微波技术基础
- 格式:doc
- 大小:227.00 KB
- 文档页数:11
Chap. 3 微带传输线
优点:
体积小、重量轻、频带宽、便于与微波集成电路相连接
缺点:
损耗大、Q值低、难以承受较大的功率(目前只适用于中小功率范围)
基本结构形式:
-对称微带线(带状线,stripline)
-不对称微带线(标准微带线或简称微带线,microstrip)
§5
§
§
α
⎦
⎣⎦
§
第2、3章小结
矩形波导
圆波导平行双线同轴线微带线介绍了多种传输线(波导)
带状线
二、一般规则波导中导行波的波型(模、模式)和传输特性
¾依据E z 和H z 存在的情形,可分为三类:
TEM波、TM波、TE波
波型(模式)是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态(场结构)
¾依据色散特性可分为:
非色散波型(TEM波)与色散波型(TE波、TM波) 单导体所构成的空心金属波导管内不可能传输TEM 波型。
双导体或多导体,则可以传输TEM 波型
六、微带传输线
1、带状线
•TEM 模
•主要特性参数:Z
c 、衰减等
•尺寸选择•准TEM 模
•主要特性参数:Z
c 、衰减、等效相对介电常数等
•色散特性与尺寸选择2、微带线。
《微波技术基础》复习要求第一章引言1.微波的工作频段2.微波的主要特点第二章微波传输线理论1.微波传输线与低频传输线的对比2.均匀传输线的电报方程(时域形式、频域形式)和波动方程3.已知负载的解型(无损形式)4.传输特性参数:特性阻抗、传播常数、相速、波长5.输入阻抗和反射系数:定义、公式和关系第二章微波传输线理论(续)6.无损传输线的工作状态分析7.传输功率(重点),功率容量和效率(一般)8.掌握阻抗圆图和导纳圆图的基本构成原理、圆图的主要特性(圆图作题不要求)9.阻抗匹配:三种阻抗匹配问题(重点)、阻抗匹配方法及其特点(一般)10.时域分析方法:时空图解法第三章金属规则波导1.规则波导的纵向场法公式(TE和TM)、波动方程和边界条件、波型分类等。
2.矩形波导:场的求解过程、下标含义和范围、场结构简易绘制方法的原理、传输特性(三种波长、截止条件、简并概念、主模、相速和群速、波阻抗等)3.圆波导:纵向场的求解形式、下标含义和范围,三种主要模式的基本特点第三章金属规则波导(续)4.同轴线:主模的特性、设计原则5.激励与耦合的主要方法和举例6.损耗问题:导体损耗(微扰思想)、介质损耗和消失波衰减第四章微波集成传输线1.增量电感法:基本思想和物理解释、解题方法2.对称耦合传输线的奇偶模分析:对称耦合传输线的奇偶模分解(场特性)奇偶模分析的主要特点奇偶模分析的主要结果(偶模阻抗、奇模阻抗、K等参数的关系)第五章介质波导1.介质波导的工作原理:H平面波和E平面波以及独立方程组;两种平面波的反射系数;全反射、全折射的形成条件及其证明;两种基本波型(表面波和辐射模)。
2.圆形介质波导:主要工作模式和主模、截止条件和含义相速度特性第五章介质波导(续)3.平板介质波导:TE和TM的色散方程、基本模式的对称场分布、路的求解方法4.矩形介质波导:EDC方法与马氏方法的主要区别EDC方法的求解(分区、拉伸方向、电场与介质交界面的关系、波阻抗、横向谐振条件、有效介电常数等)第六章微波谐振器1.微波谐振器的基本特性:三个特性;基本参数(谐振波长和品质因数,p值的选取范围)2.金属波导谐振器:矩形谐振腔(波动方程和边界条件、纵向场法公式、下标的含义和范围、主模等)圆形谐振腔(下标的含义和范围、主模、模式图、虚假模式及其定义等)第六章微波谐振器(续)3.传输线谐振腔:横向谐振条件4.非传输线谐振腔(一般)5.谐振腔的微扰理论:基本公式介质微扰(重点是有损情况)腔壁微扰(谐振频率与储能变化的关系)第七章微波网络基础1.微波网络与低频网络的主要不同2.网络阻抗和反射系数与损耗、储能的关系3.[Z]和[Y]的定义、元素含义和主要性质4.[S]的定义、元素含义和主要性质5.[A]和[T]的定义、元素含义和主要性质。
《微波技术基础》课程学习知识要点 第一章 学习知识要点1 •微波的定义一 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围 为:3X108H Z 〜3X 1012H Z 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的 无线电波,它的频带宽度比所有普通无线电波波段总和宽 10000倍。
一般情况下,微波又可划分为 分米波、厘米波、毫米波和亚毫米波四个波段。
2 •微波具有如下四个主要特点:1)似光性、2)频率高、3)能穿透电离层、4)量子特性。
3 •微波技术的主要应用:1)在雷达上的应用、2)在通讯方面的应用、3)在科学研究方面的 应用、4)在生物医学方面的应用、5)微波能的应用。
