- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对比左图和上表,可以发现什么规律?
图象在y轴左侧“下降”,也就是,在区间(-∞,0 上随着x的增大,相应的f(x)反而随着减小; 图象在y轴右侧“上升”,也就是,在区间(0,+∞ 上随着x的增大,相应的f(x)也随着增大.
思考 如何利用函数解析式f(x)=x2描述“随着x的增大, 相应的f(x)反而随着减小.”“随着x的增大,相应的 f(x)也随着增大.”?
1.3.1 函数的单调性
滕州二中 葛洋
观察下列函数图象,你能描述下它们的变化规律吗?
y
f ( x) - x 1
o
x
函数图象的“上升”“下降”反映了函数的一个基本性质——单调性 如何描述函数图象的“上升”“下降”呢? 以二次函数f(x)=x2 为例,列出x,y的对应值表:
x … -4 -3 -2 -1 0 1 2 3 4 … f(x)=x2 … 16 9 4 1 0 1 4 9 16 …
对于二次函数f(x)=x2 ,我们可以这样来描述“在区 间(0,+∞) 上随着x的增大,相应的f(x)也随着增大.”:
试一试:你能仿照这样的描述,说明函数 f(x)=x2在区间(-∞,0]上是减函数吗?
定义:
如果对于定义域I内的某个区间D上的 任意两个自变量的值x1,x2,当x1<x2时,都有 f(x1)<f(x2),那么就说函数f(x)在区间D上是 增函数.
练习:证明函数 f (x) -2x 1 在 R 上是
减函数.
小结:
• • • • • 1.函数的单调性概念; 2.增(减)函数的定义; 3.增(减)函数的图象特征; 4.增(减)函数的判定; 5.增(减)函数的证明.
练习1 画出下列函数图象,并写出单调区间:
(1) y x 2
2
y
2
单调增区间为 ,0
1
-2 -1
O
单调减区间为0,
1
2
x
练习2 证明函数f(x)=1/x在(-∞,0)上是减函数。
想一想:函数f(x)=1/x在(0,
+∞)上的单调性呢?
在整个定义域内 f(x)=1/x是不是减函数呢?
反例:取x1= - 1 , x2=1,则f(-1)=-1,f(1)=1
解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5]. 其中y=f(x)在区间[-5,-2) ,[1,3)上是减函数,在区间[-2,1), [3,5]上是增函数.
例2 物理学中的波意耳定律p=k/V(Байду номын сангаас为正常数)告诉我 们,对于一定量的气体,当其体积V减小时,压强p将增大.试 用函数的单调性证明之.
可见 x1 < x2 时; f(x1) > f(x2)不一定成立。
1 (2) y ( x 0) x
两个单调减区间 ,0 和 0,
能否写成
y x2
O
,0 0, ?
x1
x
两区间之间用和或用逗号隔开.
如果对于定义域I内的某个区间D上的 任意两个自变量的值x1,x2,当x1<x2时,都有 f(x1)>f(x2),那么就说函数f(x)在区间D上是 减函数.
如果函数y=f(x)在区间D上是增函数或减函数, 那么就说函数y=f(x)在这一区间具有(严格的)单调
性,区间D叫做y=f(x)的
单调区间.
例1 下图是定义在区间[-5,5]的函数y=f(x),根据图象说 出函数的单调区间,以及在每一单调区间上,它是增函数 还是减函数?
证明: 1
2 3 1.取值
2.作差 3.变形 4.定号 5.下结论
4
5
用定义证明函数在区间上是增或减函 数的步骤:
1.在此区间上任取两个实数 x1 , x2 , 且 x1 x2 。
f ( x1 ) f ( x2 ) 2.将它们的函数值作差:
3.作差后变形处理(因式分解,通分等) 4.确定差的符号。 5.作出结论。