(精品讲评) 2-2 函数的单调性与最值课件 新人教B版
- 格式:ppt
- 大小:1.21 MB
- 文档页数:58
高考数学总复习 2-2 函数的单调性与最值但因为测试 新人教B 版1.(文)(2011·大连模拟)下列函数在(0,1)上是减函数的是( ) A .y =log 0.5(1-x ) B .y =x 0.5 C .y =0.51-xD .y =12(1-x 2)[答案] D[解析] ∵u =1-x 在(0,1)上为减函数,且u >0,∴y =log 0.5(1-x )为增函数,y =0.51-x为增函数;又0.5>0,∴幂函数y =x 0.5在(0,1)上为增函数;二次函数y =12(1-x 2)开口向下,对称轴x =0,故在(0,1)上为减函数.(理)(2011·广州模拟)下列函数f (x )中,满足“对任意x 1,x 2∈(-∞,0),当x 1<x 2时,都有f (x 1)<f (x 2)”的函数是( )A .f (x )=-x +1B .f (x )=x 2-1C .f (x )=2xD .f (x )=ln(-x )[答案] C[解析] f (x )=-x +1为减函数,f (x )=x 2-1在(-∞,1)上为减函数;f (x )=2x 为增函数,f (x )=ln(-x )为减函数,由条件知f (x )在(-∞,0)上为增函数,故排除A 、B 、D 选C.2.(2011·湖北理,2)已知U ={y |y =log 2x ,x >1},P ={y |y =1x ,x >2},则∁U P =( )A .[12,+∞)B .(0,12)C .(0,+∞)D .(-∞,0]∪[12,+∞)[答案] A[解析] ∵U ={y |y =log 2x ,x >1}=(0,+∞), P ={y |y =1x ,x >2}=(0,12),∴∁U P =[12,+∞).3.(文)(2011·上海文,15)下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13[答案] A[解析] y =x -1是奇函数,y =x 2在(0,+∞)上单调递增,y =x 13 是奇函数.(理)(2011·课标全国文,3)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2-|x |[答案] B[解析] A 项中y =x 3是奇函数而不是偶函数,C 项中y =-x 2+1是偶函数,但在(0,+∞)单调递减,D 项中y =2-|x |是偶函数但在(0,+∞)上单调递减.4.(2011·江苏南通中学月考、北京东城示范校练习)设a =log 13 2,b =log 12 13,c =⎝⎛⎭⎫120.3,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c[答案] B[解析] ∵log 13 2<log 13 1=0,∴a <0;∵log 12 13>log 12 12=1,∴b >1;∵⎝⎛⎭⎫120.3<1,∴0<c <1,故选B.5.(文)(2011·北京模拟)设函数f (x )=⎩⎨⎧23x -1 x ≥01x x <0,若f (a )>a ,则实数a 的取值范围是( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(0,1)[答案] B[解析] f (a )>a 化为⎩⎪⎨⎪⎧ a ≥023a -1>a 或⎩⎪⎨⎪⎧a <01a >a ,∴a <-1.(理)(2011·衡水模拟)已知偶函数f (x )在区间[0,+∞)上单调增加,则满足f (2x -1)<f (13)的x 的取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)[答案] A[解析] 当2x -1≥0,即x ≥12时,由于函数f (x )在区间[0,+∞)上单调增加, 则由f (2x -1)<f (13)得2x -1<13,即x <23,故12≤x <23;当2x -1<0,即x <12时,由于函数f (x )是偶函数,故f (2x -1)=f (1-2x ),此时1-2x >0, 由f (2x -1)<f (13)得1-2x <13,即x >13,故13<x <12.综上可知x 的取值范围是(13,23).[点评] (1)由于f (x )为偶函数,∴f (2x -1)<f (13)⇔f (|2x -1|)<f (13).(2)可借助图形分析 作出示意图可知:f (2x -1)<f ⎝⎛⎭⎫13⇔-13<2x -1<13, 即13<x <23.故选A. 6.(2011·青岛模拟)已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14 C .2 D .4[答案] C[解析] f (x )在[1,2]上是单调函数,由题意知,a +a 2+log a 2=log a 2+6,∴a 2+a -6=0,∵a >0,∴a =2.7.(文)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.[答案] [-14,0][解析] (1)当a =0时,f (x )=2x -3,在定义域R 上单调递增,故在(-∞,4)上单调递增;(2)当a ≠0时,二次函数f (x )的对称轴为直线x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上所述-14≤a ≤0.(理)若函数f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.[答案] (0,1][解析] 由f (x )=-x 2+2ax 得函数对称轴为x =a , 又在区间[1,2]上是减函数,所以a ≤1, 又g (x )=ax +1在[1,2]上减函数,所以a >0, 综上a 的取值范围为(0,1].8.(文)f (x )=x ln x 的单调递减区间是________. [答案] ⎝⎛⎭⎫0,1e [解析] f ′(x )=ln x +1,令f ′(x )<0得x <1e ,∴0<x <1e,∴f (x )在⎝⎛⎭⎫0,1e 上单调递减. (理)若函数f (x )=x 2+2x +a ln x 在(0,1)上单调递减,则实数a 的取值范围是________. [答案] a ≤-4[解析] ∵函数f (x )=x 2+2x +a ln x 在(0,1)上单调递减,∴当x ∈(0,1)时,f ′(x )=2x +2+a x =2x 2+2x +a x≤0,∴g (x )=2x 2+2x +a ≤0在x ∈(0,1)时恒成立, ∵g (x )的对称轴x =-12,x ∈(0,1),∴g (1)≤0,即a ≤-4.9.