4•微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理 论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方 法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析 电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用 克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输 特性。
第二章学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路, 线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传 输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为其解为U Z i= A “e 八 A 2e jZ I Z 丁 Z — A 2e j 'ZZ o 对于均匀无耗传输线,已知终端电压U 2和电流丨2,则:U Z =U 2COS :Z jl 2Z 0sin :zd 2U Z d平2Z dz 2 -:2U Z ]=0 -■21 Z = 0 I Z = l 2 COS :Z jU对于均匀无耗传输线,已知始端电压U 和电流丨1,则:3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态:(1) 当Z L 二Zo 时,传输线工作于行波状态。
绪论0.1电磁波的频谱图 1 (J. D. Kraus: Electromagnetics)频段划分频率描述应用3-30kHz 超低频(Very low frequency,VLF)导航超长波大于10000米30-300kHz 低频(Low frequency, LF)导航台,导航设备长波:1000-10000米300-3000kHz 中频(Medium frequency, MF)调幅广播,海事无线,中波:100-1000米电,海岸巡逻通信,方向搜索3-30MHz 高频(High frequency,HF)电话,电报,传真,短波:10-100米短波国际广播,业余无线电,民用频段,船—岸和船—空通信30-300MHz 甚高频(Very high frequency, VHF)电视,调频广播,空米波:1-10米中交通控制,警用,出租车移动无线电300-3000MHz 超高频(Ultrahigh frequency UHF)电视,卫星通信,无分米波:1-10分米线电探空仪,监视雷达,导航设备3-30GHz 特高频(Superhigh frequency, SHF)机载雷达,微波传送,厘米波:1-10厘米卫星通信30-300GHz 极高频(Extreme high frequency, EHF)雷达毫米波:1-10毫米300GHz-3000GHz 太赫兹太赫兹技术0.2微波毫米波微波的频率范围不同的书有不同的说法,有将300MHz—30GHz、波长:1cm—1m特指微波;也有称300MHz—300GHz、波长:1mm—1m为微波;还有将300MHz—3000GHz、波长:0.1mm—1m统称为微波。
细分:微波:300MHz—30GHz,波长:1cm—1m毫米波:30GHz—300GHz,波长:1mm—1cm亚毫米波:300GHz—3000GHz,波长:0.1mm—1mm微波频段划分频段标称波长旧波段新波段500-1000MHz VHF C1-2GHz 22cm L D2-3GHz 10cm S E3-4GHz S F4-6GHz 5cm C G6-8GHz C H8-10GHz 3cm X I10-12.4GHz X J12.4-18GHz 2cm Ku J18-20GHz 1.25cm K J20-26.5GHz K K26.5-40GHz 0.8cm Ka K40-60GHz 0.6cm U60-80GHz 0.4cm V80-100GHz 0.3cm W微波毫米波的特点低于1GHz的通信电路通常由集总参数电路元件构成,超过1GHz到100GHz,集总元件被传输线和波导元件取代。
微波技术基础第一篇:微波技术基础微波技术是指在微波频段内进行无线电波传输和工作的技术。
微波频段的频率范围为300MHz至300GHz,是一种高频电磁波。
微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
本篇文章主要介绍微波技术的基础知识。
1、微波的特点微波的特点是波长短、频率高、传输能力强、穿透力强、反射和绕射能力弱。
由于微波波长短,具有高频率和短时间间隔,相应的能量高,因此可以携带大量信息。
