Linux下多线程编程详解
- 格式:doc
- 大小:70.50 KB
- 文档页数:16
Unix_Linux_Windows_OpenMP多线程编程第三章 Unix/Linux 多线程编程[引言]本章在前面章节多线程编程基础知识的基础上,着重介绍 Unix/Linux 系统下的多线程编程接口及编程技术。
3.1 POSIX 的一些基本知识POSIX 是可移植操作系统接口(Portable Operating SystemInterface)的首字母缩写。
POSIX 是基于 UNIX 的,这一标准意在期望获得源代码级的软件可移植性。
换句话说,为一个 POSIX 兼容的操作系统编写的程序,应该可以在任何其它的 POSIX 操作系统(即使是来自另一个厂商)上编译执行。
POSIX 标准定义了操作系统应该为应用程序提供的接口:系统调用集。
POSIX是由 IEEE(Institute of Electrical andElectronic Engineering)开发的,并由 ANSI(American National Standards Institute)和 ISO(International StandardsOrganization)标准化。
大多数的操作系统(包括 Windows NT)都倾向于开发它们的变体版本与 POSIX 兼容。
POSIX 现在已经发展成为一个非常庞大的标准族,某些部分正处在开发过程中。
表 1-1 给出了 POSIX 标准的几个重要组成部分。
POSIX 与 IEEE 1003 和 2003 家族的标准是可互换的。
除 1003.1 之外,1003 和 2003 家族也包括在表中。
管理 POSIX 开放式系统环境(OSE) 。
IEEE 在 1995 年通过了这项标准。
ISO 的1003.0版本是 ISO/IEC 14252:1996。
被广泛接受、用于源代码级别的可移植性标准。
1003.1 提供一个操作系统的C 语1003.1 言应用编程接口(API) 。
IEEE 和 ISO 已经在 1990 年通过了这个标准,IEEE 在1995 年重新修订了该标准。
linux多线程pthread常用函数详解Linux多线程是指在Linux操作系统中运行的多个线程。
线程是执行程序的基本单位,它独立于其他线程而存在,但共享相同的地址空间。
在Linux中,我们可以使用pthread库来实现多线程程序。
本文将详细介绍pthread库中常用的函数,包括线程的创建、退出、同步等。
一、线程创建函数1. pthread_create函数pthread_create函数用于创建一个新线程。
其原型如下:cint pthread_create(pthread_t *thread, const pthread_attr_t *attr, void*(*start_routine) (void *), void *arg);参数说明:- thread:用于存储新线程的ID- attr:线程的属性,通常为NULL- start_routine:线程要执行的函数地址- arg:传递给线程函数的参数2. pthread_join函数pthread_join函数用于等待一个线程的结束。
其原型如下:int pthread_join(pthread_t thread, void retval);参数说明:- thread:要等待结束的线程ID- retval:用于存储线程的返回值3. pthread_detach函数pthread_detach函数用于将一个线程设置为分离状态,使其在退出时可以自动释放资源。
其原型如下:cint pthread_detach(pthread_t thread);参数说明:- thread:要设置为分离状态的线程ID二、线程退出函数1. pthread_exit函数pthread_exit函数用于退出当前线程,并返回一个值。
其原型如下:cvoid pthread_exit(void *retval);参数说明:- retval:线程的返回值2. pthread_cancel函数pthread_cancel函数用于取消一个线程的执行。
Linux命令高级技巧使用xargs和parallel进行多线程命令执行在Linux系统中,命令行操作是一项非常重要的技能,掌握高级的命令行技巧对于提高工作效率和简化复杂任务是至关重要的。
本文将介绍如何使用xargs和parallel命令进行多线程命令执行的高级技巧。
1. 使用xargs进行多线程命令执行在Linux系统中,xargs命令可以用于将标准输入的内容转化为命令行参数,并将这些参数传递给指定命令进行执行。
这使得我们可以方便地并行执行多个命令,提高执行效率。
xargs的基本语法如下:```command | xargs [options] command ...```其中,第一个command产生一系列的参数,这些参数将作为输入传递给后面的command进行执行。
下面是一个示例,展示如何使用xargs命令同时查找多个文件中包含指定关键字的行数:```find /path/to/files -name "*.txt" | xargs grep -c "keyword"```在这个例子中,find命令用于查找指定路径下的所有扩展名为.txt的文件,并将文件列表传递给xargs命令。
xargs命令再将这些文件名作为参数传递给grep命令,执行关键字查找操作。
2. 使用parallel进行多线程命令执行与xargs类似,parallel也可以用于并行执行多个命令。
不同的是,parallel可以更精确地控制线程数量和命令执行顺序。
parallel的基本语法如下:```parallel [options] command < list-of-inputs```其中,command是需要并行执行的命令,list-of-inputs是作为命令参数的输入列表。
下面的示例展示了如何使用parallel命令在多个服务器上复制文件:```parallel -S server1,server2,server3 cp source_file {} ::: destination1 destination2 destination3```在这个例子中,-S选项指定了要在哪些服务器上执行命令。
多线程编程-同步在上一章节中,我们通过程序示例,见证了单线程世界中不可能发生的事件(一个数既是奇数又是偶数)在多线程环境中是怎样分分钟发生的,我通过细分程序执行步骤,分析了奇异事件发生的过程,并探明了其原因:一个线程在对全局变量gcnt进行两次判读的过程中,另一个线刚好改变了这个变量的值。
在多线程编程术语中,称这两个线程同时进入了临界区域。
所谓临界区域,是指多线程环境下两个及以上线程同时执行可能会导致冲突的一段代码。