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是________. [答案] (-12,+∞)[解析] ∵2x +1>0,∴x >-12.所求单调增区间为(-12,+∞).10.(文)已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. [解析] (1)证明:设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2 x 1-x 2x 1+2 x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解:设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a x 2-x 1x 1-a x 2-a .∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述知0<a ≤1.[点评] 第(2)问中,由f (x )单调递减知x 1<x 2时,f (x 1)-f (x 2)>0恒成立,从而(x 1-a )(x 2-a )>0恒成立,由于a >0,x 1>1,x 2>1,故只有当0<a ≤1时才满足.(理)已知函数f (x )对任意的a 、b ∈R 都有f (a +b )=f (a )+f (b )-1,且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数; (2)若f (4)=5,解不等式f (3m 2-m -2)<3. [解析] (1)证明:任取x 1、x 2∈R 且x 1<x 2, ∴x 2-x 1>0. ∴f (x 2-x 1)>1. ∴f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1)-1>f (x 1), ∴f (x )是R 上的增函数. (2)解:f (4)=f (2)+f (2)-1=5, ∴f (2)=3.∴f (3m 2-m -2)<3化为f (3m 2-m -2)<f (2). 又由(1)的结论知f (x )是R 上的增函数, ∴3m 2-m -2<2,∴-1<m <43.11.(文)(2011·平顶山一模)定义在R 上的偶函数f (x )满足:对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f x 2-f x 1x 2-x 1<0,则( ) A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)[答案] A[解析] 由题意f (x )在[0,+∞)上为减函数, ∴f (3)<f (2)<f (1),又f (x )为偶函数,∴f (-2)=f (2),故选A.(理)(2011·山东聊城一中期末)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则有( )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13 [答案] B[解析] ∵f (x )的图象关于直线x =1对称,x ≥1时,f (x )=3x -1为增函数,故当x <1时,f (x )为减函数,且f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12,∵13<12<23,∴f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫12>f ⎝⎛⎭⎫23,即f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎫13,故选B.12.(2011·西安模拟)设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,0)D .(0,+∞)[答案] A[解析] 依题意得,g (x )=x 2f (x -1)=⎩⎪⎨⎪⎧x 2,x >10,x =1-x 2,x <1,所以g (x )的递减区间为(0,1).13.(文)(2011·抚顺模拟)已知f (x )=⎩⎪⎨⎪⎧a xx >1 4-a 2x +2 x ≤1 是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)[答案] B[解析] 由y =a x (x >1)单调增知a >1;由y =(4-a 2)x +2(x ≤1)单调增知,4-a2>0,∴a <8;又f (x )在R 上单调增,∴a ≥(4-a2)+2,∴a ≥4,综上知,4≤a <8.[点评] 可用筛选法求解,a =2时,有f (1)=4=f (2),排除A 、D.a =4时,f (x )=⎩⎪⎨⎪⎧4xx >1 2x +2 x ≤1 ,在R 上单调递增,排除C ,故选B.(理)(2011·北京学普教育中心)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是..单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[1,32)C .[1,2)D .[32,2)[答案] B[解析] 因为f (x )定义域为(0,+∞),f ′(x )=4x -1x ,由f ′(x )=0,得x =12.据题意,⎩⎪⎨⎪⎧k -1<12<k +1k -1≥0,解得1≤k <32,选B.14.(2011·天津四校联考)已知函数f (x )=x 2+ax -1在区间[0,3]上有最小值-2,则实数a 的值为________.[答案] -2[解析] 当-a2≤0,即a ≥0时,函数f (x )在[0,3]上为增函数,此时,f (x )min =f (0)=-1,不符合题意,舍去; 当-a2≥3,即a ≤-6时,函数f (x )在[0,3]上为减函数,此时,f (x )min =f (3)=-2,可得a =-103,这与a ≤-6矛盾;当0<-a 2<3,即-6<a <0时,f (x )min =f (-a2)=-2,可解得a =-2,符合题意.15.(文)(2010·北京市东城区)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的取值范围.[解析] (1)要使f (x )=log a (x +1)-log a (1-x )有意义,则⎩⎪⎨⎪⎧x +1>01-x >0,解得-1<x <1. 