微波具有很强的穿透力,可以穿透一些物质。
但它对金属等导电材料的反射和绕射能力非常弱。
2、微波的应用微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
其中,通信是微波技术应用最广的领域。
无线电视也用到了微波技术,它具有大带宽和高清晰度等优点。
雷达是一种利用微波波段特殊频率特性进行目标侦察和跟踪的技术。
医疗成像是微波技术的另一个应用领域,例如计算机断层扫描,实现肿瘤发现和诊断。
3、微波的发射方式微波发射方式包括波束走向和波束展宽两类。
波束走向是指将微波束对准目标以达到传送信息的目的。
波束展宽是指通过微波辐射,以实现信息的传输。
微波发射方式的选择应根据不同的应用场景来确定,例如在通信中应选择波束走向,而在雷达中应选择波束展宽。
4、微波的传输损耗微波在传输过程中会发生一定的损耗。
导致这种损耗的原因主要包括传输路径的衰减、反射和绕射效应、电磁波散射等。
传输路径的衰减是微波传输损耗最主要的原因。
它可以通过加强发射功率、缩短传输距离、采用大口径天线等措施来降低影响。
5、微波天线天线是微波技术的重要组成部分,它能将高频率的电磁波转换成物理信号,实现信息的传输。
微波天线种类繁多,包括Horn天线、微带天线、反射天线、缝隙天线等。
微波天线的使用应根据具体应用需求来选择。
例如,在雷达中,反射天线和缝隙天线可以实现高精度的指向和定位,而微带天线则可以被制成很小的尺寸,方便安装和使用。
6、微波放大器微波放大器的作用是放大微波信号,以便在传输中降低信号衰减。
微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。
它广泛应用于无线通信、卫星通信、雷达探测等领域。
掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。
本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。
一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。
微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。
2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。
3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。
4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。
二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。
2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。
3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。
4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。
三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。
2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。
3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。
四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。
2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。
3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。
摘要本文主要介绍了微波的基础知识,在第一章中介绍了微波的概念、基本特点以及微波在民用和军事上的应用,在第二章中介绍了微波传输线理论,主要介绍了TE型波的理论和传输特性。
10This paper describes the basics of microwave in the microwave first chapter introduces the concept of the basic characteristics and microwave in the civilian and military applications, in the second chapter describes the microwave transmission line theory, introduces the theory and the type of wave Transmission characteristics.微波技术基础第一章微波简介1.1 什么是微波微波是频率非常高的电磁波,就现代微波理论的研究和发展而论,微波是指频率从GHz300的电磁波,其相应的波长从1m~0.1mm,这段电磁频谱包~MHz3000括分米波(频率从300MHz~3000MHz),厘米波(频率从3GHz~30GHz),毫米波(频率从30GHz~300GHz)和亚毫米波(频率从300GHz~3000GHz)四个波段。