在上一章节的示例中,这几行代码就是一个临界区域:gcnt++;if (gcnt % 2){if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}冲突之所以会发生,是因为临界区域的代码,通常需要很多个CPU指令周期才能完成,其运行过程随时可能被打断(进行了线程调试),CPU去运行另外的线程,如果这个线程刚好也进入了临界区域,则异常的程序状态极可能会发生。
如果当某个线程进入临界区域,在其退出区域之前,其他的线程无论如何也不能进入该区域,那么冲突就不会发生。
Linux提供了这种保证多线程进入临界区域互斥的机制,这正是本章节所要介绍的内容:线程锁。
我们今天的示例程序还是在上一章节的示例上改进而来的,我们的任务就是使用线程锁,保证“一个数既是奇数又是偶数”的奇异事件在多线程环境下也不发生,代码如下:#include <pthread.h>#include <stdio.h>#include <unistd.h>int gcnt = 0;pthread_mutex_t g_mutex;void *thread_task(void *arg){int id = (int)arg;while (1){pthread_mutex_lock(&g_mutex);gcnt++;if (gcnt % 2)if (!(gcnt % 2)) printf("[%d] : %d\n", id, gcnt);}pthread_mutex_unlock(&g_mutex);usleep(1);}return NULL;}int main(int argc, char *argv[]){pthread_t thr;pthread_mutex_init(&g_mutex, NULL);pthread_create(&thr, NULL, thread_task, (void *)1);pthread_create(&thr, NULL, thread_task, (void *)2);thread_task((void *)0);return 0;}今天的程序相对于上章的代码,改动非常小,只添加了四行,已使用红色加粗标注。
linux interlockedincrement题目:Linux下的InterlockedIncrement函数及其应用引言:在多线程编程中,为了确保对共享资源的访问安全,我们需要使用同步机制来实现线程间的互斥访问。
而Linux提供了一系列的原子操作函数,其中之一就是InterlockedIncrement函数。
本文将详细介绍Linux下的InterlockedIncrement函数的使用方法以及其在多线程环境下的应用。
第一部分:InterlockedIncrement函数的概述(200-300字)InterlockedIncrement函数是Linux内核提供的原子操作函数之一,用于对变量进行原子递增操作。
它能够保证在多线程环境下,对共享资源的访问是互斥的,不会出现数据竞争的问题。
该函数的原型为“__attribute__((always_inline)) int32_tInterlockedIncrement(int32_t* addend)”。
其中,参数“addend”是一个指向要增加的变量的指针。
第二部分:InterlockedIncrement函数的使用方法(300-400字)1. 头文件引用要在程序中使用InterlockedIncrement函数,需要包含<linux/interrupt.h>头文件。
2. 函数调用在需要进行原子递增操作的地方,调用InterlockedIncrement函数即可。
例如:“InterlockedIncrement(&counter);”3. 返回值InterlockedIncrement函数会返回递增后的变量值。
第三部分:InterlockedIncrement函数的示例代码(400-500字)为了更好地理解InterlockedIncrement函数的使用方法,下面给出一个简单的示例代码。
c#include <linux/interrupt.h>#include <pthread.h>#include <stdio.h>int counter = 0;void* threadFunc(void* arg) {for (int i = 0; i < 100000; ++i) {InterlockedIncrement(&counter);}return NULL;}int main() {pthread_t thread1, thread2;pthread_create(&thread1, NULL, threadFunc, NULL);pthread_create(&thread2, NULL, threadFunc, NULL);pthread_join(thread1, NULL);pthread_join(thread2, NULL);printf("Final count: d\n", counter);return 0;}上述代码中,我们创建了两个线程,每个线程都会调用threadFunc函数来递增counter变量的值。
linux下的CC++多进程多线程编程实例详解linux下的C\C++多进程多线程编程实例详解1、多进程编程#include <stdlib.h>#include <sys/types.h>#include <unistd.h>int main(){pid_t child_pid;/* 创建⼀个⼦进程 */child_pid = fork();if(child_pid == 0){printf("child pid\n");exit(0);}else{printf("father pid\n");sleep(60);}return 0;}2、多线程编程#include <stdio.h>#include <pthread.h>struct char_print_params{char character;int count;};void *char_print(void *parameters){struct char_print_params *p = (struct char_print_params *)parameters;int i;for(i = 0; i < p->count; i++){fputc(p->character,stderr);}return NULL;}int main(){pthread_t thread1_id;pthread_t thread2_id;struct char_print_params thread1_args;struct char_print_params thread2_args;thread1_args.character = 'x';thread1_args.count = 