三角函数的图像和性质(含答案)
- 格式:doc
- 大小:558.00 KB
- 文档页数:8
1y三角函数图像与性质练习题(一)一.选择题 〔每题5分,共100分〕1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如下图,那么平移后的图象所对应函数的解析式是( ) A.sin()6y x π=+B.sin()6y x π=-C.sin(2)3y x π=+D.sin(2)3y x π=- 2. 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )A.向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕B.向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍〔纵坐标不变〕C.向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕 D.向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍〔纵坐标不变〕3. 函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,那么ω的最小值等于( )A.23B.32C.2D.3 4.函数y =sin(2x +3π)的图象可由函数y =sin2x 的图象经过平移而得到,这一平移过程可以是( ) A.向左平移6πB.向右平移6πC.向左平移12π D.向右平移12π 5. 要得到函数y =sin (2x -)6π的图像,只需将函数y =cos 2x 的图像( )A.向右平移6π个单位 B.向右平移3π个单位 C. 向左平移6π个单位 D. 向左平移3π个单位 6. 为了得到函数y =sin (2x-4π)+1的图象,只需将函数y =sin 2x 的图象〔〕平移得到A.按向量a=(-8π,1)B. 按向量a=(8π,1)C.按向量a=(-4π,1)D. 按向量a=(4π,1) 7.假设函数()sin ()f x x ωϕ=+的图象如图,那么ωϕ和的取值是( )A.1ω=,3πϕ= B.1ω=,3πϕ=-C.12ω=,6πϕ= D.12ω=,6πϕ=- 8. 函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )9. 函数sin(2)cos(2)63y x x ππ=+++的最小正周期和最大值分别为( ) A.,1π B.,2π C.2,1π D. 2,2π 10. 函数()sin()(0)3f x x πϖϖ=+>的最小正周期为π,那么该函数的图象( )A.关于点(,0)3π对称 B.关于直线4x π=对称 C.关于点(,0)4π对称 D.关于直线3x π=对称11.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的局部图象如图,那么( ) A.4,2πϕπω==B.6,3πϕπω==C.4,4πϕπω== D.45,4πϕπω==12. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) yx11-2π- 3π- O6ππyx11- 2π- 3π- O 6ππ yx1 1-2π-3πO 6π-πy xπ2π- 6π-1O 1-3π A.B. C. D.A.向右平移π6个单位 B.向右平移π3个单位 C.向左平移π3个单位 D.向左平移π6个单位 13. 设函数()x f ()φω+=x sin ⎪⎭⎫ ⎝⎛<<>20,0πφω.假设将()x f 的图象沿x 轴向右平移61个单位长度,得到的图象经过坐标原点;假设将()x f 的图象上所有的点的横坐标缩短到原来的21倍〔纵坐标不变〕, 得到的图象经过点⎪⎭⎫⎝⎛1,61. 那么( ) A.6,πφπω== B.3,2πφπω== C.8,43πφπω== D. 适合条件的φω,不存在 14. 设函数)()0(1)6sin()(x f x x f '>-+=的导数ωπω的最大值为3,那么f (x )的图象的一条对称轴的方程是( ) A.9π=x B.6π=x C.3π=x D.2π=x三角函数图像与性质练习题答案三角函数的图象和性质练习题(二)一、选择题1.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,那么ϕ的值是〔 〕A.0B.4πC.2πD.π2. 将函数x y 4sin =的图象向左平移12π个单位,得到)4sin(ϕ+=x y 的图象,那么ϕ等于A .12π-B .3π-C .3πD .12π 3.假设,24παπ<<那么〔 〕 (45<a<90)A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>1 2 3 4 5 6 7 8 9 10 C C B A B B C A A A 11 12 13 14 CAAA4.函数23cos()56y x π=-的最小正周期是〔 〕A .52πB .25π C .π2 D .π5 5.在函数x y sin =、x y sin =、2sin(2)3y x π=+、2cos(2)3y x π=+中, 最小正周期为π的函数的个数为〔〕. A .1个B .2个 C .3个 D .4个6.x x x f 32cos 32sin)(+=的图象中相邻的两条对称轴间距离为 〔 〕 A .3π B .π34 C .π23 D .π677. 函数)252sin(π+=x y 的一条对称轴方程〔 〕A .2π-=xB .4π-=xC .8π=xD .=x π458. 使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值,那么ω的最小值为〔 〕 A .π25B .π45C .πD .π23二、填空题1.关于x 的函数()cos()f x x α=+有以下命题: ①对任意α,()f x 都是非奇非偶函数; ②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都不是奇函数.其中一个假命题的序号是,因为当α=时,该命题的结论不成立.2.函数xxy cos 2cos 2-+=的最大值为________.3.假设函数()2sin(2)3f x kx π=+的最小正周期T 满足12T <<,那么自然数k 的值为______. 4.满足23sin =x 的x 的集合为_________________________________. 5.假设)10(sin 2)(<<=ϖϖx x f 在区间[0,]3π上的最大值是2,那么ϖ=________.三、解答题1.比拟大小〔1〕00150sin ,110sin ;〔2〕00200tan ,220tan 2. (1) 求函数1sin 1log 2-=xy 的定义域. 〔2〕设()sin(cos ),(0)f x x x π=≤≤,求()f x 的最大值与最小值. 3.)33sin(32)(πω+=x x f 〔ω>0〕〔1〕假设f (x +θ)是周期为2π的偶函数,求ω及θ值; ω= 1/3 ,θ= . 〔2〕f (x )在〔0,3π〕上是增函数,求ω最大值 "三角函数的图象和性质练习题二"参考答案一、选择题 1.C [解析]:当2πϕ=时,sin(2)cos 22y x x π=+=,而cos 2y x =是偶函数2.C [解析]:函数x y 4sin =的图象向左平移12π个单位,得到)12(4sin π+=x y 的图象,故3πϕ=3.D [解析]:tan 1,cos sin 1,ααα><<αααcos sin tan >>4.D [解析]:2525T ππ== 5.C [解析]:由x y sin =的图象知,它是非周期函数6.C [解析]: ∵x x x f 32cos 32sin)(+==)432sin(2π+x∴图象的对称轴为πππk x +=+2432,即)(2383Z k k x ∈+=ππ故相邻的两条对称轴间距离为π237.A [解析]:当2π-=x 时 )252sin(π+=x y 取得最小值-1,应选A8.A [解析]:要使x y ωsin =〔ω>0〕在区间[0,1]至少出现2次最大值 只需要最小正周期⋅45ωπ2≤1,故πω25≥ 二、填空题1、①0[解析]:此时()cos f x x =为偶函数2、3[解析]:2cos 4cos 2412cos 2cos 2cos x x y x x x++-===----3、2,3或[解析]:,12,,2,32T k k N k kkππππ=<<<<∈⇒=而或4、|2,2,33x x k k k Z ππππ⎧⎫=++∈⎨⎬⎩⎭或 5、34[解析]:[0,],0,0,3333x x x ππωππω∈≤≤≤≤< 三、解答题1.解:〔1〕0sin110sin 70,sin150sin 30,sin 70sin 30,sin110sin150==>∴>而 〔2〕0tan 220tan 40,tan 200tan 20,tan 40tan 20,tan 220tan 200==>∴>而 2.解:〔1〕221111log 10,log 1,2,0sin sin sin sin 2x x x x -≥≥≥<≤ 22,6k x k πππ<≤+或522,6k x k k Z ππππ+≤<+∈5(2,2][2,2),()66k k k k k Z ππππππ++∈为所求.〔2〕0,1cos 1x x π≤≤-≤≤当时,而[11]-,是()sin f t t =的递增区间 当cos 1x =-时,min ()sin(1)sin1f x =-=-; 当cos 1x =时,max ()sin1f x =. 4.解:(1) 因为f (x +θ)=)333sin(32πθω++x又f (x +θ)是周期为2π的偶函数, 故∈+==k k 6,31ππθω Z(2) 因为f (x )在〔0,3π〕上是增函数,故ω最大值为61三角函数的图象专项练习一.选择题1.为了得到函数)62sin(π-=x y 的图象,可以将函数y=cos2x 的图象 ( )A .向右平移6π个单位长度B. 向右平移3π个单位长度 C. 向左平移6π个单位长度 D. 向左平移3π个单位长度2.以下函数中振幅为2,周期为π,初相为6π的函数为 ()A .y=2sin(2x+3π) B. y=2sin(2x+6π) C .y=2sin(21x+3π) D. y=2sin(21x+6π) 3.三角方程2sin(2π-x)=1的解集为 ( ) A .{x│x=2kπ+3π,k∈Z}B .{x│x=2kπ+35π,k∈Z}.C .{x│x=2kπ±3π,k∈Z}D .{x│x=kπ+(-1)K ,k∈Z}.4.假设函数f(x)=sin(ωx+ϕ)的图象〔局部〕如下图,那么ω,ϕ的取值是 ( )A .3,1πϕω==B.3,1πϕω-==C .6,21πϕω==D.6,21πϕω-==5.函数y=tan(2x+φ)的图象过点(0,12π),那么φ的值可以是 ( ) A. -6π B. 6π C.12π- D.12π6.设函数y=2sin(2x+Φ)的图象为C ,那么以下判断不正确的选项是〔 〕A .过点(,2)3π的C 唯一 B.过点(,0)6π-的C 不唯一C .C 在长度为2π的闭区间上至多有2个最高点D .C 在长度为π的闭区间上一定有一个最高点,一个最低点 7.方程)4cos(lg π-=x x 的解的个数为〔 〕A .0B .无数个C .不超过3D .大于38.假设函数y=f(x)的图像上每点的纵坐标保持不变,横坐标伸长到原2倍,然后再将整个图像沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1sin 2y x =的图像,那么y=f(x)是 ( )A .1sin(2)122y x π=++B.1sin(2)122y x π=-+ C .1sin(2)124y x π=-+ D.11sin()1224y x π=++9.()sin()2f x x π=+,()cos()2g x x π=-,那么f(x)的图像 ( )A .与g(x)的图像一样 B.与g(x)的图像关于y 轴对称C .向左平移2π个单位,得g(x)的图像 D.向右平移2π个单位,得g(x)的图像 10.函数f(x)=sin(2x+2π)图像中一条对称轴方程不可能为( )A.x=4πB. x=2πC. x=πD. x=23π11.函数y=2与y=2sinx ,x ∈3[,]22ππ-所围成的图形的面积为 ( ) A .πB.2πC.3πD.4π12.设y=f(t)是某港口水的深度y 〔米〕关于时间t 〔时〕的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asina(ωt+ϕ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A.]24,0[,6sin312∈+=t t y πB.]24,0[),6sin(312∈++=t t y ππC.]24,0[,12sin 312∈+=t t y πD.]24,0[),212sin(312t t y ππ++=二.填空题 13.函数y=5sin(3x −2π)的频率是______________。