下图为电磁波谱分布图:1.2微波的基本特点1.似光性和似声性微波波段的波长和无线电设备的线长度及地球上的一般物体的尺寸相当或小的多,当微波辐射到这些物体上时,将产生显著地反射、折射,这和光的反射折射一样。
同时微波的传播特性也和几何光学相似,能够像光线一样直线传播和容易集中,即具有似光性。
这样利用微波就能获得方向性极好、体积小的天线设备,用于接收地面上或宇宙空间中各种物体发射或反射的微弱信号,从而确定该物体的方向和距离,这就是雷达及导航技术的基础。
微波的波长与无线电波设备尺寸相当的特点,使得微波又表现出与声波相似的特征,即具有似声性。
例如:微波波导类似预声学中的传声筒;喇叭天线和缝隙天线类似于声学中的喇叭、萧和笛,微波谐振腔类似于声学中的共鸣腔。
2.分析方法的独特性由于微波的频率很高,波长很短,使得在低频电路中被忽略了的一些现象和效应(如趋肤效应、辐射效应、相位滞后现象等)在微波波段不可以忽略。
这样低频电路常用的集总参数元件电阻、电感、电容已不再适用,电压、电流在微波波段甚至失去了唯一性意义,因此用它们已经无法对微波传输系统进行完全描述,而要求建立一套新的能够描述这些现象的理论分析方法——电磁场理论的场与波传输的分析方法,用新的装置(如传输线、波导、谐振腔等)代替那些我们已经熟悉了的电容、电感、电阻。
3.共度性电子真空管的度越时间与微波震荡周期相当的这一特点称为共度性。
共度性是给予微波电子学巨大影响的非常重要的物理因素。
利用这种共度性可以做成各种微波电子真空器件,得到微波振荡源。
而这种度越效应在静电控制的电子管中是忽略不计的。
4.穿透性微波辐射与介质物体时,能深入到该物体内部的特性称为穿透性。
如微波是射频波谱中除光波外唯一能穿透电离层的电磁波,因而成为人类探测外层空间的重要手段,微波能穿透云雾、雨、植被、积雪和地表层,具有全天候和全天时工作的能力,成为遥感技术的重要手段;微波能穿透生物体,成为医学热透疗法的重要手段;毫米波还能穿透离子体,是远程导弹末端制导和航天器重返大气层时实现通讯的重要手段。
5.信息性微波波段可载的信息容量是非常大的,即使是很小的相对带宽,其可用的频带也是非常宽的,可以达到数百甚至上千兆赫。
所以现在多路通讯系统,包括卫星通讯系统,几乎都是工作在微波频段。
此外微波信号还可以提供相应信息、极化信息、多普勒频率信息,这在目标探测、遥感目标特征分析等应用中是十分重要的。
6.非电离性微波的量子能量不够大,因而不会改变物质分子的内部结构或破坏分子的化学键,所以微波和物质的作用是非电离的。
由物理学可知,分子、原子和原子核在外加周期电磁场的作用下所呈现的共振现象都发生在微波范围,因此微波为探测物体的内部结构和其基本特性提供了有效地研究手段。
1.3微波技术的应用1.3.1微波技术的发晨微波技术是近代科学技术发展的重大成就之一,微波技术是在雷达、通信和其他科学等领域等各个方面应用和实际需要促进发展起来的.发展十分迅速,其发展过程可以分为以下阶段:第一阶段:1940年前,是实验早期研究阶段,主要研究微波的产生方法。
第二阶段:1940年到1945年,足微波技术迅速发展并应用与实际的阶段,这个阶段正式第二次世界大战期间,在军事应用的迫切需要下,促进了微波技术的迅猛发展,在这一阶段内,大多数微波电子器件都应运而生,并采用了波导和空腔振荡器。
第三阶段:1945年至今,是微波技术广泛发展和应用阶段,在这一阶段中,不仅开辟了新波段.而且扩展了应用范围,并逐步形成了一系列的科学领域,如微波波普学、射电天文学、微波气象学等。
同时建立了一整套微波电子学理论,为微波技术的进一步发展和提高打下了理论基础。
1965年以后,出现了微波固体器件,固体集成电路和同体平面电路.使微波技术向着固体化和小型化方向发展.微波技术的迅速发展和它的应用密切相关。
其应用范围也愈加广泛。
微波技术的发展至今已有60余年的历史。
几十年来,微波的发展相当迅速,应用领域也相当广泛,更有新的领域层出不穷。
1.3.2 微波技术应用1)微波通讯。
通讯是微波技术的传统应用领域。
最重要的应用之一就是多路通信.由于微波的频率很高,频带很宽,比短波频带宽好几十倍甚至数百倍左右,能够承载的信息量很大.因而用微波作为载波应用与多路通信、微波中波通信、散射通信、卫星通信、移动通信等领域。
