单机-无穷大系统稳态运行实验、电力系统暂态稳定实验电力系统分析实验报告
- 格式:pdf
- 大小:1.69 MB
- 文档页数:15
电力系统暂态稳定性分析电力系统是现代社会中不可或缺的重要基础设施之一。
而在实际应用中,电力系统的暂态稳定性显得尤为重要。
因为只有通过对电力系统暂态稳定性的合理分析和控制,才能保证电网可靠稳定地运行。
一、电力系统暂态稳定性的定义和意义电力系统的暂态稳定性是指在外部扰动下,系统输出电压、频率等瞬态量能够快速、准确地恢复到稳态,并保持稳态运行的能力。
在电力系统中,如果发生负荷突增或存在故障等不良输入,可能会破坏电网的暂态稳定性,引发电力系统崩溃,严重时可能会导致系统停电,造成重大损失。
因此,电力系统暂态稳定性的分析与控制是保证电网安全稳定运行的重要手段。
二、电力系统暂态稳定性分析方法电力系统暂态稳定性分析主要通过进行暂态稳定裕度计算来判断电网的稳定性强度。
暂态稳定裕度是指电网从瞬态到稳态的过渡过程中的最大幅值比率,反映系统的动态响应能力的强度。
根据动力系统和电力系统的基本理论,可以通过等效电路模型对电力系统的暂态响应进行分析。
常见的电力系统暂态稳定性分析方法有以下几种:1、经典暂态稳定性分析法经典暂态稳定性分析法主要应用于简单的电气传输系统,适用于该系统中断、恢复稳定及系统响应分析。
经典暂态稳定性分析法的基本思想是将系统分为电源、传输线路和负荷三个基本部分,通过分析动态电路的等效模型建立系统的微分方程,并求解这些微分方程,从而得到系统的暂态稳定裕度。
2、现代稳定性分析法现代稳定性分析法采用全电网范围内的时域仿真方法,利用电力系统的数字仿真技术对电力系统暂态稳定性进行计算分析。
广泛应用于电网大规模短路和断电故障事故分析,可有效预测事故发展情况。
3、直接暂态分析法直接暂态分析法是通过求解电力系统暂态变化过程中的微分方程,推导系统的响应情况,对系统的暂态稳定性进行判断,主要用于分析输电线路和变电站的暂态稳定。
三、电力系统暂态稳定性控制为保障电力系统的暂态稳定性,需要对系统进行控制,研究电网暂态稳定性的控制技术是保障电网安全稳定运行的关键。
单机—无穷大系统稳态运行实验单机—无穷大系统稳态运行实验一、实验目的1、了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2、了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。
二、实验器材本次实验的平台为型电力系统综合自动化教学试验台。
综合自动化实验教学系统由发电机组、实验操作台、无穷大系统等3部分组成。
实验操作台是由输电线路单元、微机线路保护单元、功率调节与同期单元、仪表测量与短路故障模拟单元等组成。
面板上有四部分装置,分别为“YHB-A型微机保护装置”“TGS-03B微机调速装置”“HGWT-03微机准同期控制器”“WL-04B微机励磁调节器”。
实验台面板上方共十三块指针式电表,分别指示“原动机电压”,原动机电流“发电机电压”“发电机频率”“开关电站电压”“A相电流”“B相电流”“C 相电流”“有功功率”“无功功率”“系统电压”“励磁电流”“励磁电压”。
三、实验原理本实验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。
原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。
实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。
发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。
实验台的输电线路是用用多个结成链型的电抗线圈来模拟,其电抗只满足相似条件。
“无穷大”母线就直接用实验室的交流电源,因为它是由市级电力系统供电的,因此,它基本上符合“无穷大”母线的条件。
实验面板接线图如下图一次系统接线图电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。
为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。
电力系统分析理论试验汇报一.单机—无穷大系统稳态运行试验(一)、试验目旳1.理解和掌握对称稳定状况下,输电系统旳多种运行状态与运行参数旳数值变化范围;2.理解和掌握输电系统稳态不对称运行旳条件;不对称度运行参数旳影响;不对称运行对发电机旳影响等。
(二)、原理与阐明电力系统稳态对称和不对称运行分析,除了包括许多理论概念之外,尚有某些重要旳“数值概念”。
为一条不一样电压等级旳输电线路,在经典运行方式下,用相对值表达旳电压损耗,电压降落等旳数值范围,是用于判断运行报表或监视控制系统测量值与否对旳旳参数根据。
因此,除了通过结合实际旳问题,让学生掌握此类“数值概念”外,试验也是一条很好旳、更为直观、易于形成深刻记忆旳手段之一。
试验用一次系统接线图如图2所示。
图2 一次系统接线图本试验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们旳特性与大型原动机是不相似旳。