3000;pthread_create(&thread1_id, NULL, &char_print, &thread1_args);thread2_args.character = 'o';thread2_args.count = 2000;pthread_create(&thread2_id, NULL, &char_print, &thread2_args);pthread_join(thread1_id, NULL);pthread_join(thread2_id, NULL);return 0;}3、线程同步与互斥1)、互斥pthread_mutex_t mutex;pthread_mutex_init(&mutex, NULL);/*也可以⽤下⾯的⽅式初始化*/pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&mutex);/* 互斥 */thread_flag = value;pthread_mutex_unlock(&mutex);2)、条件变量int thread_flag = 0;pthread_mutex_t mutex;pthread_cond_t thread_flag_cv;\void init_flag(){pthread_mutex_init(&mutex, NULL);pthread_cond_init(&thread_flag_cv, NULL);thread_flag = 0;}void *thread_function(void *thread_flag){while(1){pthread_mutex_lock(&mutex);while(thread_flag != 0 ){pthread_cond_wait(&thread_flag_cv, &mutex);}pthread_mutex_unlock(&mutex);do_work();}return NULL;}void set_thread_flag(int flag_value){pthread_mutex_lock(&mutex);thread_flag = flag_value;pthread_cond_signal(&thread_flag_cv);pthread_mutex_unlock(&mutex);}感谢阅读,希望能帮助到⼤家,谢谢⼤家对本站的⽀持!。
Linux系统线程创建及同步互斥方法简要说明(供查考)1、.POSIX线程函数的定义在头文件pthread.h中,所有的多线程程序都必须通过使用#include<pthread.h>包含这个头文件2、用gcc编译多线程程序时,必须与pthread函数库连接。
可以使用以下两种方式编译(建议使用第一种)(1)gcc –D_REENTRANT -o 编译后的目标文件名源文件名-lpthread例如:gcc –D_REENTRANT -o pthread_create pthread_create.c -lpthread (执行该编译结果的方式为:./pthread_create)(2)gcc -pthread -o 编译后的文件名源文件名例如:gcc -pthread -o example example.c一、需要用到的函数的用法提示1、创建线程函数pthread_t a_thread; /*声明a_thread变量,用来存放创建的新线程的线程ID(线程标识符)*/int res=pthread_create(&a_thread,NULL,thread_function,NULL);/*创建一个执行函数thread_function的新线程,线程ID存放在变量a_thread */ 2、退出线程函数pthread_exit(NULL);/*那个线程在执行中调用了该方法,那个线程就退出*/创建和退出线程实例3、连接(等待)线程函数int error;int *exitcodeppthread_t tid; /*用来表示一个已经存在的线程*/error=pthread_join(tid,&exitcodep); /*执行该方法的线程将要一直等待,直到tid 表示的线程执行结束,exitcodep 存放线程tid退出时的返回值*/4、返回线程ID的函数pthread_t t/*声明表示线程的变量t */t=pthread_self( ) /*返回调用该方法的线程的线程ID*/5、判断两个线程是否相等的函数(pthread_equal)int pthread_equal(pthread_t t1, pthread_t t2);/*判断线程t1与线程t2是否线程ID相等*/二、线程同步1、使用互斥量同步线程(实现互斥)(1)互斥量的创建和初始化pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明a_mutex为互斥量,并且初始化为PTHREAD_MUTEX_INITIALIZER */ (2)锁定和解除锁定互斥量pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER/*声明互斥量a_mutex*/int rc=pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*/ ………………………………/*锁定后的操作*/int rd= pthread_mutex_unlock(&a_mutex) /*解除对互斥量a_mutex的锁定*/例子:利用互斥量来保护一个临界区pthread_mutex_t a_mutex=PTHREAD_MUTEX_INITIALIZER;pthread_mutex_lock(&a_mutex) /*锁定互斥量a_mutex*//*临界区资源*/pthread_mutex_unlock(&a_mutex) /*解除互斥量a_mutex的锁定*/(3)销毁互斥量Int rc=pthread_mutex_destory(&a_mutex) /*销毁互斥量a_mutex*/2、用条件变量同步线程(实现真正的同步)条件变量是利用线程间共享的全局变量进行同步的一种机制,主要包括两个动作:一个线程等待"条件变量的条件成立"而挂起;另一个线程使"条件成立"(给出条件成立信号)。
Linux 多线程编程问题1重入问题传统的UNIX没有太多考虑线程问题,库函数里过多使用了全局和静态数据,导致严重的线程重入问题。
1.1–D_REENTRANT /-pthread和errno的重入问题。
所先UNIX的系统调用被设计为出错返回-1,把错误码放在errno中(更简单而直接的方法应该是程序直接返回错误码,或者通过几个参数指针来返回)。
由于线程共享所有的数据区,而errno是一个全局的变量,这里产生了最糟糕的线程重入问题。
比如:do {bytes = recv(netfd, recvbuf, buflen, 0);} while (bytes != -1 && errno != EINTR);在上面的处理recv被信号打断的程序里。