第一节 三角函数的图像和性质一、 知识梳理2.函数)sin(ϕω+=x A y 的图像与性质:(1)函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的周期都是T=_________ (2)函数)tan(ϕω+=x A y 和)cot(ϕω+=x A y 的周期都是T=_________(3)五点法作)sin(ϕω+=x A y 的简图,设X x ωϕ=+,X 取______________________来求相应x 的值以及对应的y 值再描点作图。
(4)关于平移伸缩变换可具体参考函数平移伸缩变换,提倡先平移后伸缩。
切记每一个变换总是对字母 x 而言,即图像变换要看“变量”起多大变化,而不是“角变化”多少。
二、 基础自测1.(2011·大纲全国卷理,5)设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13 B .3 C .6 D .9 答案:C2、(理)函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝ ⎛⎭⎪⎫3π2,2π 答案:C3.已知-π6≤x <π3,cos x =m -1m +1,则m 的取值范围是( )A .m <-1B .3<m ≤7+4 3C .m >3D .3<m <7+43或m <-1 答案:C4.已知函数y =tan ωx 在⎝⎛⎭⎫-π2,π2内是减函数,则( ) A .0<ω≤1 B .-1≤ω<0 C .ω≥1 D .ω≤-1 答案:B5.(2012·湖洲中学月考)已知函数f (x )=A cos(ωx +φ)的图像如下图所示,f ⎝⎛⎭⎫π2=-23,则f (0)=________.答案:2/36.sin1,sin2,sin3的大小关系为________. 答案: sin3< sin1< sin27.求y =sin 2x -cos x +2的最值. 答案:最大值与最小值分别为134与1.三、 例题讲解[例1] 求下列函数的定义域:(1)y =-2cos 2x +3cos x -1+lg(36-x 2);(2)y =2+log 12x +tan x .[解析] (1)由题意得⎩⎪⎨⎪⎧-2cos2x +3cosx -1≥036-x2>0,即⎩⎪⎨⎪⎧2cosx -1cosx -1≤0-6<x<6,也即⎩⎪⎨⎪⎧cosx ≥12-6<x<6.解得⎩⎪⎨⎪⎧-π3+2k π≤x ≤π3+2k πk ∈Z-6<x<6 (*)取k =-1,0,1,可分别得到 x ∈⎝⎛⎦⎤-6,-5π3或x ∈⎣⎡⎦⎤-π3,π3或x ∈⎣⎡⎭⎫5π3,6. 即所求的定义域为⎝⎛⎦⎤-6,-5π3∪⎣⎡⎦⎤-π3,π3∪⎣⎡⎭⎫5π3,6.(2)要使函数有意义,只要⎩⎪⎨⎪⎧2+log 12 x ≥0tanx ≥0 即⎩⎪⎨⎪⎧0<x ≤4k π≤x<k π+π2k ∈Z即0<x<π2或π≤x ≤4.所以函数的定义域为⎝⎛⎭⎫0,π2∪[π,4].变式:求下列各函数的定义域:(1)y =11-cosx;(2)y =sinx +1-tanx. [解析] (1)函数y =11-cosx有意义时,1-cosx ≠0,即cosx ≠1,所以x ≠2k π(k ∈Z),所以函数的定义域为{x|x ≠2k π,x ∈R ,k ∈Z}.(2)要使函数有意义,必须⎩⎪⎨⎪⎧sinx ≥0,1-tanx ≥0.由上图知道,函数的定义域为⎣⎡⎦⎤2k π,2k π+π4∪⎝⎛⎦⎤2k π+π2,2k π+π(k ∈Z).[例2] 求下列函数值域:(1)y =2cos 2x +2cos x ;(2)y =3cos x -3sin x ;(3)y =sin x +cos x +sin x cos x . [解析] (1)y =2cos2x +2cosx =2⎝⎛⎭⎫cosx +122-12. 当且仅当cosx =1时,得ymax =4, 当且仅当cosx =-12时,得ymin =-12,故函数值域为⎣⎡⎦⎤-12,4. (2)y =3cosx -3sinx =23⎝⎛⎭⎫32cosx -12sinx=23cos ⎝⎛⎭⎫x +π6.∵⎪⎪⎪⎪cos ⎝⎛⎭⎫x +π6≤1, ∴该函数值域为[-23,23]. (3)y =sinxcosx +sinx +cosx =sinx +cosx 2-12+2sin ⎝⎛⎭⎫x +π4=sin2⎝⎛⎭⎫x +π4+2sin ⎝⎛⎭⎫x +π4-12=⎣⎡⎦⎤sin ⎝⎛⎭⎫x +π4+222-1, 所以当sin ⎝⎛⎭⎫x +π4=1时,当sin ⎝⎛⎭⎫x +π4=-22时,y 取最小值-1,∴该函数值域为⎣⎡⎦⎤-1,12+2. 变式:求y =sin2x -sinxcosx +2的值域. [解析] y =sin2x -sinxcosx +2=1-cos2x 2-12sin2x +2=-12(sin2x +cos2x)+52=-22sin ⎝⎛⎭⎫2x +π4+52. 又∵-1≤sin ⎝⎛⎭⎫2x +π4≤1,∴5-22≤y ≤5+22.∴函数的值域为[5-22,5+22]. [例3]判断下列函数的奇偶性(1)sin 2tan y x x =- (2)1sin cos 1sin cos x xy x x +-=++ (3)()cos sin y x =(4)y =答案:(1) 奇 (2) 非奇非偶 (3)偶 (4)奇,偶变式:函数y =2sin ⎝⎛⎭⎫x -π4cos ⎝⎛⎭⎫π4-x 是( ) A .周期为2π的奇函数 B .周期为π的奇函数 C .周期为π的偶函数 D .周期为π的非奇非偶函数 [答案] C[例4] 求函数y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间. [解析] ∵y =2sin ⎝⎛⎭⎫π3-2x=-2sin ⎝⎛⎭⎫2x -π3,∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间就是y =2sin ⎝⎛⎭⎫2x -π3的单调减区间.由2k π+π2≤2x -π3≤3π2+2k π,k ∈Z ,得2k π+5π6≤2x ≤11π6+2k π.∴k π+5π12≤x ≤11π12+k π. ∴y =2sin ⎝⎛⎭⎫π3-2x 的单调增区间是⎣⎡⎦⎤k π+5π12,11π12+k π,k ∈Z.变式:(理)已知函数f (x )=sin 2x +2sin x cos x +3cos 2x ,x ∈R.求:(1)函数f (x )的最大值及取得最大值时自变量x 的集合;(2)函数f (x )的单调增区间. [解析] (1)∵f(x)=1-cos2x 2+sin2x +31+cos2x2=2+sin2x +cos2x =2+2sin ⎝⎛⎭⎫2x +π4,∴当2x +π4=2k π+π2,即x =k π+π8 (k ∈Z)时,f(x)取得最大值2+ 2.因此,f(x)取得最大值时自变量x 的集合是 {x|x =k π+π8,k ∈Z}(2)f(x)=2+2sin ⎝⎛⎭⎫2x +π4.由题意得2k π-π2≤2x +π4≤2k π+π2 (k ∈Z),即k π-3π8≤x ≤k π+π8(k ∈Z), 因此f(x)的单调增区间是⎣⎢⎡⎦⎥⎤k π-38π,k π+π8(k ∈Z).[例5]求下列函数的最小正周期(1) ()()2sin cos f x x x π=-;(2) ()23tan 1tan x f x x =-;(3) ()1cos 43f x x π⎛⎫=++ ⎪⎝⎭. 答案:(1)π (2)π (3)2π[例6] 已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6.(1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 答案:见暑假作业13题变式:1.已知函数f(x)=2sin x 4cos x 4-23sin 2x4+ 3.(1)求函数f (x )的最小正周期及最值;(2)令g (x )=f (x +π3),判断函数g (x )的奇偶性,并说明理由.[解析] (1)∵f(x)=sin x 2+3(1-2sin2x4)=sin x 2+3cos x 2=2sin(x 2+π3),∴f(x)的最小正周期T =2π12=4π. 当sin(x 2+π3)=-1时,f(x)取得最小值-2;当sin(x 2+π3)=1时,f(x)取得最大值2.(2)由(1)知f(x)=2sin(x 2+π3),又g(x)=f(x +π3)∴g(x)=2sin[12(x +π3)+π3]=2sin(x 2+π2)=2cos x2.∵g(-x)=2cos(-x 2)=2cos x2=g(x),∴函数g(x)是偶函数.2.(卷一:3) 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24 ()C1(0,]2 ()D (0,2] 【答案】A 四、 反馈训练反馈训练1 一、选择题1.函数y =sin2x +sinx -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54][答案] C[解析] 本题考查了换元法,一元二次函数闭区间上的最值问题,通过sinx =t 换元转化为t 的二次函数的最值问题,体现了换元思想和转化的思想,令t =sinx ∈[-1,1],y =t2+t -1,(-1≤t ≤1),显然-54≤y ≤1,选C.2.若函数f(x)=sin ωx(ω>0)在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( )A .3B .2 C.32 D.23[答案] C[解析] 本题主要考查正弦型函数y =sin ωx 的单调性 依题意y =sin ωx 的周期T =4×π3=43π,又T =2πω,∴2πω=43π,∴ω=32.故选C(亦利用y =sinx 的单调区间来求解)3.对于函数f(x)=2sinxcosx ,下列选项中正确的是( ) A .f(x)在(π4,π2)上是递增的B .f(x)的图像关于原点对称C .f(x)的最小正周期为2πD .f(x)的最大值为2 [答案] B[解析] 本题考查三角函数的性质.f(x)=2sinxcosx =sin2x ,周期为π,最大值为1,故C 、D 错;f(-x)=sin(-2x)=-2sinx ,为奇函数,其图像关于原点对称,B 正确;函数的递增区间为⎣⎡⎦⎤k π-π4,k π+π4,(k ∈Z)排除A.4.函数y =sin2x +acos2x 的图像关于直线x =-π8对称,则a 的值为( )A. 2 B .- 2 C .1 D .-1[答案] D[解析] 解法1:由y =sin2x +acos2x 可联想到形如y =Asin(ωx +φ)的函数.又知其对称轴为x =-π8,故此直线必经过函数图像的波峰或波谷.从而将x =-π8代入原式,可使函数取最大值或最小值.即-22+22a =±a2+1,∴a =-1.解法2:由于函数图像关于直线x=-π8对称∴f(0)=f(-π4),∴a=-1,故选D.5.已知函数f(x)=3sin πxR图像上相邻的一个最大值点与一个最小值点恰好都在圆x2+y2=R2上,则f(x)的最小正周期为()A.1 B.2 C.3 D.4 [答案] D[解析]f(x)的周期T=2ππR=2R,f(x)的最大值是3,结合图形分析知R>3,则2R>23>3,只有2R=4这一种可能,故选D.6.已知函数f(x)=sin(2x+φ)为实数,若f(x)≤|f(π6)|对x∈R恒成立,且|f(π2)|>f(π),则f(x)的单调递增区间是()A.[kπ-π3,kπ+π6](k∈Z)B.[kπ,kπ+π2](k∈Z)C.[kπ+π6,kπ+2π3](k∈Z)D.[kπ-π2,kπ](k∈Z)[答案] C[解析]本题主要考查正弦函数的有界性以及正弦函数的单调性.若f(x)≤|f(π6)|对x∈R恒成立,则|f(π6)|=|sin(π3+φ)|=1,所以π3+φ=kπ+π2,k∈Z,φ=kπ+π6,k∈Z,由f(π2)>f(π),(k∈Z),可知sin(π+φ)>sin(2π+φ).即sinφ<0,所以φ=2kπ-5π6,k∈Z.代入f(x)=sin(2x+φ),得f(x)=sin(2x-5π6).由2k π-π2≤2x -5π6≤2k π+π2,得k π+π6≤x ≤k π+2π3,故选C.二、填空题7.比较大小:(1)sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5________cos ⎝⎛⎭⎫-17π4.