高中物理难点之三--圆周运动的实例分析
- 格式:doc
- 大小:618.01 KB
- 文档页数:13
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
圆周运动的实例分析3(高中物理10大难点突破)3.杂技节目“水流星”表演时,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面内做圆周运动,在最高点杯口朝下,但水不会流下,如图所示,这是为什么?分析:以杯中之水为研究对象进行受力分析,根据牛顿第二定律可知:F 向=m r v 2,此时重力G 与FN 的合力充当了向心力即F 向=G +FN故:G +FN =m r v 2由上式可知v 减小,F 减小,当FN =0时,v 有最小值为gr 。
讨论:①当mg =m r v 2,即v =gr 时,水恰能过最高点不洒出,这就是水能过最高点的临界条件;②当mg >m r v 2,即v <gr 时,水不能过最高点而不洒出;③当mg <m r v 2,即v >gr 时,水能过最高点不洒出,这时水的重力和杯对水的压力提供向心力。
例8:绳系着装有水的水桶,在竖直面内做圆周运动,水的质量m =0.5 kg ,绳长L =60 cm ,求:①最高点水不流出的最小速率。
②水在最高点速率v =3 m/s 时,水对桶底的压力。
【审题】当v0=gR 时,水恰好不流出,要求水对桶底的压力和判断是否能通过最高点,也要和这个速度v 比较,v>v0时,有压力;v=v0时,恰好无压力;v ≤v0时,不能到达最高点。
【解析】①水在最高点不流出的条件是重力不大于水做圆周运动所需要的向心力即mg <L mv 2,则最小速度v0=gR =gL =2.42 m/s 。
②当水在最高点的速率大于v0时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F ,由牛顿第二定律F +mg =m L v 2得:F =2.6 N 。
由牛顿第三定律知,水对水桶的作用力F ′=-F=-2.6 N ,即方向竖直向上。
【总结】当速度大于临界速率时,重力已不足以提供向心力,所缺部分由桶底提供,因此桶底对水产生向下的压力。
例2:汽车质量m 为1.5×104 kg ,以不变的速率先后驶过凹形路面和凸形路面,路面圆弧半径均为15 m ,如图3-17所示.如果路面承受的最大压力不得超过2×105 N ,汽车允许的最大速率是多少?汽车以此速率驶过路面的最小压力是多少?【审题】首先要确定汽车在何位置时对路面的压力最大,汽车经过凹形路面时,向心加速度方向向上,汽车处于超重状态;经过凸形路面时,向心加速度向下,汽车处于失重状态,所以汽车经过凹形路面最图3-17低点时,汽车对路面的压力最大。
高三物理圆周运动实例分析试题答案及解析1.如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R的圆周运动。
小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F一v2图象如图乙所示。
不计空气阻力,则A.小球的质量为B.当地的重力加速度大小为C.v2=c时,杆对小球的弹力方向向下D.v2=2b时,小球受到的弹力与重力大小不相等【答案】AC【解析】A、在最高点,若v=0,则N=mg=a;若N=0,则,解得,,故A正确,B错误;C、由图可知:当v2<b时,杆对小球弹力方向向上,当v2>b时,杆对小球弹力方向向下,所以当v2=c时,杆对小球弹力方向向下,所以小球对杆的弹力方向向上,故C正确;D、若c=2b.则,解得N=a=mg,故D错误.【考点】圆周运动及牛顿定律的应用。
2.如图所示,质量M=2kg的滑块套在光滑的水平轨道上,质量m=1kg的小球通过长L=0.5m的轻质细杆与滑块上的光滑轴O连接,小球和轻杆可在竖直平面内绕O轴自由转动,开始轻杆处于="4" m/s,g取10m/s2。
水平状态,现给小球一个竖直向上的初速度v(1)若锁定滑块,试求小球通过最高点P时对轻杆的作用力大小和方向。
(2)若解除对滑块的锁定,试求小球通过最高点时的速度大小。
(3)在满足(2)的条件下,试求小球击中滑块右侧轨道位置点与小球起始位置点间的距离。
【答案】(1)2N(2)2m/s(3)【解析】(1)设小球能通过最高点,且此时的速度为,在上升过程中,因只有重力做功,小球的机械能守恒。
则①②设小球到达最高点时,轻杆对小球的作用力为F,方向向下,则③由②③式,得④由牛顿第三定律可知,小球对轻杆的作用力大小为,方向竖直向上。
(2)解除锁定后,设小球通过最高点时的速度为,此时滑块的速度为V。
在上升过程中,因系统在水平方向不受外力作用,水平方向的动量守恒。
以水平向右的方向为正方向,有⑤在上升过程中,因只有重力做功,系统的机械能守恒,则⑥由⑤⑥式,得⑦(3)设小球击中滑块右侧轨道的位置点与小球起始位置点间的距离为,滑块向左移动的距离为,任意时刻小球的水平速度大小为,滑块的速度大小为。
