地球物理反演理论课件
- 格式:ppt
- 大小:1.76 MB
- 文档页数:72
地球物理学中的反演问题地球物理学中的反演问题1、介绍物理科学的一个重要的方面是根据数据对物理参数做出推断。
通常,物理定律提供了计算给定模型的数据值的方法,这就被称为“正演问题”,见图-1。
在反演问题中,我们的目标是根据一组测量值重建物理模型。
在理想情况下,存在一个确定的理论规定了这些数据应该怎样转换从而重现该模型。
从选择的一些例子来看,这样一个存在的理论假定了(我们)所需要的无限的、无噪声的数据是可以获得的。
在一个空间维度中,当所有能量的反射系数已知时,量子力学势能可以被重建[Marchenko,1955; Brurridge,1980]。
这种手法可以推广到三维空间[Newton,1989],但是在那样的情形下要求有多余数据组,其中的原因并不是很理解。
在一条一维的线上的质量密度可以通过对它的所有本征频率的测量来构建[Borg,1946],但是因为这个问题的对称性,因而只有偶数部分的质量密度可以被确定。
如果(地下的)地震波速只和深度有关,那么根据地震波的距离,运用阿贝尔变换,这个速度可以通过测定震波的抵达时间来精确构建[Herglotz,1907;Wiechert,1907]。
从数学上看,这个问题和构建三维空间中的球对称量子力学势是相同的[Keller et al.,1956]。
然而,当波速随着深度单调增加时,Herglotz-Wiechert的构建法只能给出唯一解[Gerver and Markushevitch,1966]。
这种情况和量子力学是相似的,在量子力学中,当电势没有局部最小值时,径向对称势只能被唯一建立[Sabatier,1973]。
(量子力学相关概念不熟悉,翻译起来有点坑~~)图-1尽管精确非线性反演法在数学表达上是美妙的,但它们的适用性是有限的。
原因有很多。
第一,精确的反演法通常只在理想状态下适用,这在实际中可能无法保持。
比如,Herglotz-Wiechert反演假定了地下的波速只依赖于深度并且随着深度单调增加。