2)雷达应用。
微波最早应用于雷达.正是由于第一次世界大战人们把微波应用于雷达中,才促使微波技术的迅猛发展。
现在雷达仍然主要用于军事目的。
这方面的雷达有预警雷达、舰载雷达、机载雷达等。
除了军用雷达外,民用雷达发展也较快,如导航、气象、防盗、遥感雷达等。
3)科学研究。
在科学研究中,微波技术也有着重要应用。
如原子钟的研制,就是微波技术的应用和发展的结果.微波应用在物理学、天文学、化学、医学、气象学等各个学科领域,如射电天文学学、微波波普学、量子电子学、微波生物学、微波化学、微波医学等。
此外,如天文观察,电子直线加速器,等离子体参量测量,频谱分析以及遥感技术等方面都要用到微波。
4)微波加热。
在生产生活方面,微波被作为一种能源加以利用。
利用微波加热物体,就是利用物体吸收微波产生的热效应进行加热的。
微波加热的特点是:①对被加热的物体内外一起加热,瞬时可以达到高温。
热损耗小、热能利用率高、节约热能。
②对介质材料的穿透深度要远比红外加热的穿透深度强,可达几十厘米。
③微波加热的预热时间短,微波管预热15秒就能工作。
④均匀加热:常规加热为提高加热速度,就需要升高加热温度,容易产生外焦内生现象。
微波加热时,物体各部位通常都能均匀渗透电磁波,产生热量,因此均匀性大大改善。
⑤安全无害:在微波加热、干燥中,无废水、废气、废物产生,也无辐射遗留物存在,其微波泄漏也确保大大低于国家制定的安全标准,是一种十分安全无害的高新技术。
5)微波杀菌。
微波杀菌是利用了微波对细菌的热效应使之蛋白质产生变化。
使细菌失去营养,繁殖和生存的条件而死亡。
微波对细菌的生物效应是微波电场改变细胞膜的电位分布,影响细胞膜周围电子和离子浓度,从而改变细胞膜的通透性能,细菌因此营养不良,不能正常新陈代谢,细胞结构功能紊乱,生长发育受到抑制而死亡。
6)其他领域。
微波在医学。
军事上也发挥着重要作用。
微波可以对人体内的炎症,溃疡、肿瘤和其他病变产生抑制或治疗作用。
微波武器的高能微波束可以干扰敌方人员的神经系统和大脑思维.可以灼伤人的眼睛和人体组织:可以引爆地方的炮弹、导弹甚至核武器等:可以干扰甚至摧毁地方的各种电子设备等.第二章 微波传输线理论2.1 Maxwell 方程组及边界条件 电磁波在无源(p,J=0)空气波导中(0ε、0μ为常数标量)传播时(见图3-18), 随时间变化是简谐的,即t j e E E ω0=、t j e H H ω0=,则Maxwell 方程组在SI 单位制中为:(3-5)(3-6)(3-7)(3-8)在微波波段,随着工作频率的升高,由于导线的趋肤效应和辐射效应增大,使得普通的双导线不能完全传输微波能量,常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线。
2.2波导管中的10TE 型波波导管是一种空心金属管,其截面形状有圆形、矩形、椭圆形等,用得最多的是矩形波导管,简称波导,见下图根据电磁场的普遍规律——麦克斯韦方程组或由它导出的波动方程——及具体波导的边界条件,严格求解得出矩形波导中不能传输TEM 波,只能传输TE 波(横电波)和TM 波(横磁波)。
TE 波的电矢量只有横向分量,而磁矢量的横向和纵向分量都有;TM 波的磁矢量只有横向分量,而电矢量的纵向、横向两个分量都有。
在实际应用中,一般让波导中存在一类波型,而且只传其中一种波型,例如0TE 波就是矩形波导中常用的一种波型。
考虑一个截面为a×b 的矩形波导(见图3-18),其管壁为理想导体,则沿z方向传播的0TE 型波的各个场分量为:(3-33)(3-34)(3-35)(3-36)(3-37)(3-38) 式中ω为角频率,μεπω2=;β为相位常数,g λπβ2=;g λ为波导波长:(3-21)其中a c 2=λ,称为波导截止波长。
因此,波导中只能传播c λλ<的电磁波,λ是自由空间电磁波的波长。
波导内10TE 波电场和磁场的分布即所谓场结构,可用图3-19表示:图(a)说明电矢量只位于XY 平面内(在Z=0处,上为负,下为正),起止于上下两个宽边,宽边中间电场最强,两侧减弱,呈正弦分布。
它的磁力线在宽边相平行的平面内形成闭合线如图(b),并表明y E 、x H 和z H 在Z 方向各有π/2的相位差。
图(c)表示10TE 型波场结构的空间分布。
2.3 10TE 波的传输特性 波导中电磁波的传输,由于不是TEM 波,因而它具有很多不同于长线的传输特点。
只有掌握了波导中传输特性,我们才能正确运用它。
(1)相位常数β表现了电磁波在波导中传输的基本特性。
由式(3-20)和(3-27)可得:对于10TE 波有为自由空间平面波的相位常数,即k=2π/λ,则(3-39)可见,波导中的相位常数卢β和自由空间的相位常数k 是不同的,由此就带来了电磁波在波导中传输的一系列特点,下面我们分别讨论它们的物理意义。