EBD.【解答】证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD≌△EBD(SAS).【点评】本题主要考查了全等三角形的判定,解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.11.如图,在△ABC中,AB=AC,BD=CD,求证:△ABD≌△ACD.【分析】根据“SSS”进行证明.【解答】证明:在△ABD和△ACD中,,∴△ABD≌△ACD.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.12.如图,线段AD、CE相交于点B,BC=BD.(1)若∠A=60°,∠ACB=20°,求∠CDB的度数;(2)若AB=EB,求证:△ACD≌△EDC.【分析】(1)利用三角形内角和定理求出∠ABC,再利用等腰三角形的性质以及三角形的外角的性质即可解决问题.(2)首先证明△ABC≌△EBD(SAS),AC=ED,∠A=∠E,再证明△ACD≌△EDC(SAS).【解答】(1)解:∵∠A=60°,∠ACB=20°,∴∠ABC=180°﹣60°﹣20°=100°,∵BC=BD,∴∠BCD=BDC,∵∠ABC=∠BCD+∠BDC,∴∠CDB=∠DCB=50°.(2)证明:在△ABC和△EBD中,,∴△ABC≌△EBD(SAS),∴AC=ED,∠A=∠E,∵AB=EB,BD=BC,∴AD=EC,在△CAD和△DEC中,,∴△ACD≌△EDC(SAS).【点评】本题考查全等三角形的判定和性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.已知:如图,AB∥DE,AB=DE,AC=DF.求证:△ABF≌△DEC.【分析】根据SAS证明△ABF≌△DEC即可.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AC=FD,∴AF=DC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS).【点评】本题考查平行线的性质,全等三角形的判定等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.14.如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.【分析】根据角的和差得到∠AOC=∠BOD,根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD(SAS).【点评】本题考查了全等三角形的判定,熟练全等三角形的判定定理是解题的关键.15.已知,如图,AD=CB,∠1=∠2.求证:△ADC≌△CBA.【分析】在△ADC与△CBA中,AC是公共边,根据SAS即可证明△ADC≌△CBA.【解答】证明:在△ADC与△CBA中,∴△ADC≌△CBA(SAS)【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:AD=BC.【分析】由“SSS”可证△ABE≌△CDF,可得∠ABD=∠CDB,由“SAS”可证△ABD ≌△CDB,可得AD=BC.【解答】证明:∵BF=DE∴BE+EF=EF+DF∴BE=DF在△ABE和△CDF中,∴△ABE≌△CDF(SSS)∴∠ABD=∠CDB在△ABD和△CDB中∴△ABD≌△CDB(SAS)∴AD=BC【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.17.如图,点B、E、C、F在同一条直线上,AB=DE,∠ABC=∠DEF,BE=CF,求证:∠ACB=∠F.【分析】根据全等三角形的判定定理,很容易确定SAS的条件,即证△ABC≌△DEF,进而证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC.即BC=EF.在△ABC与△DEF中,∴△ABC≌△DEF(SAS).∴∠ACB=∠F.【点评】本题重点考查了三角形全等的判定和性质,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.18.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=62°,求∠BDC的度数.【分析】(1)由“SAS”可证△ABE≌△ACD,可得∠ABD=∠ACD;(2)由三角形内角和定理可求∠BDC的度数.【解答】证明:(1)∵∠EAD=∠BAC∴∠BAE=∠CAD,且AB=AC,AD=AE,∴△ABE≌△ACD(SAS)∴∠ABD=∠ACD(2)∵AB=AC,∠ACB=62°∴∠ABC=∠ACB=62°,∴∠BAC=180°﹣62°﹣62°=56°∵∠BAO+∠ABO+∠AOB=180°,∠DCA+∠DOC+∠BDC=180°∴∠BAC=∠BDC=56°【点评】本题考查了全等三角形的判定和性质,三角形内角和定理,熟练运用全等三角形的判定是本题的关键.19.如图,已知CA=CD,AB=DE,∠A=∠D,求证:∠BCE=∠ACD.