[答案] (1)> (2)<[解析] (1)∵-π2<-π10<-π18<π2,y =sinx 在⎣⎡⎦⎤-π2,π2上是增函数,∴sin ⎝⎛⎭⎫-π10<sin ⎝⎛⎭⎫-π18,即sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10.(2)cos ⎝⎛⎭⎫-23π5=cos 23π5=cos ⎝⎛⎭⎫4π+3π5=cos 3π5,cos ⎝⎛⎭⎫-17π4=cos 17π4=cos ⎝⎛⎭⎫4π+π4=cos π4.∵0<π4<3π5<π,且函数y =cosx 在[0,π]上是减函数, ∴cos π4>cos 3π5,即cos ⎝⎛⎭⎫-17π4>cos ⎝⎛⎭⎫-23π5, 即cos ⎝⎛⎭⎫-23π5<cos ⎝⎛⎭⎫-17π4.8.函数f(x)=sinx +2|sinx|,x ∈[0,2π]的图像与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.[答案] (1,3)[解析] f(x)=sinx +2|sinx|=⎩⎪⎨⎪⎧3sinx , 0≤x ≤π,-sinx ,π<x ≤2π.在同一坐标系中,作出函数f(x)与y =k 的图像可知1<k<3.三、解答题9.(2012·福建四地六校联考)已知函数f(x)=-1+23sinxcosx +2cos2x. (1)求f(x)的单调递减区间;(2)求f(x)图像上与原点最近的对称中心的坐标; (3)若角α,β的终边不共线,且f(α)=f(β), 求tan(α+β)的值.[解析] f(x)=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6,(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f(x)的单调减区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z).(2)由sin ⎝⎛⎭⎫2x +π6=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z), ∴f(x)图像上与原点最近的对称中心坐标是⎝⎛⎭⎫-π12,0.(3)由f(α)=f(β)得:2sin ⎝⎛⎭⎫2α+π6=2sin ⎝⎛⎭⎫2β+π6,又∵角α与β不共线,∴⎝⎛⎭⎫2α+π6+⎝⎛⎭⎫2β+π6=2k π+π(k ∈Z),即α+β=k π+π3(k ∈Z),∴tan(α+β)= 3.反馈训练2 一、选择题1.函数f(x)=3cos(3x -θ)-sin(3x -θ)是奇函数,则θ等于( ) A .k π (k ∈Z) B .k π+π6 (k ∈Z)C .k π+π3 (k ∈Z)D .k π-π3(k ∈Z)[答案] D[解析] 解法1:由两角和与差的三角公式得f(x)=2sin ⎝⎛⎭⎫π3-3x +θ.由f(x)是奇函数得π3+θ=k π(k ∈Z)⇒θ=k π-π3(k ∈Z).故选D.解法2:∵函数f(x)为奇函数,定义域为R. ∴f(0)=0,即3cos θ+sin θ=0,∴sin ⎝⎛⎭⎫θ+π3=0,∴θ+π3=k π,∴θ=k π-π3(k ∈Z). 2.函数y =11-x 的图像与函数y =2sin πx(-2≤x ≤4)的图像所有交点的横坐标之和等于( ) A .2B .4C .6D .8[答案] D[解析] 本题主要考查了正弦函数的性质以及数形结合法.依题意:两函数的图像如下图所示:由两函数的对称性可知:交点A1,A2,A3,A4,A5,A6,A7,A8的横坐标满足x1+x8=2,x2+x7=2,x3+x6=2,x4+x5=2,即x1+x2+x3+x4+x5+x6+x7+x8=8,故选D.二、填空题3.已知函数f(x)=Atan(ωx +φ)(ω>0,|φ|<π2),y =f(x)的部分图像如下图,则f(π24)=______.[答案] 3[解析] 本小题考查内容为正切函数的图像与解析式.∵T =π2=πω,∴ω=2. 当x =0时,f(0)=Atan φ=1,当x =3π8时,f ⎝⎛⎭⎫3π8=Atan ⎝⎛⎭⎫3π4+φ=0,∴φ=π4,A =1, ∴f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=tan π3= 3. 4.动点A(x ,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t =0时点A 的坐标是(12,32),则当0≤t ≤12时,动点A 的纵坐标y 关于t(单位:秒)的函数的单调递增区间是______________.[答案] [0,1]和[7,12][解析] 设点A 的纵坐标y 关于t 的函数为y =sin(ωt +φ).∵T =12=2πω,∴ω=π6. 当t =0时,sin φ=32,cos φ=12,∴φ可取π3. ∴y =sin(π6t +π3),由正弦函数的单调性知, 2k π-π2≤π6t +π3≤2k π+π2(k ∈Z) 2k π-5π6≤π6t ≤2k π+π6(k ∈Z). ∴12k -5≤t ≤12k +1(k ∈Z).当k =0时 ,-5≤t ≤1;当k =1时,7≤t ≤13又∵0≤t ≤12,∴单调增区间为[0,1]和[7,12].三、解答题5.(2012·深圳模拟)已知函数f(x)=sinx +acos2x 2,a 为常数,a ∈R ,且x =π2是方程f(x)=0的解. (1)求函数f(x)的最小正周期;(2)当x ∈[0,π]时,求函数f(x)的值域.[解析] (1)f ⎝⎛⎭⎫π2=sin π2+acos2π4=0, 则1+12a =0,解得a =-2. 所以f(x)=sinx -2cos2x 2=sinx -cosx -1, 则f(x)=2sin ⎝⎛⎭⎫x -π4-1. 所以函数f(x)的最小正周期为2π.(2)由x ∈[0,π],得x -π4∈⎣⎡⎦⎤-π4,3π4,则sin ⎝⎛⎭⎫x -π4∈⎣⎡⎦⎤-22,1, 则2sin ⎝⎛⎭⎫x -π4-1∈[-2,2-1], 所以y =f(x)值域为[-2,2-1].6.(2011·北京理,15)已知函数f(x)=4cosxsin(x +π6)-1. (1)求f(x)的最小正周期;(2)求f(x)在区间[-π6,π4]上的最大值和最小值. [解析] (1)因为f(x)=4cosxsin(x +π6)-1 =4cosx ⎝⎛⎭⎫32sinx +12cosx -1 =3sin2x +2cos2x -1=3sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π6 ∴f(x)的最小正周期为π.(2)当x ∈⎣⎡⎦⎤-π6,π4时,2x +π6∈⎣⎡⎦⎤-π6,2π3, 当2x +π6=π2,即x =π6时,f(x)取到最大值2; 当2x +π6=-π6即x =-π6时,f(x)取到最小值-1. ∴f(x)的最大值和最小值分别是2和-1.7.已知函数f(x)=log 12(sinx -cosx). (1)求它的定义域和值域;(2)求它的单调区间;(3)判断它的奇偶性;(4)判断它的周期性,如果是周期函数,求出它的最小正周期.[分析] 对于(1),(2)可以从sinx -cosx =2sin ⎝⎛⎭⎫x -π4入手.对于(3)则看f(x)的定义域是否关于原点对称.对于(4)可利用f(x +T)=f(x)先验证T 是一个周期,再证T 是最小正周期.[解析] (1)由题意得sinx -cosx>0,即2sin ⎝⎛⎭⎫x -π4>0,从而得2k π<x -π4<2k π+π(k ∈Z).∴函数f(x)的定义域为⎩⎨⎧⎭⎬⎫x|2k π+π4<x<2k π+54π,k ∈Z . ∵0<sin ⎝⎛⎭⎫x -π4≤1,∴0<sinx -cosx ≤2, 即有log 12 2≤log 12(sinx -cosx). 故函数f(x)的值域是⎣⎡⎭⎫-12,+∞. (2)∵sinx -cosx =2sin ⎝⎛⎭⎫x -π4在f(x)的定义域上的单调递增区间为⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z),单调递减区间为⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z). ∴f(x)的单调递增区间是⎣⎡⎭⎫2k π+3π4,2k π+5π4(k ∈Z); 单调递减区间是⎝⎛⎭⎫2k π+π4,2k π+3π4(k ∈Z). (3)∵f(x)的定义域在数轴上对应的点关于原点不对称,∴函数f(x)是非奇非偶函数.(4)∵f(x +2π)=log 12[sin(x +2π)-cos(x +2π)]=log 12(sinx -cosx)=f(x),∴函数f(x)的最小正周期T =2π.[点评] 本题综合考查了三角函数的性质,解题的关键是把sinx -cosx 化为Asin(ωx +φ)的形式.。
三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2021·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2021·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2021·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意; 对于C 选项,令()x x f x e e -=-知()x x f x e e --=-, 所以()()0f x f x +-=所以()x x f x e e -=-为奇函数, 又x y e =在定义内单调递增,所以x y e -=-单调递增, 所以函数x x y e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2021·武功县普集高级中学高一月考)函数y =)A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈.5.(2021·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+ B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈, 因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫-⎪⎝⎭对称 B .关于点,012π⎛⎫⎪⎝⎭对称 C .关于直线12x π=-对称D .关于直线12x π=对称 【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2021·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2021·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2021·陕西省西安中学高三其他(理))关于函数()2sin sin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分 ②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2021·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2021·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα-B .42ππα<或324ππα< C .04πα或34παπ<D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2021·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2021·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2021·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤, ∴函数sin cos y x x =⋅的最大值为12. 17.(2021·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( )A .1B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为22⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2021·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2021·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2021·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=+=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2021·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2021·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论:①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2021·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2021·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=+ ⎪⎝⎭. (1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=- ⎪⎝⎭22sin cos x x x =-)sin 21cos 2x x =-+sin 2x x =2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =. 25.(2021·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫-⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