原动机输出功率旳大小,可通过给定直流电动机旳电枢电压来调整。
试验系统用原则小型三相似步发电机来模拟电力系统旳同步发电机,虽然其参数不能与大型发电机相似,但也可以当作是一种具有特殊参数旳电力系统旳发电机。
发电机旳励磁系统可以用外加直流电源通过手动来调整,也可以切换到台上旳微机励磁调整器来实现自动调整。
试验台旳输电线路是用多种接成链型旳电抗线圈来模拟,其电抗值满足相似条件。
“无穷大”母线就直接用试验室旳交流电源,由于它是由实际电力系统供电旳,因此,它基本上符合“无穷大”母线旳条件。
为了进行测量,试验台设置了测量系统,以测量多种电量(电流、电压、功率、频率)。
为了测量发电机转子与系统旳相对位置角(功率角),在发电机轴上装设了闪光测角装置。
此外,台上还设置了模拟短路故障等控制设备。
(三)、试验环节:1、开机环节:⑴进行冷检查,确定无误后启动发电机电源进行热检查,确定之后再进行下列环节;⑵启动励磁开关,励磁开机;⑶开机(手动调整励磁旋钮);⑷使发电机工作,并调整调速旋钮,使发电机旳功角指示器由一种角变成几种角(试验中旳功角指示器有四个角,表达电机为四极电机,p=2,额定转速为1500r/min ;8个角对应旳转速为1500r/min,当功角指示器旳几种角不稳定期,表达额定转速也许不小于或不不小于额定转速,此时应尽量调整调速器使转速为额定转速);⑸加励磁,调整机端电压与系统相似(本试验为380V);⑹进行投切操作,在操作时,由于有延误,因此应保留一种小余量,保证准时精确地投入系统;此时应调整原动机,当转动不太快,角度在0到5度时投入;2、关机环节:⑴调整调速器使输出功率(有功)P降为0;⑵调整励磁使励磁电流If降为0,虽然无功降为0;⑶此时会发既有功又增大了,因此应继续调整调速器使有功降为0;⑷解联(断开电机并网断路器);⑸调整励磁使电压U降为0;⑺调整调速器使转速降为0;⑻退出开机再关闭励磁。
第七章 电力系统静态稳定电力系统静态稳定:指电力系统受到小干扰后,不发生自发振荡或非同期失步,自动恢复到起始运行状态的能力。
实际上就是确定系统在某个运行稳态能否保持的问题。
第一节 简单系统的静态稳定简单系统:单机-无穷大系统隐极机:δϕsin Re cos∑=+=⎥⎦⎢⎣•==d q q q d d q E x I U I U I E UI P功角特性曲线为:● 转子运动方程:E T J P P dtd T -=220δω 在PT=PE 的点,功率平衡,速度不变 ● a 、b 两点为功率平衡点, a 为稳定平衡点,b 为不稳定平衡点。
∴ 在功角特性曲线上升段的运行点是静态稳定运行点,在下降段的运行点是不稳定运行点。
静态稳定判据:0>δd dP E静态稳定极限点:0=δd dPE ,其对应的功率称为静态稳定极限功率sl P其对应的功率角称为静态稳定极限功率角δsl简单系统:P sl =P max有功功率储备系数:%15%1000>⨯-=P P P k sl p 第二节 负荷的静态稳定本节中介绍转矩(有功功率)的方法,类似异步机起动的分析; 另有电压稳定的分析方法。
第三节 小干扰法分析简单系统的静态稳定分析简单系统的静态稳定⑴简单系统、简单网络:定子绕组方程可用功角特性表示 ⑵不考虑调速器和原动机方程,PT = P0 = 常数 ⑶不考虑励磁调节系统,if = 常数,Eq 恒定 列状态变量偏移量的线性方程状态方程:)sin (1)1(0δωωωδ∑-=-=d q T J x U E P T dt d dtd小干扰,δδδ∆+=0, ωωω∆+=0则)sin(0δδ∆+=∑d q E x U E P+∆⎪⎪⎭⎫ ⎝⎛+∆⎪⎭⎫ ⎝⎛+=∑222000!21sin δδδδδδδd P d d dP x U E E E d q δδδδ∆⎪⎭⎫⎝⎛+=∑0sin d dP x U E E d q 忽略高次项,线性化E P P ∆+=0∴ δδωωωδδ∆⎪⎭⎫⎝⎛-=∆∆=∆010d dP T dt d dtd E J矩阵形式:⎥⎦⎤⎢⎣⎡∆∆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡∆∆ωδδωωδδ01000d dP T E J 根据特征根判断系统的稳定性系数矩阵的特征根为:002,1δδωλ⎪⎭⎫ ⎝⎛-±=d dP T E J 当00<⎪⎭⎫ ⎝⎛δδd dP E ,2,1λ为实根,则ωδ∆∆,单调增,发电机非同期失步;当00>⎪⎭⎫⎝⎛δδd dP E,2,1λ为一对虚根,则ωδ∆∆,等幅振荡,发电机在阻尼作用下减幅振荡。
单机—无穷大系统稳态运行实验一、实验目的1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围;2.了解和掌握输电系统稳态不对称运行的条件;不对称对运行参数的影响;不对称运行对发电机的影响等。
二、原理与说明电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。
为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。