如果这时连接被关闭,此时errno应该不等于EINTR,如果别的线程正好设置errno为EINTR,这时程序就可能进入死循环。
其它的错误码处理也可能进入不可预测的分支。
在线程需求刚开始时,很多方面技术和标准(TLS)还不够成熟,所以在为了解决这个重入问题引入了一个解决方案,把errno定义为一个宏:extern int *__errno_location (void);#define errno (*__errno_location())在上面的方案里,访问errno之前先调用__errno_location()函数,线程库提供这个函数,不同线程返回各自errno的地址,从而解决这个重入问题。
在编译时加-D_REENTRANT就是启用上面的宏,避免errno重入。
另外-D_REENTRANT还影响一些stdio的函数。
在较高版本的gcc里,有很多嵌入函数的优化,比如把printf(“Hello\n”);优化为puts(“hello\n”);之类的,有些优化在多线程下有问题。
所以gcc引入了–pthread 参数,这个参数出了-D_REENTRANT外,还校正一些针对多线程的优化。
linux和windows通用的多线程方法
多线程是一种在计算机程序中处理多个相似或相关的任务的技术。
无论是在Linux还是Windows中,多线程的实现都是类似的。
以下是一些通用的多线程方法:
1. 创建线程:使用线程库中提供的函数,例如在Linux中使用pthread_create(),在Windows中使用CreateThread()。
2. 同步线程:使用同步机制来保护共享资源,例如在Linux中使用pthread_mutex_lock()和pthread_mutex_unlock(),在Windows 中使用CriticalSection。
3. 线程间通信:使用消息传递或共享内存等机制来实现线程间通信。
在Linux中,可以使用管道、共享内存和信号量等。
在Windows 中,可以使用命名管道和邮槽等。
4. 线程池:创建一个线程池来管理多个线程,这样可以避免频繁地创建和销毁线程,提高效率。
5. 轮询:使用循环不断地检查线程是否完成任务,从而避免阻塞主线程。
总的来说,多线程在Linux和Windows中的实现都是类似的,只要掌握了基本的多线程概念和方法,就可以在两个操作系统中进行开发。
Linux下多线程编程详解线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。
传统的Unix也支持线程的概念,不过在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。
目前,多线程技术已被许多操作系统所支持,包括视窗系统/NT,当然,也包括Linux。
为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。
使用多线程的理由之一是和进程相比,他是一种非常"节俭"的多任务操作方式。
我们知道,在Linux系统下,启动一个新的进程必须分配给他独立的地址空间,建立众多的数据表来维护他的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。
而运行于一个进程中的多个线程,他们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此转换所需的时间也远远小于进程间转换所需要的时间。
据统计,总的说来,一个进程的开销大约是个线程开销的30倍左右,当然,在具体的系统上,这个数据可能会有较大的差别。
使用多线程的理由之二是线程间方便的通信机制。
对不同进程来说,他们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且非常不方便。
线程则不然,由于同一进程下的线程之间共享数据空间,所以一个线程的数据能直接为其他线程所用,这不仅快捷,而且方便。
当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程式中声明为static的数据更有可能给多线程程式带来灾难性的打击,这些正是编写多线程程式时最需要注意的地方。
除了以上所说的好处外,不和进程比较,多线程程式作为一种多任务、并发的工作方式,当然有以下的好处:1) 提高应用程式响应。
这对图像界面的程式尤其有意义,当一个操作耗时非常长时,整个系统都会等待这个操作,此时程式不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,能避免这种尴尬的情况。
2) 使多CPU系统更加有效。
操作系统会确保当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。
3) 改善程式结构。
一个既长又复杂的进程能考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程式会利于理解和修改。
下面我们先来尝试编写一个简单的多线程程式。
简单的多线程编程Linux系统下的多线程遵循POSIX线程接口,称为pthread。
编写Linux下的多线程程式,需要使用头文件pthread.h,连接时需要使用库libpthread.a。
顺便说一下,Linux下pthread的实现是通过系统调用clone()来实现的。
clone()是Linux所特有的系统调用,他的使用方式类似fork,关于clone()的周详情况,有兴趣的读者能去查看有关文件说明。
下面我们展示一个最简单的多线程程式pthread_create.c。
一个重要的线程创建函数原型:#includeint pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict attr, void *(*start_rtn)(void),void *restrict arg);返回值:若是成功建立线程返回0,否则返回错误的编号形式参数:pthread_t *restrict tidp 要创建的线程的线程id指针const pthread_attr_t *restrict attr 创建线程时的线程属性void* (start_rtn)(void) 返回值是void类型的指针函数void *restrict arg start_rtn的行参例程1:功能:创建一个简单的线程程式名称:pthread_create.c/********************************************************************************************** Name:pthread_create.c** Used to study the multithread programming in Linux OS** Author:zeickey** Date:2006/9/16** Copyright (c) 2006,All Rights Reserved!