高三数学三角函数的图象与性质试题答案及解析1.将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象关于对称,则ω的最小值是( )A.6B.C.D.【答案】D【解析】将f(x)=sinωx的图象向左平移个单位,所得图象关于x=,说明原图象关于x=-对称,于是f(-)=sin(-)=±1,故(k∈Z),ω=3k+(k∈Z),由于ω>0,故当k=0时取得最小值.选D考点:三角函数的图象与性质2.已知函数的最大值是2,且.(1)求的值;(2)已知锐角的三个内角分别为,,,若,求的值.【答案】(1);(2)【解析】(1)先由辅助角公式将化为一个的三角函数,利用最大值为2求出A,再利用列出关于的方程,解出的值;(2)由(1)可得的解析式,由可求得和,再由同角三角函数基本关系式求出,将2C代入将用C表示出来,利用三角形内角和定理及诱导公式,将化为A,B的函数,再利用两角和与差的三角公式,化为A,B的三角函数,即可求出.试题解析:(1)∵函数的最大值是2,,∴ 2分∵又∵,∴ 4分(2)由(1)可知 6分,∴ 8分∵∴, 10分∴12分考点: 辅助角公式;三角函数图像与性质;诱导公式;两角和与差的三角公式;运算求解能力3.函数的部分图象如图所示,则的值分别是()A.B.C.D.【答案】A【解析】由图知在时取到最大值,且最小正周期满足,故,,∴,∵,∴,∴,∴,∴.【考点】由三角函数图象确定函数解析式.4.设则A.B.C.D.【答案】C.【解析】故选C.【考点】1.三角函数基本关系式(商关系);2. 三角函数的单调性.5.设函数.(1)求函数f(x)的最大值和最小正周期。
(2)设A、B、C为⊿ABC的三个内角,若,,且C为锐角,求.【答案】(1);(2)【解析】(1)利用领个角的和的余弦公式、二倍角化简整理得,由可求得函数的最大值,根据求出函数的最小正周期;(2)将代入,再利用倍角公式求得,从而得到角,由,根据,求得,由结合诱导公式、两个角的和的正弦公式求出结论.(1).∴当,即(k∈Z)时,,(4分)f(x)的最小正周期,故函数f(x)的最大值为,最小正周期为π.(6分)(2)由,即,解得.又C为锐角,∴.(8分)∵,∴.∴.(12分)【考点】三角函数的和差公式、二倍角公式.6.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【答案】(1)﹣1(2)【解析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.解:(1)f(0)=2sin(﹣)=﹣1(2)f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=点评:本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.7.已知命题:函数是最小正周期为的周期函数,命题:函数在上单调递减,则下列命题为真命题的是()A.B.C.D.【答案】D【解析】函数的最小正周期为,故命题为真命题;结合正切函数图象可知,正切函数在区间上是增函数,因此函数在区间上是增函数,故命题为假命题,因此命题、、为假命题,为真命题,故选D.【考点】1.三角函数的基本性质;2.复合命题8.(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A.B.C.D.【答案】B【解析】y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B9.已知函数,.(1)求函数的最小正周期;(2)若函数有零点,求实数的取值范围.【答案】(1);(2)实数的取值范围是.【解析】(1)求函数的最小正周期,需对函数化简,把它化为一个角的一个三角函数,利用来求,因此本题的关键是化简,由形式,需对三角函数降次,因此利用二倍角公式将函数化为,由,即可得,即可求出周期;(2)若函数有零点,即,有解,移项得,因此,方程有解,只要在函数的值域范围即可,因此只需求出即可.(1) 4分6分∴周期 7分(2)令,即, 8分则, 9分因为, 11分所以, 12分所以,若有零点,则实数的取值范围是. 13分【考点】三角恒等变化,三角函数的周期,值域.10.已知向量,设函数.(1)求f(x)的最小正周期;(2)求f(x)在[0,]上的最大值和最小值.【答案】(1)π(2)最大值是1,最小值是-【解析】(1)f(x)=a·b=(cosx,-)·(sinx,cos2x)=cosxsinx-cos2x=sin2x-cos2x=sin(2x-)f(x)的最小正周期为T=π,(2)∵0≤x≤,∴-≤2x-≤.由正弦函数的性质知,sin(2x-)∈[-,1]当2x-=,即x=时,f(x)取得最大值1.当2x-=-,即x=0时,f(0)=-,因此, f(x)在[0,]上的最大值是1,最小值是-.11.已知函数f(x)=(2cos2x-1)sin2x+cos4x(1)求f(x)的最小正周期及最大值。
【高考地位】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是高考的重点和难点。
要充分运用数形结合的思想,把图象与性质结合起来,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法。
在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.【方法点评】类型一求三角函数的单调区间使用情景:一般三角函数类型解题模板:第一步先将函数式化为基本三角函数的标准式,要特别注意参数A, 的正负;第二步利用三角函数的辅助角公式一般将其化为同名函数,且在同一单调区间;第三步运用三角函数的图像与性质确定其单调区间.例1 函数cos( 2 )y x 的单调递增区间是()4A.[k π+,kπ+8 58π] B .[k π-38π,kπ+8]C.[2k π+,2kπ+8 58π] D .[2k π-38π,2kπ+8] (以上k∈Z)【答案】 B.考点:三角函数单调性.【点评】本题解题的关键是将 2x作为一个整体,利用余弦函数的图像将函数y cos( 2x)的单调44递增区间转化为2x 在区间2k ,2k 上递减的.4【变式演练1】已知函数 f (x) sin( 2 x )( 0), 直线x x1,x x2 是y f (x) 图像的任意两条对称6轴,且x1 x 的最小值为2 2.求函数 f (x) 的单调增区间;【答案】[ k , k ], k Z .3 6【解析】试题分析:根据两条对称轴之间的最小距离求周期,根据周期求,根据公式求此函数的单调递增区间.试题解析:由题意得T , 则1, f (x) sin(2 x ). 由2k 2x 2k , 解得6 2 6 23 k , Z. 故 f ( x) 的单调增区间是k k ], k Z x k k [ .,6 3 6考点:1.y A sin x 的单调性;【变式演练2】已知函数sin( )+ ( 0 0 )f x A x B A ,,的一系列对应值如下表:2x6 3 5643116 [73176y 2 4 2 4 (1)根据表格提供的数据求函数 f x 的解析式;(2)求函数 f x 的单调递增区间和对称中心;【答案】(1) f x 3sin x 1(2)352k ,2k (k Z)(k + ,1)(k Z).6 6 3(2)当2 2 ( )k x k k Z,即2 3 25x k ,k k Z时,函数f x 单调递2 2 ( )6 6增.令= ( x k k Z),所以函数 f x 的对称中心为+ 1 ( x k k Z),得= + ( k k Z)(,).3 33考点:1.三角函数解析式及基本性质;2.数形结合法[ 来源:Z*xx*]类型二由y A sin( x ) 的图象求其函数式使用情景:一般函数y A s in( x ) 求其函数式解题模板:第一步观察所给的图像及其图像特征如振幅、周期、与x轴交点坐标等;第二步利用特殊点代入函数解析式计算得出参数A, , 中一个或两个或三个;第三步要从图象的升降情况找准第一个零点的位置,并进一步地确定参数;第四步得出结论.例2 已知函数y A sin( x ) y A s in( x )( 0, , x R) 的图象如图所示,则该函数的2解析式是()(A)y 4 sin( x ) (B)y 4 s in( x )8 4 8 4(C)y 4 s in( x ) (D)y 4 sin( x )8 4 8 4【答案】 D考点:y Asin x 的图像【点评】本题的解题步骤是:首先根据已知图像与x轴的交点坐标可得其周期为T ,进而可得的大小;然后观察图像知其振幅 A 的大小;最后将图像与x 轴的交点坐标代入函数的解析式即可得到的大小.【变式演练3】已知函数 f x A sin x (其中 A 0, 0, )的部分图象如图所示,则f x2的解析式为()6A.2sinf x x B.f x2sin2x36C.2sin2f x x D.f x2sin4x6【答案】B【解析】考点:由y A s in(x)的部分图像确定解析式。
第16讲 三角函数的图象和性质常熟市中学 唐志忠一、高考要求三角函数的性质和图象主要考查三角函数的概念、周期性、单调性、有界性及其图象的平移和伸缩变换等,多以小而活的选择和填空的形式出现,有时也会出现以函数的性质为主结合图象的综合题. 二、两点解读重点:① 掌握三角函数的图象及其三角函数线;②根据图象记忆和掌握三角函数的性质;难点:①三角函数图象的平移变换和对称变换和伸缩变换;②三角函数单调区间;③三角函数性质的应用. 三、课前训练1.函数()2cos 2f x x x =+的最小正周期是 ( )(A )2π(B ) π (C )2π (D )4π 2.若把一个函数的图象按a =(-3π,-2)平移后得到函数y=cos x 的图象,则原图象的函数解析式为 ( )(A) y=cos(x +3π)-2 (B) y=cos(x -3π)-2 (C) y=cos(x+3π)+2 (D) y=cos(x -3π)+23.函数0.5log (sin cos )y x x =⋅的增区间为 ________________. 4.函数 y =2sin()cos()36x x ππ--+的最小值为 _ ______.四、典型例题例1 给定性质:①最小正周期为π,②图象关于直线3x π=对称,则下列四个函数中,同时具有性质①②的是 ( ) (A ) sin()26x y π=+(B )sin(2)6y x π=+(C )sin y x = (D )sin(2)6y x π=- 例2 把函数sin()(0,)y x ωϕωϕπ=+><的图象向左平移6π个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得图象的解析式是x y sin =,则( )(A )2,6πωϕ== (B )1,212πωϕ==-(C )1,26πωϕ== (D )2,3πωϕ==-例3 已知函数()f x =2Acos (x+ )(A>0,>0)ωϕω的最大值为3,f (x )的图象在y 轴上的截距为2,其相邻两对称轴间的距离为2,则(1)(2)(3)(100)f f f f ++++=____.例4 函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________.例5 已知函数2()23cos 2sin cos 3f x x x x =--,(1) 求函数()f x 的单调递增区间; (2) 若将()f x 的图象按向量(,0)3π-平移后,再将所有点的横坐标缩小到原来的21倍,得到函数()g x 的图象,试写出()g x 的解析式.