因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。
实验用一次系统接线图如图2所示。
图2 一次系统接线图本实验系统是一种物理模型。
原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。
原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。
实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。
发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。
实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。
“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。
为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。
为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。
此外,台上还设置了模拟短路故障等控制设备。
三、实验项目和方法1.单回路稳态对称运行实验1.1实验操作步骤(1)检查与运行状态的调整①合上电源前,先检查各模拟仪表仪器的指针是否归零。
②合上状态开关QF2、QF6、QF4、QFS,使系统运行在单回路状态下;并检查个数字仪器仪表是否正常。
电力系统实验报告篇一:电力系统实验报告单机无穷大系统稳态实验:一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影响,并对实验结果进行理论分析:实验数据如下:由实验数据,我们得到如下变化规律:(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。
单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。
二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。
由实验数据,我们可以得到如下结论:(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。
三、思考题:1、影响简单系统静态稳定性的因素是哪些?答:由静稳系数SEq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。
2、提高电力系统静态稳定有哪些措施?答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。
课程名称: 电力系统分析综合实验 指导老师: 成绩: 实验名称: 电力系统暂态稳定实验 实验类型: 同组同学: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1. 通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。
2. 学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理措施3. 用数字式记忆示波器测出短路时电流的非周期分量波形图,并进行分析 二、实验内容和原理电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。
在各种扰动中以短路故障的扰动最为严重。
正常运行时发电机功率特性为:11001sin X U E P δ=;短路运行时发电机功率特性为:22002sin X U E P δ=;故障切除发电机功率特性为;33003sin X U E P δ=;对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。
而系统保持稳定条件是切除故障角δc 小于δmax ,δmax 可由等面积原则计算出来。
本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,δmax 也不同,使对故障切除的时间要求也不同。
同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo 增加,使δmax 增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重合闸,使系统进入正常工作状态。
这二种方法都有利于提高系统的稳定性。
三、主要仪器设备(1)WL-04B 微机励磁调节器;(2)HGWT-03B 微机准同期控制器; (3)TSG-03B 微机调速装置 (4)微机保护装置; (5)模拟实验台 四、操作方法与实验步骤1. 单回路稳态非全相运行实验首先按照稳态对称运行实验中运行方式1的线路开关状态进行线路开关的合闸和分闸,调整发电机输出的有功、无功功率与稳态对称运行实验时一致,然后按以下步骤进行实验,比较其运行状态的变化。