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少?【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①οο30sin L ωm =30sin T AB 211②代入数据得:s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
《圆周运动的实例分析》教学设计一、教材依据本节课是教科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。
二、设计思路(一)、指导思想①突出科学的探究性和物理学科的趣味性;②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。
(二)、设计理念本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。
引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。
所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境,引导学生分析现象,归纳总结出实验结论。
(三)教材分析本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。
本节通过对汽车、火车等交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。
三、教学目标1.通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。
2.将生活实例转换为物理模型进行分析研究。
3.通过探究性物理学习活动,使学生获得成功的愉悦,培养学生对参与物理学习活动的兴趣,提高学习的自信心。
4.通过对日常生活、生产中圆周运动现象的解释,敢于坚持真理、勇于应用科学知识探究生活中的物理学问题。
四、教学重点理解向心力不是一种特殊的力,同时学会分析实际的向心力来源。
五、教学难点能用向心力公式解决有关圆周运动的实际问题,其中包括分析汽车过拱桥、火车拐弯等问题。
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
要使AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有:mg T =θcos 2图3-1图3-3T 2cos θ=m ω2L BC sin θ ⑤ 而L AC sin30°=L BC sin45° L BC =2m ⑥ 由⑤、⑥可解得N T 3.22=;01=T【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上的合外力必然为零。
(2)同轴装置与皮带传动装置在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等,这两点往往是我们解决皮带传动的基本方法。
例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等C .a 点与d 点向心加速度大小相等D .a 、b 、c 、d 四点,加速度最小的是b 点【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与皮带接触的各点线速度大小相同。
这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。
【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即v a =v c ,又v =ωR, 所以ωa r =ωc ·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21ωa ,所以选项B错.又v b =ωb ·r = 21ωa r =2v a ,所以选项A 也错.向心加速度:a a =ωa 2r ;a b =ωb 2·r =(2ωa )2r =41ωa 2r =41a a ;a c =ωc 2·2r =(21ωa )2·2r =21ωa 2r =21a a ;a d =ωd 2·4r =(21ωa )2·4r =ωa 2r =a a .所以选项C 、D 均正确。
【总结】该题除了同轴角速度相等和同皮带线速度大小相等的关系外,在皮带传动装置中,从动轮的转动是静摩擦力作用的结果.从动轮受到的摩擦力带动轮子转动,故轮子受到的摩擦力方向沿从动轮的切线与轮的转动方向相同;主动轮靠摩擦力带动皮带,故主动轮所受摩擦力方向沿轮的切线与轮的转动方向相反。
是不是所有 的题目都要是例1这种类型的呢?当然不是,当轮与轮之间不是依靠皮带相连转动,而是依靠摩擦力的作用或者是齿轮的啮合,如图3-3所示,同样符合例1的条件。
图3-2(3)向心力的来源a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再添加一个向心力。
b .对于匀速圆周运动的问题,一般可按如下步骤进行分析: ①确定做匀速圆周运动的物体作为研究对象。
②明确运动情况,包括搞清运动速率v ,轨迹半径R 及轨迹圆心O 的位置等。