(3) 求函数()g x 在区间[,]88ππ-上的值域.例6 已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的部分图象如下图所示:(1)求函数)(x f 的解析式并写出其所有对称中心;(2)若)(x g 的图角与)(x f 的图象关于点 P (4,0)对称,求)(x g 的单调递增区间.第16讲 三角函数的图象和性质 过关练习1.函数f (x )=sin x 的最小正周期是 ( )(A )2π(B )2π (C )π (D )不存在2.若函数()2cos()f x x ωϕ=+对任意实数x 都有()()33f x f x ππ-=+,那么()3f π的值等于 ( )(A )-2(B )2(C )±2(D )不能确定3.设函数)(|,3sin |3sin )(x f x x x f 则+=为 ( )(A )周期函数,最小正周期为32π (B )周期函数,最小正周期为3π(C )周期函数,数小正周期为π2(D )非周期函数4.已知函数)(x f y =图象如图甲,则x x f y sin )2(-=π在区间[0,π]上大致图象是( )5.把函数f (x )=-2tan(x +π4)的图象向左平移a (a >0)个单位得到函数y =g (x )的图象,若函数y =g (x )是奇函数,则a 的最小值为_________. 6. 函数x x x f cos 2cos 1)(-=,322x ππ<<的递减区间是___________.7.设函数2()3cos sin cos f x x x x a ωωω=++(其中0,a R ω>∈).且()f x 的图像在y 轴右侧的第一个最高点的横坐标是6π. (Ⅰ)求ω的值;(Ⅱ)如果()f x 在区间5[,]36ππ-,求a 的值.8.已知函数2()2sin cos f x x x x =--(1) 求函数()f x 的单调递增区间; (2) 若将()f x 的图象按向量(,0)3π-平移后,再将所有点的横坐标缩小到原来的21倍,得到函数()g x 的图象,试写出()g x 的解析式; (3) 求函数()g x 在区间[,]88ππ-上的值域.第16讲 三角函数的图象和性质 参考答案课前训练部分1.B 2.D 3.(,]42k k k Z ππππ++∈ 4. -1 典型例题部分 例1. D 例2. D,6sin()sin[()]6y x y x ππωϕωϕ=+−−−→=++−−−−−−−−→左移横坐标伸长到原来的两倍1sin[()]26y x πωωϕ=++,再与sin y x =比较对应系数可得答案D 。
三角函数的图像与性质专项训练一、单选题1.(23-24高一上·浙江宁波·期末)为了得到πsin 53y x ⎛⎫=+ ⎪⎝⎭的图象,只要将函数sin 5y x =的图象()A .向左平移π15个单位长度B .向右平移π15个单位长度C .向右平移π3个单位长度D .向左平移π3个单位长度2.(23-24高一上·浙江丽水·期末)已知函数()()2sin f x x ωϕ=+的图象向左平移π6个单位长度后得到函数π2sin 23y x ⎛⎫=+ ⎪⎝⎭的图象,则ϕ的一个可能值是()A .0B .π12C .π6D .π33.(23-24高一下·浙江杭州·期末)为了得到函数()sin2f x x =的图象,可以把()cos2g x x =的图象()A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(23-24高一上·浙江宁波·期末)已知函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭.若π8f x ⎛⎫- ⎪⎝⎭为奇函数,π8f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在π0,6⎛⎫⎪⎝⎭上没有最小值,则ω的最大值是()A .2B .6C .10D .145.(23-24高一上·浙江湖州·期末)我们知道,每一个音都是由纯音合成的,纯音的数学模型是sin y A x ω=.已知某音是由3个不同的纯音合成,其函数为()11sin sin 2sin 323f x x x x =++,则()A .π3f ⎛⎫=⎪⎝⎭B .()f x 的最大值为116C .()f x 的最小正周期为2π3D .()f x 在π0,6⎛⎫⎪上是增函数6.(23-24高一上·浙江杭州·期末)已知函数()*2sin 6f x x ωω⎛⎫=+∈ ⎪⎝⎭N 有一条对称轴为23x =,当ω取最小值时,关于x 的方程()f x a =在区间,63ππ⎡⎤-⎢⎥⎣⎦上恰有两个不相等的实根,则实数a 的取值范围是()A .(2,1)--B .[1,1)-6⎣7.(23-24高一下·浙江丽水·期末)已知函数1()2sin(32f x x x π=ω-ω>∈,R),若()f x 的图象的任意一条对称轴与x 轴交点的横坐标均不属于区间(3π,4π),则ω的取值范围是()A .1287(,[]2396B .1171729(,][,]2241824C .52811[,][,]93912D .11171723[,][]182418248.(23-24高一下·浙江杭州·期末)已知函数()()sin ,0f x x ωω=>,将()f x 图象上所有点向左平移π6个单位长度得到函数()y g x =的图象,若函数()g x 在区间π0,6⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为()A .(]0,4B .(]0,2C .30,2⎛⎤⎥⎝⎦D .(]0,1【答案】C【详解】因为函数()()sin ,0f x x ωω=>,二、多选题9.(23-24高一上·浙江台州·期末)已知函数()ππsin cos sin cos 44f x x x x x ⎛⎫⎛⎫=+++ ⎪ ⎝⎭⎝⎭,则()A .函数()f x 的最小正周期为2πB .点π,08⎛⎫- ⎪⎝⎭是函数()f x 图象的一个对称中心C .函数()f x 在区间π5π,88⎡⎤⎢⎥上单调递减D .函数()f x 的最大值为110.(23-24高一上·浙江湖州·期末)筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该筒车抽象为圆O ,筒车上的盛水桶抽象为圆O 上的点P ,已知圆O 的半径为4m ,圆心O 距离水面2m ,且当圆O 上点P 从水中浮现时(图中点0P )开始计算时间,点P 的高度()h t 随时间t (单位秒)变化时满足函数模型()()sin h t A t b ωϕ=++,则下列说法正确的是()A .函数()h t 的初相为π6B .1秒时,函数()h t 的相位为0故选:BC .11.(23-24高一上·浙江丽水·期末)已知函数π()tan(2)6f x x =-,则()A .()f x 的最小正周期是π2B .()f x 的定义域是π{|π,Z}3x x k k ≠+∈C .()f x 的图象关于点π(,0)12对称D .()f x 在ππ(,)32上单调递增三、填空题12.(23-24高一上·浙江金华·期末)函数()π2π200cos 30063f n n ⎛⎫=++ ⎪⎝⎭({}1,2,3,,12n ∈⋅⋅⋅为月份),近似表示某地每年各个月份从事旅游服务工作的人数,游客流量越大所需服务工作的人数越多,则可以推断,当n =时,游客流量最大.13.(23-24高一上·浙江湖州·期末)已知()3sin 4f x x ϕ⎛⎫=+ ⎪⎝⎭,其中0,2ϕ⎛⎫∈ ⎪⎝⎭,且ππ62f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,若函数()f x 在区间2π,3θ⎛⎫⎪上有且只有三个零点,则θ的范围为.14.(23-24高一上·浙江温州·期末)已知函数()π2sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭,对x ∀∈R 都有()π3f x f ⎛⎫⎪⎝⎭≤,且在,163⎛⎫ ⎪⎝⎭上单调,则ω的取值集合为四、解答题15.(23-24高一下·浙江丽水·期末)已知函数22()sin2f x x x x =.(1)求函数()f x 的最小正周期及单调递减区间;(2)将函数()f x 的图象上每个点的纵坐标缩短到原来的12,横坐标也缩短到原来的12,得到函数()g x 的图象,若函数()y g x m =-在区间π0,4⎡⎤⎢⎥内有两个零点,求实数m 的取值范围.16.(23-24高一下·浙江衢州·期末)已知函数()cos2f x x x =+.(1)求函数()f x 的最小正周期和对称中心;(2)求函数()f x 在π0,2⎡⎤⎢⎥上的值域.17.(23-24高一上·浙江杭州·期末)已知函数22()sin 2sin cos 3cos ,R f x x x x x x =++∈.求:(1)函数()f x 的最小值及取得最小值的自变量x 的集合;(2)函数()f x 的单调增区间.18.(23-24高一下·浙江杭州·期末)已知实数0a <,设函数22()cos sin2f x x a x a =+-,且()64f =-.(1)求实数a ,并写出()f x 的单调递减区间;(2)若0x 为函数()f x 的一个零点,求0cos2x .19.(23-24高一上·浙江嘉兴·期末)已知函数()24cos 2f x x x a x =--.(1)若1a =-,求函数()f x 在[]0,2上的值域;(2)若关于x 的方程()4f x a =-恰有三个不等实根123,,x x x ,且123x x x <<,求()()131278f x f x x --的最大值,并求出此时实数a 的值.,。
第20讲-三角函数的图象与性质一、 考情分析1.能画出三角函数y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在⎝ ⎛⎭⎪⎫-π2,π2上的性质.二、 知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin xy =cos xy =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无 对称中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴方程x =k π+π2x =k π无[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.三、 经典例题考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎨⎧⎭⎬⎫x |x ≠π6B.⎩⎨⎧⎭⎬⎫x |x ≠-π12C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z )D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 【解析】 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cosx ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8.规律方法 1.三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式. 2.简单三角不等式的解法(1)利用三角函数线求解. (2)利用三角函数的图象求解. 考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________. 【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3, 即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3.(2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.规律方法 求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 【解析】 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c【解析】 令2k π≤x +π6≤2k π+π,k ∈Z , 解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6,∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【解析】 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.规律方法 1.已知三角函数解析式求单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错.2.