【分析】由“SAS”可证△ABC≌△DEC,可得∠ACB=∠DCE,则可得结论.【解答】证明:∵CA=CD,AB=DE,∠A=∠D,∴△ABC≌△DEC(SAS)∴∠ACB=∠DCE∴∠BCE=∠ACD【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形判定和性质是本题的关键.20.如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.【分析】由“SAS”可证△AFB≌△CED,可得∠A=∠C,可证AB∥CD.【解答】证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD【点评】本题考查了全等三角形的判定和性质,平行线的判定和性质,熟练运用全等三角形的判定和性质是本题的关键.。
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案一. 教材分析《北师大版七下数学4.3探索三角形全等的条件》这一课时,是在学生已经掌握了三角形的基本概念、性质以及三角形相似的基础上进行教学的。
本节课的主要内容是让学生通过观察、操作、猜想、验证等过程,探索并掌握三角形全等的条件,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
二. 学情分析七年级的学生已经具备了一定的几何图形基础,对三角形有一定的了解。
但是,对于三角形全等的概念和判定条件,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、操作、猜想、验证等方法,自主探索三角形全等的条件,从而提高学生的学习兴趣和积极性。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的条件,能运用三角形全等的条件判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
3.情感态度与价值观目标:让学生在探索过程中体验到数学的乐趣,培养学生的团队合作精神,增强学生对数学学科的学习兴趣。
四. 教学重难点1.教学重点:三角形全等的条件。
2.教学难点:如何引导学生探索并理解三角形全等的条件。
五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,从而达到理解三角形全等的目的。
3.合作学习法:学生进行小组合作,培养学生的团队合作精神,提高学生的学习效果。
六. 教学准备1.教师准备:教师需要提前准备好相关的教学材料,如PPT、几何图形等。
2.学生准备:学生需要预习相关的内容,了解三角形的基本概念和性质。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的三角形图片,引导学生回顾三角形的基本概念和性质。
然后,教师提出问题:“你们认为,什么样的两个三角形可以称为全等三角形?”2.呈现(10分钟)教师通过PPT展示三角形全等的定义和判定条件。
探索三角形全等的条件(第一课时)说课稿各位领导,老师:大家好!今天我说课的题目是《探索三角形全等的条件》(第一课时),下面我将从四个方面汇报我的认识和教学过程的设计。
一、说教材1、教材地位和前后联系《探索三角形全等的条件》是北师大版试验教科书七年级下册第五章第五节的内容。
它是在学生学习了三角形的有关要素和性质、全等图形的特征的基础上,进一步研究三角形全等的条件,它与前面学习的全等三角形的特征及后面将要学习的三角形全等的(“ASA”、“AAS”、“SAS”)判别方法作为探索三角形全等的核心内容,为后面学习奠定基础,也是初中数学的重要内容。
本节教学共分三个课时,本节课是第一课时,主要内容是探索三角形全等的条件(SSS)和三角形的稳定性。
2、教学目标学习数学,不仅要学习重要的数学概念、方法、结论,还要领略到数学的精神和思想方法,这应该是数学学习所追求的目标。
具体来说,本节课我确定以下目标:(1)、知识与技能:①、掌握三角形全等的“边边边”(“SSS”)条件,了解三角形的稳定性。
②、能运用“SSS””说明两个三角形全等以及在日常生活中的简单运用。
发展学生有条理的表达能力。
(2)、过程与方法:①、通过学生动手操作、观察实验、探索交流、分析归纳等活动,体会数学结论的获得过程,积累数学活动的经验。
②、体会分类讨论的数学思想和由特殊到一般的思维方法在数学中的应用。
(3)、情感、态度与价值观:①、使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验.②、通过实际生活中的有关三角形稳定性和全等的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。
3、教学重点与难点整节课都是围绕着探索三角形全等的"SSS"的判别方法进行的,因此本节课的重点..我确定为:掌握三角形全等的条件“SSS”,并能利用它判定两三角形是否全等。
由于本课时是探索两三角形全等的起始课,学生以前未曾接触,一时难以确定探究方法而感到经验的局限,加之多次使用分类讨论的方法对学生理解有一定的困难,所以我把这节课的难点..确定为探索思路的选择和探索三角形全等的“SSS”条件的过程。