*********************************************************************************************/ #include#includevoid *myThread1(void){int i;for (i=0; i#include#includevoid *create(void *arg){int *num;num=(int *)arg;printf("create parameter is %d \n",*num);return (void *)0;}int main(int argc ,char *argv[]){pthread_t tidp;int error;int test=4;int *attr=&test;error=pthread_create(&tidp,NULL,create,(void *)attr);if(error){printf("pthread_create is created is not created ... \n");return -1;}sleep(1);printf("pthread_create is created ...\n");return 0;}编译方法:gcc -lpthread pthread_int.c -Wall执行结果:create parameter is 4pthread_create is created is created ...例程总结:能看出来,我们在main函数中传递的整行指针,传递到我们新建的线程函数中。
在上面的例子能看出来我们向新的线程传入了另一个线程的int数据,线程之间还能传递字符串或是更复杂的数据结构。
例程3:程式功能:向新建的线程传递字符串程式名称:pthread_string.c/********************************************************************************************** Name:pthread_string.c** Used to study the multithread programming in Linux OS** Pass a ‘char*‘ parameter to the thread.** Author:zeickey** Date:2006/9/16** Copyright (c) 2006,All Rights Reserved!*********************************************************************************************/#include#include#includevoid *create(void *arg){char *name;name=(char *)arg;printf("The parameter passed from main function is %s \n",name);return (void *)0;}int main(int argc, char *argv[]){char *a="zieckey";int error;pthread_t tidp;error=pthread_create(&tidp, NULL, create, (void *)a);if(error!=0){printf("pthread is not created.\n");return -1;}sleep(1);printf("pthread is created... \n");return 0;}编译方法:gcc -Wall pthread_string.c -lpthread执行结果:The parameter passed from main function is zieckeypthread is created...例程总结:能看出来main函数中的字符串传入了新建的线程中。
例程4:程式功能:向新建的线程传递字符串程式名称:pthread_struct.c/******************************************************************************************** ** Name:pthread_struct.c** Used to study the multithread programming in Linux OS** Pass a ‘char*‘ parameter to the thread.** Author:zeickey** Date:2006/9/16** Copyright (c) 2006,All Rights Reserved!*********************************************************************************************/ #include#include#include#includestruct menber{int a;char *s;};void *create(void *arg){struct menber *temp;temp=(struct menber *)arg;printf("menber->a = %d \n",temp->a);printf("menber->s = %s \n",temp->s);return (void *)0;}int main(int argc,char *argv[]){pthread_t tidp;int error;struct menber *b;b=(struct menber *)malloc( sizeof(struct menber) );b->a = 4;b->s = "zieckey";error = pthread_create(&tidp, NULL, create, (void *)b);if( error ){printf("phread is not created...\n");return -1;}sleep(1);printf("pthread is created...\n");return 0;}编译方法:gcc -Wall pthread_struct.c -lpthread执行结果:menber->a = 4menber->s = zieckeypthread is created...例程总结:能看出来main函数中的一个结构体传入了新建的线程中。