对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( )A.-π6B.π6C.-π3D.π3【解析】 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ).∵|θ|<π2,∴k =-1时,θ=-π6.规律方法 1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则 (1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T=π|ω|.角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( ) A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称C.关于直线x =π3对称D.关于直线x =π6对称 (2)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A.11B.9C.7D.5【解析】 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称, 所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33, 所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T 4+kT 2,即π2=2k +14T=2k +14·2πω(k ∈Z ),所以ω=2k +1(k ∈Z ).又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,ω=11验证不成立(此时求得f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝ ⎛⎭⎪⎫3π44,5π36上单调递减),ω=9满足条件,由此得ω的最大值为9.规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可. 2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可. [方法技巧]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t (或y =cos t )的性质.3.数形结合是本节的重要数学思想.4.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.5.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.6.求三角函数的单调区间时,当单调区间有无穷多个时,别忘了注明k ∈Z .四、 课时作业1.(2020·宝鸡中学高一期中)函数π()tan 23f x x ⎛⎫=-⎪⎝⎭的单调递增区间为( ) A .πππ2π,()2623k k k ⎡⎤++∈⎢⎥⎣⎦ZB .πππ5π,()212212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z D .π2ππ,π()63k k k ⎛⎫++∈ ⎪⎝⎭Z 【答案】C 【解析】()π2232k x k k Z ππππ-<-<+∈得:5212212k k x ππππ-<<+,所以函数π()tan 23f x x ⎛⎫=- ⎪⎝⎭的单调递增区间为π5ππ,π()1212k k k ⎛⎫-+∈ ⎪⎝⎭Z . 2.(2020·陕西省西安中学高一期中)设函数12sin y x =-,则函数的最大值及取到最大值时的x 取值集合分别为( ) A .3,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭B .1,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭C .3,3|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭D .1,|2,2x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭【答案】C【解析】由于22sin 2,22sin 2,112sin 3x x x -≤≤-≤-≤-≤-≤, 所以当32,2x k k Z ππ=+∈时,函数12sin y x =-有最大值为3. 3.(2020·吉林省高三其他(文))下列函数中,是奇函数且在其定义域上是增函数的是( ) A .1y x=B .y tanx =C .x x y e e -=-D .2,02,0x x y x x +≥⎧=⎨-<⎩【答案】C【解析】对于A 选项,反比例函数1y x=,它有两个减区间, 对于B 选项,由正切函数y tanx =的图像可知不符合题意;对于C 选项,令()x xf x e e -=-知()x x f x e e --=-,所以()()0f x f x +-=所以()x xf x e e -=-为奇函数,又x y e =在定义内单调递增,所以xy e -=-单调递增, 所以函数xxy e e -=-在定义域内单调递增;对于D ,令2,0()2,0x x g x x x +≥⎧=⎨-<⎩,则2,0()2,0x x g x x x -+≤⎧-=⎨-->⎩,所以()()0g x g x +-≠,所以函数2,02,0x x y x x +≥⎧=⎨-<⎩不是奇函数.4.(2020·武功县普集高级中学高一月考)函数y =的定义域是( )A .()2,266k k k Z ππ⎡⎤⎢⎥⎣⎦π-π+∈ B .()22,333k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈ D .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】C【解析】由2cos 10x +≥得:2222,33k x k k πππ-≤≤π+∈Z . 所以函数2cos 1y x =+的定义域是()2,233k k k Z 2π2⎡⎤⎢⎥⎣⎦ππ-π+∈. 5.(2020·武功县普集高级中学高一月考)函数sin y x x =的部分图像是( )A .B .C .D .【答案】A【解析】:因为sin y x x =,所以()f x 为偶函数,其图象关于y 轴对称,故可以排除B ,D.又因为函数()f x 在()0,π上函数值为正,故排除C.6.(2019·呼玛县高级中学高一月考)若函数()sin()(0,0,)2πωϕωϕ=+>><f x A x A 的部分图像如图所示,则函数()f x 的解析式为( )A .()sin(2)6f x x π=+B .()cos(2)6f x x π=+ C .()cos(2)3f x x π=+D .()sin(2)3f x x π=+【答案】D【解析】由函数的部分图像可知1A =,22T π=,故T π=,所以2ππω=即2ω=.由函数图像的对称轴为12x π=,所以22,122k k Z ππϕπ⨯+=+∈,因2πϕ<,故3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭,故选D . 7.(2019·呼玛县高级中学高一月考)设cos 12a π=,41sin6b π=,7cos 4c π=,则( ) A .a c b >> B .c b a >> C .c a b >> D .b c a >>【答案】A 【解析】4155b sinsin 6sin sin cos 66663ππππππ⎛⎫==+=== ⎪⎝⎭,7c cos cos 44ππ== 因为3412πππ>>,且y cos 0,2x π=在(,)是单调递减函数,所以a c b >>,故选A 8.(2019·延安市第一中学高三月考(理))已知函数()sin()(0)2f x x πωφωϕ=+><,图象相邻两条对称轴之间的距离为2π,将函数()y f x =的图象向左平移3π个单位后,得到的图象关于y 轴对称,那么函数()y f x =的图象( )A .关于点,012π⎛⎫- ⎪⎝⎭对称B .关于点,012π⎛⎫⎪⎝⎭对称C .关于直线12x π=-对称D .关于直线12x π=对称【答案】B【解析】因为相邻两条对称轴的距离为2π,故22T π=,T π=,从而2ω=. 设将()f x 的图像向左平移3π单位后,所得图像对应的解析式为()g x , 则()2sin 23g x x πφ⎛⎫=++⎪⎝⎭,因()g x 的图像关于y 轴对称,故()01g =±, 所以2sin 13πφ⎛⎫+=±⎪⎝⎭,2,32k k Z ππφπ+=+∈,所以,6k k Z πφπ=-∈, 因2πφ<,所以6πφ=-.又()sin 26f x x π⎛⎫=- ⎪⎝⎭,令2,62x k k Z πππ-=+∈,故对称轴为直线,23k x k Z ππ=+∈,所以C ,D 错误; 令2,6x k k π-=π∈Z ,故,212k x k Z ππ=+∈,所以对称中心为,0,212k k Z ππ⎛⎫+∈⎪⎝⎭,所以A 错误,D 正确.9.(2020·河北省故城县高级中学高一期中)关于函数sin(),2y x π=+在以下说法中正确的是( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]-ππ上是减函数【答案】B【解析】sin()cos 2y x x π=+=,它在[0,]π上是减函数.10.(2020·上海高一课时练习)下列命题中正确的是( ) A .cos y x =在第一象限和第四象限内是减函数 B .sin y x =在第一象限和第三象限内是增函数 C .cos y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是减函数 D .sin y x =在,22ππ⎡⎤-⎢⎥⎣⎦上是增函数 【答案】D【解析】对于cos y x =,该函数的单调递减区间为:[]2,2,k k k Z πππ+∈,故A 错,C 错. 对于sin y x =,该函数的单调递增区间为:2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,故B 错,D 对.11.(2020·陕西省西安中学高三其他(理))关于函数()2sinsin 222x x f x x π⎛⎫=+- ⎪⎝⎭有下述四个结论: ①函数()f x 的图象把圆221x y +=的面积两等分②()f x 是周期为π的函数③函数()f x 在区间(,)-∞+∞上有3个零点④函数()f x 在区间(,)-∞+∞上单调递减 其中所有正确结论的编号是( ) A .①③④ B .②④C .①④D .①③【答案】C【解析】f (x )=2sin2x sin (2π+2x )﹣x =2sin 2x cos 2x﹣x =sin x ﹣x , 对于①,因为f (﹣x )=sin (﹣x )﹣(﹣x )=﹣sin x +x =﹣f (x ),所以函数f (x )为奇函数,关于原点对称,且过圆心,而圆x 2+y 2=1也是关于原点对称,所以①正确;对于②,因为f (x +π)=sin (x +π)﹣(x +π)=﹣sin x ﹣x ﹣π≠f (x ),所以f (x )的周期不是π,即②错误;对于③,因为()'f x =cos x ﹣1≤0,所以f (x )单调递减,所以f (x )在区间(﹣∞,+∞)上至多有1个零点, 即③错误; 对于④,()'fx =cos x ﹣1≤0,所以f (x )单调递减,即④正确.12.(2020·山西省高三其他(文))已知()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象关于直线524x π=对称,把()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称,则ω的最小值为( ) A .2 B .3C .4D .6【答案】C【解析】因为()f x 的图象向左平移4π个单位后所得的图象关于点,012π⎛⎫⎪⎝⎭对称, 所以()f x 关于点,03π⎛⎫⎪⎝⎭对称, 又()f x 的图象既关于直线524x π=对称, 设()f x 的最小正周期为T ,则()()2153244k T k N ππ+-=∈, 即()21284k k N ππω+⎛⎫=⋅∈ ⎪⎝⎭,所以()84k k N ω=+∈,取0k =,得4ω=,13.(2020·上海高二课时练习)设直线的斜率(,1][1,)k ∈-∞-⋃+∞,则该直线的倾斜角α满足( ). A .44ππα- B .42ππα<或324ππα< C .04πα或34παπ< D .04πα或34παπ【答案】B【解析】因为tan k α=, 所以当1k ≤-时,324ππα<≤, 当1k时,42ππα≤<,即直线的倾斜角α满足42ππα<或324ππα<, 14.