故所求定义域为{x |-1<x <1}. (2)由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ),故f (x )为奇函数.(3)因为当a >1时,f (x )在定义域{x |-1<x <1}内是增函数, 所以f (x )>0⇔x +11-x >1.解得0<x <1.所以使f (x )>0的x 的取值范围是{x |0<x <1}.(理)设函数f (x )=ax 2+bx +c (a ,b ,c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f x x >0-f x x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3 x +1 2x >03 x +1 2x <0. (2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1, 得k ≤-12或k ≥0.(3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 若m <0,则n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.*16.已知f (x )=ax -ln x ,x ∈(0,e ],a ∈R. (1)若a =1,求f (x )的极小值;(2)是否存在实数a ,使f (x )的最小值为3. [解析] (1)∵f (x )=x -ln x ,f ′(x )=1-1x =x -1x ,∴当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x <e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)假设存在实数a ,使f (x )=ax -ln x ,x ∈[0,e ]有最小值3,f ′(x )=a -1x =ax -1x ,①当a ≤0时,f (x )在(0,e ]上单调递增,f (x )min =f (e )=ae -1=3,a =4e (舍去),所以,此时f (x )最小值不为3;②当0<1a <e 时,f (x )在(0,1a )上单调递减,在⎝⎛⎦⎤1a ,e 上单调递增,f (x )min =f ⎝⎛⎭⎫1a =1+ln a =3,a =e 2,满足条件;③当1a ≥e 时,f (x )在(0,e ]上单调递减,f (x )min =f (e )=ae -1=3,a =4e (舍去),所以,此时f (x )最小值不为3.综上,存在实数a =e 2,使得当x ∈(0,e ]时,f (x )有最小值为3.1.(2011·上海理,16)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( )A .y =ln 1|x |B .y =x 3C .y =2|x |D .y =cos x[答案] A[解析] 排除法:B 、C 在(0,+∞)上单调递增,D 在(0,+∞)上不单调,故选A. 2.函数f (x )=x -3x +a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,3)D .(3,+∞) [答案] D[解析] f (x )在(-a +2,+∞)上是增函数,由条件知-a +2<-1,且-a -1<0,∴a >3. 3.若f (x )=x 3-6ax 的单调递减区间是(-2,2),则a 的取值范围是( ) A .(-∞,0] B .[-2,2] C .{2} D .[2,+∞) [答案] C[解析] f ′(x )=3x 2-6a ,若a ≤0,则f ′(x )≥0,∴f (x )单调增,排除A ;若a >0,则由f ′(x )=0得x =±2a ,当x <-2a 和x >2a 时,f ′(x )>0,f (x )单调增,当-2a <x <2a 时,f (x )单调减,∴f (x )的单调减区间为(-2a ,2a ),从而2a =2, ∴a =2.[点评] f (x )的单调递减区间是(-2,2)和f (x )在(-2,2)上单调递减是不同的,应加以区分.4.(2010·海南华侨中学期末)函数f (x )=ln(x +1)-mx 在区间(0,1)上恒为增函数,则实数m 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(-∞,12]D .(-∞,12)[答案] C[解析] ∵f (x )=ln(x +1)-mx 在区间(0,1)上恒为增函数, ∴f (x )=ln(x +1)-mx 在区间[0,1]上恒为增函数, ∴f ′(x )=1x +1-m ≥0在[0,1]上恒成立,∴m ≤(1x +1)min =12.5.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,若f (13)=0,则适合不等式f (log 127 x )>0的x 的取值范围是( )A .(3,+∞)B .(0,13)C .(0,+∞)D .(0,13)∪(3,+∞)[答案] D[解析] ∵定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (13)=0,则由f (log 127 x )>0,得|log 127 x |>13,即log 127 x >13或log 127x <-13.选D.6.(2010·南充市)已知函数f (x )图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上f (x )单调递增,设a =f (3),b =f (2),c =f (2),则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .b >c >aD .c >b >a[答案] D[解析] ∵f (x )在[-1,0]上单调增,f (x )的图象关于直线x =0对称, ∴f (x )在[0,1]上单调减;又f (x )的图象关于直线x =1对称,∴f (x )在[1,2]上单调增,在[2,3]上单调减. 由对称性f (3)=f (-1)=f (1)<f (2)<f (2), 即a <b <c .7.(2011·四川一模)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12[答案] C[解析] 由⊕的定义知1⊕x =⎩⎪⎨⎪⎧1, -2≤x ≤1x 2 1<x ≤2,2⊕x =2,∴f (x )=⎩⎪⎨⎪⎧x -2 -2≤x ≤1x 3-2 1<x ≤2,显然f (x )在[-2,2]上为增函数, ∴f (x )max =f (2)=23-2=6.。