只有明确了上述几点后,才能知道运动物体在运动过程中所需的向心力大小( mv 2/R )和向心力方向(指向圆心)。
③分析受力情况,对物体实际受力情况做出正确的分析,画出受力图,确定指向圆心的合外力F (即提供向心力)。
④选用公式F=m R v 2=mR ω2=mR 22⎪⎭⎫ ⎝⎛T π解得结果。
c .圆周运动中向心力的特点:①匀速圆周运动:由于匀速圆周运动仅是速度方向变化而速度大小不变,故只存在向心加速度,物体受到外力的合力就是向心力。
可见,合外力大小不变,方向始终与速度方向垂直且指向圆心,是物体做匀速圆周运动的条件。
②变速圆周运动:速度大小发生变化,向心加速度和向心力都会相应变化。
求物体在某一点受到的向心力时,应使用该点的瞬时速度,在变速圆周运动中,合外力不仅大小随时间改变,其方向也不沿半径指向圆心。
合外力沿半径方向的分力(或所有外力沿半径方向的分力的矢量和)提供向心力,使物体产生向心加速度,改变速度的方向;合外力沿轨道切线方向的分力,使物体产生切向加速度,改变速度的大小。
③当物体所受的合外力F 小于所需要提供的向心力mv 2/R 时,物体做离心运动。
例3:如图3-4所示,半径为R 的半球形碗内,有一个具有一定质量的物体A ,A 与碗壁间的动摩擦因数为μ,当碗绕竖直轴OO /匀速转动时,物体A 刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度. 【审题】物体A 随碗一起转动而不发生相对滑动,则物体做匀速圆周运动的角速度ω就等于碗转动的角速度ω。
物体A 做匀速圆周运动所需的向心力方向指向球心O ,故此向心力不是由重力而是由碗壁对物体的弹力提供,此时物体所受的摩擦力与重力平衡。
【解析】物体A 做匀速圆周运动,向心力: R m F n 2ω= 而摩擦力与重力平衡,则有: mg F n =μ 即: μmgF n =由以上两式可得: μωmgR m =2 即碗匀速转动的角速度为: Rg μω=【总结】分析受力时一定要明确向心力的来源,即搞清楚什么力充当向心力.本题还考查了摩擦力的有关知识:水平方向的弹力为提供摩擦力的正压力,若在刚好紧贴碗口的基础上,角速度再大,此后摩擦力为静摩擦力,摩擦力大小不变,正压力变大。
图3-4例4:如图3-5所示,在电机距轴O为r处固定一质量为m的铁块.电机启动后,铁块以角速度ω绕轴O匀速转动.则电机对地面的最大压力和最小压力之差为__________。
【审题】铁块在竖直面内做匀速圆周运动,其向心力是重力mg与轮对它的力F的合力.由圆周运动的规律可知:当m转到最低点时F最大,当m转到最高点时F最小。
【解析】设铁块在最高点和最低点时,电机对其作用力分别为F1和F2,且都指向轴心,根据牛顿第二定律有:在最高点:mg+F1=mω2r ①在最低点:F2-mg=mω2r ②电机对地面的最大压力和最小压力分别出现在铁块m位于最低点和最高点时,且压力差的大小为:ΔF N=F2+F1③由①②③式可解得:ΔF N=2mω2r【总结】(1)若m在最高点时突然与电机脱离,它将如何运动?(2)当角速度ω为何值时,铁块在最高点与电机恰无作用力?(3)本题也可认为是一电动打夯机的原理示意图。
若电机的质量为M,则ω多大时,电机可以“跳”起来?此情况下,对地面的最大压力是多少?解:(1)做初速度沿圆周切线方向,只受重力的平抛运动。
(2)电机对铁块无作用力时,重力提供铁块的向心力,则mg=mω12r即ω1=rg(3)铁块在最高点时,铁块与电动机的相互做用力大小为F1,则F1+mg=mω22rF1=Mg即当ω2≥mr gmM)(+时,电动机可以跳起来,当ω2=mr gmM)(+时,铁块在最低点时电机对地面压力最大,则F2-mg=mω22rF N=F2+Mg解得电机对地面的最大压力为F N=2(M+m)g图3-5(4)圆周运动的周期性利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。
圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。
在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。
同时,要注意圆周运动具有周期性,因此往往有多个答案。
例5:如图3-6所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一个小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v =_________,圆盘转动的角速度ω=_________。
【审题】小球做的是平抛运动,在小球做平抛运动的这段时间内,圆盘做了一定角度的圆周运动。
【解析】①小球做平抛运动,在竖直方向上: h =21gt 2则运动时间 t =gh 2 又因为水平位移为R 所以球的速度 v =t R =R ·hg 2 ②在时间t 内,盘转过的角度θ=n ·2π,又因为θ=ωt 则转盘角速度: ω=tn π2⋅=2n πh 2g (n =1,2,3…)【总结】上题中涉及圆周运动和平抛运动这两种不同的运动,这两种不同运动规律在解决同一问题时,常常用“时间”这一物理量把两种运动联系起来。