(2020·调兵山市第一高级中学高一月考)方程10sin x x =的根的个数是( ) A .6 B .7C .8D .9【答案】B【解析】分别作函数,10sin y x y x ==图象,如图,由图可得交点个数为7,所以方程10sin x x =的根的个数是715.(2020·福建省高三其他(文))图数()1cos f x x x x ⎛⎫=+ ⎪⎝⎭,[)(],00,x ππ∈-的图象可能为( )A .B .C .D .【答案】A【解析】由题知:()()11cos cos ()f x x x x x f x x x ⎛⎫⎛⎫-=---=-+=- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 为奇函数,故排除B ,D. 又因为02x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故排除C.16.(2020·上海高一期中)函数sin cos y x x =⋅的最小正周期和最大值分别为( ) A .π,1 B .π,12C .2π,1D .2π,12【答案】B【解析】1sin cos =sin 22y x x x =⋅, 函数sin cos y x x =⋅的最小正周期22T ππ==, 1sin 21x -≤≤,∴111sin 2222x -≤≤,∴函数sin cos y x x =⋅的最大值为12. 17.(2020·山西省高三其他(文))对于函数()()1122f x sinx cosx sinx cosx =+--.有下列说法:①()f x 的值城为[]1,1-;②当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值;③函数()f x 的最小正周期是π;④当且仅当()222x k kk Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >.其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B【解析】因为()()1122cosx sinx cosx f x sinx cosx sinx cosx sinx sinx cosx≥⎧=+--=⎨<⎩,,,作出函数()f x 的图象,如图所示:所以,()f x 的值城为21,2⎡-⎢⎣⎦,①错误; 函数()f x 的最小正周期是2π,③错误; 当且仅当()24x k k Z ππ=+∈时,函数()f x 取得最大值,②正确;当且仅当()222x k k k Z πππ⎛⎫∈+∈ ⎪⎝⎭,时,()0f x >,④正确. 18.(多选题)(2020·海南省海南中学高三月考)已知函数()()sin f x A x =+ωϕ(0,0A ω>>)在1x =处取得最大值,且最小正周期为2,则下列说法正确的有( ). A .函数()1f x -是奇函数B .函数()1f x +是偶函数C .函数()2f x +在[]0,1上单调递增D .函数()3f x +是周期函数【答案】BCD【解析】因为()()sin f x A x =+ωϕ在1x =处取得最大值, 所以有2()2k k Z πωϕπ+=+∈,又因为()()sin f x A x =+ωϕ的最小正周期为2, 所以有22,0πωωπω=>∴=,因此()()sin sin 2cos 2f x A x A x k A x πωϕπππ⎛⎫=+=+-=- ⎪⎝⎭.选项A :设()()1cos[(1)]cos g x f x A x A x ππ=-=--=, 因为()cos[()]cos ()g x A x A x g x ππ-=-==, 所以()()1g x f x =-是偶函数,故本选项说法不正确; 选项B :设()()1cos[(1)]cos h x f x A x A x ππ=+=-+= 因为()cos[()]cos ()h x A x A x h x ππ-=-==, 所以()()1h x f x =+是偶函数,故本选项说法正确;选项C :设()()2cos[(2)]cos m x f x A x A x ππ=+=-+=-,因为[]0,1x ∈,所以[]0,x ππ∈,又因为0A >,所以函数()()2m x f x =+在[]0,1上单调递增,故本选项说法正确;选项D :设()()3cos[(3)]cos n x f x A x A x ππ=+=-+=, 函数()n x 最小正周期为:22ππ=,所以本选项说法正确.19.(2020·山东省微山县第一中学高一月考)已知函数()cos 6f x x π⎛⎫=+ ⎪⎝⎭,则( )A .2π为()f x 的一个周期B .()y f x =的图象关于直线43x π=对称 C .()f x 在,2ππ⎛⎫⎪⎝⎭上单调递减 D .()f x π+的一个零点为3π【答案】AD【解析】根据函数()6f x cos x π⎛⎫=+⎪⎝⎭知最小正周期为2π,A 正确.当43x π=时,443cos cos 03362f ππππ⎛⎫⎛⎫=+== ⎪ ⎪⎝⎭⎝⎭,由余弦函数的对称性知,B 错误;函数()6f x cos x π⎛⎫=+ ⎪⎝⎭在5,26ππ⎛⎫ ⎪⎝⎭上单调递减,在5,6ππ⎛⎫⎪⎝⎭上单调递增,故C 错误; ()76f x cos x ππ⎛⎫+=+⎪⎝⎭,73cos cos 03632f πππππ⎛⎫⎛⎫∴+=+== ⎪ ⎪⎝⎭⎝⎭,故D 正确.20.(2020·山东省高一期中)将函数()2sin 2f x x x =+12π个单位,再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象,则下列说法中正确的是( )A .()f xB .()g x 是奇函数C .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称 D .()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 【答案】CD【解析】函数2()sin 2sin 22sin(2)3f x x x x x x π=++=+,把函数图象向左平移12π个单位,得到2sin[2()]2sin(2)2cos 21232y x x x πππ=++=+=, 再把各点的横坐标伸长到原来的2倍(纵坐标不变),得到()2cos g x x =. ①故()f x 函数的最大值为2,故选项A 错误. ②函数()2cos g x x =为偶函数,故选项B 错误. ③当6x π=-时,2sin 20663f πππ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称,故选项C 正确.④由于()2cos g x x =,在[]2,2k k πππ+,()k Z ∈上单调递减,故函数()g x 在2,63ππ⎛⎫⎪⎝⎭上单调递减.故选项D 正确.21.(2020·上海高一期中)函数()tan 6f x x π=的单调递增区间为________【答案】(63,63)k k -+,k ∈Z 【解析】由622x k k πππππ-+<<+,k Z ∈,解得6363k x k -<<+,k Z ∈,故函数的单调增区间为()63,63k k -+,k Z ∈,22.(2020·河北省故城县高级中学高一期中)已知函数()sin()f x x π=-,()cos()g x x π=+,有以下结论: ①函数()()y f x g x =的最小正周期为π; ②函数()()y f x g x =的最大值为2;③将函数()y f x =的图象向右平移2π个单位后得到函数()y g x =的图象; ④将函数()y f x =的图象向左平移2π个单位后得到函数()y g x =的图象.其中正确结论的序号是____________. 【答案】①④【解析】()sin()sin f x x x π=-=-,()cos()cos g x x x π=+=-. 因为1()()(sin )(cos )sin cos sin 22y f x g x x x x x x ==-⋅-=⋅=, 所以1()()sin 22y f x g x x ==的最小正周期为:22ππ=,故结论①正确; 因为1()()sin 22y f x g x x ==的最大值为12,所以结论②不正确;因为函数()y f x =的图象向右平移2π个单位后得到函数的解析式为: ()sin()cos 22y f x x x ππ=-=--=,所以结论③不正确;因为函数()y f x =的图象向左平移2π个单位后得到函数的解析式为: ()sin()cos ()22y f x x x g x ππ=+=-+=-=,所以结论④正确.23.(2020·宝鸡中学高一期中)函数()sin()f x A x B ωϕ=++的一部分图象如图所示,其中0A >,0>ω,π||2ϕ<.(1)求函数()y f x =解析式;(2)求[0,π]x ∈时,函数()y f x =的值域; (3)将函数()y f x =的图象向右平移π4个单位长度,得到函数()y g x =的图象,求函数()y g x =的单调递减区间.【解析】(1)根据函数()sin()f x A x B ωϕ=++的一部分图象,其中0A >,0>ω,π||2ϕ<, ∵40A B A B +=⎧⎨-+=⎩,∴22A B =⎧⎨=⎩;∵12π5ππ44126T ω=⋅=-,∴2ω=, 再根据π46f ⎛⎫= ⎪⎝⎭,可得ππ22π62k ϕ⨯+=+,k ∈Z ,∴π2π6k ϕ=+,k ∈Z ,∵π||2ϕ<,∴π6ϕ=,∴函数()y f x =的解析式为π()2sin 226f x x ⎛⎫=++ ⎪⎝⎭; (2)∵[]0,πx ∈,∴ππ13π2,666x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 2[1,1]6x ⎛⎫+∈- ⎪⎝⎭, ∴函数()y f x =的值域为[]0,4; (3)将函数()y f x =的图象向右平移π4个单位长度, 得到函数πππ()2sin 222sin 22463g x x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,对于函数π()2sin 223g x x ⎛⎫=-+ ⎪⎝⎭, 令ππ3π2π22π232k x k +≤-≤+,k ∈Z , 求得5π11πππ1212k x k +≤≤+,k ∈Z , 故函数()g x 的单调减区间为5π11ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,k ∈Z .24.(2020·山西省平遥中学校高一月考)已知函数()4sin cos 3f x x x π⎛⎫=++ ⎪⎝⎭(1)求函数()f x 的最小正周期及单调增区间; (2)求函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域和取得最大值时相应的x 的值.【解析】(1)()4sin cos cos sin sin 33f x x x x ππ⎛⎫=-+ ⎪⎝⎭22sin cos x x x =-)sin 21cos2x x =-+sin 22x x =+2sin 23x π⎛⎫=+ ⎪⎝⎭.∴22T ππ==. 由222232k x k πππππ-+≤+≤+,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈ ∴单调增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)∵46x ππ-≤≤,∴22633x πππ-≤+≤. ∴1sin 2123x π⎛⎫-≤+≤ ⎪⎝⎭,即12sin 223x π⎛⎫-≤+≤ ⎪⎝⎭.∴函数()f x 在区间,46ππ⎡⎤-⎢⎥⎣⎦上的值域为[]1,2- 且当232x ππ+=,即12x π=时,()max 2f x =.25.(2020·武功县普集高级中学高一月考)在已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02A πωϕ>><<)的图象与x 轴的交点中,相邻两个交点之间的距离为2π,且图象上一个最低点为2,23M π⎛⎫- ⎪⎝⎭. (1)求()f x 的解析式;(2)当,122x ππ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域. 【解析】(1)依题意,由最低点为2,23M π⎛⎫- ⎪⎝⎭,得2A =,又周期T π=,∴2ω=. 由点2,23M π⎛⎫-⎪⎝⎭在图象上,得42sin 23πϕ⎛⎫+=- ⎪⎝⎭, ∴4232k ππϕπ+=-+,k Z ∈,1126k k Z πϕπ∴=-+∈,. ∵0,2πϕ⎛⎫∈ ⎪⎝⎭,∴6πϕ=,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. 由222262k x k πππππ-≤+≤+,k Z ∈,得36k x k k Z ππππ-≤≤+∈,.∴函数()f x 的单调增区间是(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2),122x ππ⎡⎤∈⎢⎥⎣⎦,∴72,636x πππ⎡⎤+∈⎢⎥⎣⎦. 当262x ππ+=,即6x π=时,()f x 取得最大值2; 当7266x ππ+=,即2x π=时,()f x 取得最小值1-,故()f x 的值域为[]1,2-.。
专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。
.三角函数的图像和性质1.函数)62sin(21π+=x y 的单增区间是___________. 【答案】Z k k k ∈⎥⎦⎤⎢⎣⎡+-6,3ππππ2.函数y =cos 24x π⎛⎫-⎪⎝⎭的单调递增区间是________. 【答案】388k k ππππ⎡⎤⎢⎥⎣⎦-+,+(k∈Z)3.函数3sin(2)3y x π=+图象的对称中心是_______.【答案】(,0)32k ππ-+4.若函数f(x)=sin(ωx+6π)(ω>0)的最小正周期是5π,则ω=_________。
【答案】105.函数)4tan()(π+=x x f 单调增区间为( )A .Z k k k ∈+-),2,2(ππππ B .Z k k k ∈+),,(πππC .Z k k k ∈+-),4,43(ππππD .Z k k k ∈+-),43,4(ππππ 【答案】C6.下列函数中周期为π且为偶函数的是 ( ) A .)22sin(π-=x y B. )22cos(π-=x y C. )2sin(π+=x y D. )2cos(π+=x y【答案】A7.设函数()sin(2)3f x x π=+,则下列结论正确的是A .()f x 的图像关于直线3x π=对称 B .()f x 的图像关于点(,0)4π对称C .()f x 的最小正周期为2πD .()f x 在[0,]12π上为增函数【答案】D8.如果函数)4cos(ax y +=π的图象关于直线π=x 对称,则正实数a 的最小值是( )A .41=a B .21=a C .43=a D .1=a【答案】C9.已知ω>0,0<φ<π,直线x =4π和x =54π是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )(A )4π (B )3π (C )2π(D )34π【答案】A【解析】试题分析:函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴间的距离等于半个周期,所以2,1T πω==.由sin()14πϕ+=得4πϕ=满足0ϕπ<<,故选A.考点:三角函数的图象及其性质. 10.若当4x π=时,函数()sin()(0)f x A x A ϕ=+>取得最小值,则函数()4y f x π=-是( )A.奇函数且图像关于点(,0)2π对称 B.偶函数且图像关于直线2x π=对称C.奇函数且图像关于直线2x π=对称 D.偶函数且图像关于点(,0)2π对称【答案】D【解析】由题意知sin()14πϕ+=-,即324k πϕπ=-; 函数3()sin(2)cos 444y f x A x k A x ππππ=-=-+-=-,所以是偶函数且图像关于点(,0)2π对称.11.函数()sin 24f x x π⎛⎫=-⎪⎝⎭在区间[0,]2π上的最小值是A .-l B.2 C.2- D .0 【答案】C【解析】因为[0,]2x π∈,所以32[,],444x πππ⎛⎫-∈- ⎪⎝⎭因此()sin 2[4f x x π⎛⎫=-∈ ⎪⎝⎭即函数最小值是2-.12.函数y =2sinx 263x ππ⎛⎫≤≤ ⎪⎝⎭的值域是________.【答案】[1,2]【解析】根据正弦函数图象,可知x =6π时,函数取到最小值1;x =2π时,函数取到最大值2. 13.当7,66x ππ⎡⎤∈⎢⎥⎣⎦时,函数23sin 2cos y x x =--的最小值是_______,最大值是________。
.【答案】7,28【解析】71,,sin 1,662x x ππ⎡⎤∈-≤≤⎢⎥⎣⎦22sin sin 1,y x x =-+ 当1sin 4x =时,min 78y =;当1sin 1,2x =-或时,max 2y = 14.已知函数)sin()(ϕω+=x A x f ),0,0(πϕπω<<->>A 的部分图象如图所示,则函数)(x f 的解析式为( )A .)421sin(2)(π+=x x fB .)4321sin(2)(π+=x x fC .)421sin(2)(π-=x x fD .)4321sin(2)(π-=x x f【答案】B【解析】由图象可知函数的最大值为2,最小值为-2,所以2A =; 由图象可知函数的周期324,22T πππ⎛⎫⎛⎫=⨯--= ⎪⎪⎝⎭⎝⎭所以221=42T ππωπ== 所以,13-+==2224πππϕϕ⎛⎫⨯∴ ⎪⎝⎭,所以函数的解析式为:)4321sin(2)(π+=x x f 故答案选B. 考点:三角函数的图象与性质.15.函数()si ()n f x A x ωϕ=+(000A ωϕπ>><<,,)的图象如图所示,则(0)f 的值为 ( )A .1B .0C .2D .3 【答案】A【解析】由已知,4112,(),2,3126A T πππω==⨯-==,所以()2sin 2()f x x ϕ=+, 将(),26π代人得,()2,s 2si in(6)1n 23ππϕϕ==⨯++,所以,,326πππϕϕ==+, ()2sin 2(0)2sin 2(),(01662s n 6)i f x x f πππ⨯===+=+,故选A .考点:正弦型函数,三角函数求值.16.已知函数()sin()f x x ωϕ=+的图象如图所示,则(2)f = .x yO 1112π6π22-第15题图【答案】【解析】根据38312,,43T T =-==解出3π4ω=,过点(1,1),所以33sin()1,,442πππϕϕ+=+=π4ϕ=-,因此(2)f =35sin(2)sin 4442πππ⨯-==- 考点:三角函数的图象 17.将函数sin()6y x π=+的图像向左平移π个单位,则平移后的函数图像( )(A)关于直线π3x =对称 (B)关于直线π6x =对称 (C)关于点π03⎛⎫ ⎪⎝⎭,对称 (D)关于点π06⎛⎫ ⎪⎝⎭,对称 【答案】A18.将函数 ()sin 26f x x π⎛⎫=+⎪⎝⎭的图像向右平移6π个单位后,所得的图像对应的解析式为( )A .y =sin 2xB .y =cos 2xC .y =sin(2)6x π-D .y =2sin(2)3x π+ 【答案】C【解析】根据三角函数图像变换规律:左正右负,因此图像向右平移6π个单位,所以)62sin(]6)6(2sin[πππ-=+-=x x y ,选C.考点:三角函数图像变换 19.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位【答案】C【解析】因为3sin(2)3sin 2()48y x x ππ=+=+,所以要得到)42sin(3π+=x y 的图象只需将3sin 2y x =的图象向左平移8π个单位。
故C 正确。
考点:三角函数图像的伸缩平移。
.20.将函数f(x)=sin(3x +4π)的图象向右平移3π个单位长度,得到函数y =g(x)的图象,则函数y =g(x)在[3π,23π]上的最小值为 .【答案】2-【解析】由函数平移的规律可得函数3()sin[3()]sin(3)344g x x x πππ=-+=-,因为233x ππ≤≤,可得353444x x πππ≤-≤,结合图象可得最小值为5sin 42π=-. 考点:三角函数的图象和性质21. 已知函数()y f x =,将()f x 的图象上的每一点的纵坐标保持不变,横坐标变为原来的2倍,然后把所得的图象沿着x 轴向左平移2π个单位,这样得到的是1sin 2y x =的图象,那么函数()y f x =的解析式是( ) A.1()sin 222x f x π⎛⎫=- ⎪⎝⎭ B. 1()sin 222f x x π⎛⎫=+ ⎪⎝⎭C. 1()sin 222x f x π⎛⎫=+ ⎪⎝⎭D. 1()sin 222f x x π⎛⎫=- ⎪⎝⎭【答案】D【解析】由题意曲线与y=1 /2 sinx 的图象沿x 轴向右平移π /2 个单位,再纵坐标不变,横坐标缩小为原来的一半即可得到y=f (x )的图形,故y=1/ 2 sinx 的图形沿x 轴向右平移π 2 个单位所得图形对应的函数解析式为y=1 /2 sin(x-π /2 ),然后再将所得的曲线上的点的纵坐标保持不变,横坐标缩小到原来的一半,所得的图形对应的解析式为y=1/ 2 sin(2x-π/ 2 ) 故选D22.将函数()3sin(2)6g x x π=+图像上所有点向左平移6π个单位,再将各点横坐标缩短为原来的12倍,得到函数f(x),则( )A .f(x)在(0)4π,单调递减B .f(x)在3()44ππ,单调递减C .f(x)在(0)4π,单调递增D .f(x)在3()44ππ,单调递增【答案】A【解析】将函数()3sin(2)6g x x π=+图像上所有点向左平移6π个单位,得3sin[2(x )]3cos 2x 66y ππ=++=,再将各点横坐标缩短为原来的12倍,得()3cos 4x f x =,当x (0,)4π∈时,4x (0,)π∈,因为cos y t =递减,而t 4x =,故函数()f x 递减,故选A.考点:三角函数的图象和性质.23.已知函数)62sin(2π-=x y .(1)写出它的振幅、周期、频率和初相; (2)求这个函数的单调递减区间;(3)求出使这个函数取得最大值时,自变量x 的取值集合,并写出最大值。
【答案】(1)振幅2,周期π,频率1π,初相6π-(2)()5,36k k k z ππππ⎡⎤++∈⎢⎥⎣⎦(3)当,3x k k zππ=+∈,函数有最大值2y =【解析】(1)振幅2,周期2,2T ππ==,频率11f T π==,初相6π-(2)令3222262k x k πππππ+≤-≤+整理得536k x k ππππ+≤≤+(3)函数最大值为2,此时需满足22,623x k x k k Z πππππ-=+∴=+∈ 考点:三角函数性质24.已知函数()sin(3)(0,0)f x A x A ϕϕπ=+><<在12x π=时取得最大值4.(1)求()f x 的最小正周期; (2)求()f x 的解析式; (3)若[,0]4x π∈-,求()f x 的值域.【答案】(1)23π;(2)()4sin(3)4f x x π=+;(3)[4,-.【解析】(1)322πωπ==T (2)()412f x x πQ =在时取得最大值,432,()122A k k Z ππϕπ∴=⨯+=+∈且2,(),0()4sin(3)444k k Z f x x πππϕπϕπϕQ =+∈<<∴=∴=+即又(3)[,0]4x π∈-时,3[,]424x πππ+∈-1sin(3)42x π-≤+≤44sin(3)4x π-≤+≤()f x 的值域为[4,-考点:1.由y=Asin (ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法. 25.已知函数),0,0)(sin()(πϕωϕω<>>+=A x A x f 的图象的一个最高点为),2,12(π-与之相邻的与x 轴的一个交点为).0,6(π(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调减区间和函数图象的对称轴方程;.(3)用“五点法”作出函数)(x f y =在长度为一个周期区间上的图象. 【答案】(1)()22sin 23f x x π⎛⎫=+⎪⎝⎭(2)()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,()122k x k Z ππ=-+∈. (3)见解析【解析】⑴由题意,2A =,46124T πππ⎛⎫=--= ⎪⎝⎭,所以T =π,所以2ωπ=π,2ω=. 所以()()2sin 2f x x ϕ=+,将,212π⎛⎫- ⎪⎝⎭代入,得sin 16ϕπ⎛⎫-+= ⎪⎝⎭,因为ϕ<π,所以3ϕ2π=,所求函数解析式为()2sin 23f x x 2π⎛⎫=+ ⎪⎝⎭.⑵由()3222232k x k k π2ππ+π++π∈Z ≤≤,得51212k x k ππ-+π+π≤≤, 所以函数的单调减区间是()5,1212k k k ππ⎡⎤-+π+π∈⎢⎥⎣⎦Z .由()232x k k 2ππ+=+π∈Z (k ∈Z ),得122k x ππ=-+, 所以函数图象的对称轴方程为()122k x k ππ=-+∈Z .⑶1)列表 x 3π- 12π-6π 125π 32π223x π+ 0 2π π 23π2π y 0 2 2-0 2 13分 2)描点画图16分考点:1.求三角函数解析式;2.三角函数的性质;3.五点作图法.。