全国2008年7月概率论与数理统计(经管类)试卷
- 格式:doc
- 大小:87.50 KB
- 文档页数:6
全国自考概率论与数理统计(经管类)试卷2009-11-3全国2009年7月自考 概率论与数理统计(经管类)试卷课程代码:04183一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=l B .P (A )=1-P (B ) C .P (AB )=P (A )P (B )D .P (A ∪B )=12.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1D .P (A |B )=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25 C .0.375D .0.504.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-]B .[2π,0]C .]π,0[D .[23π,0] 5.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6 C .0.66D .0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A .61 B .41C .31D .21 7.设随机变量X ,Y 相互独立,其联合分布为则有( )A .92,91==βαB .91,92==βαC .32,31==βαD .31,32==βα8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21D .29.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP nn ( )A .=0B .=1C .> 0D .不存在10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0 :μ=μ0,那么在显著水平0.01下,下列结论中正确的是( ) A .不接受,也不拒绝H 0 B .可能接受H 0,也可能拒绝H 0 C .必拒绝H 0D .必接受H 0二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题及答案课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e 4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( ) A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(NB .)27,7(NC .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
2008年7月高等教育自学考试全国统一命题考试教育统计与测量试卷课程代码0452一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.以下不.属于等距变量特性的是()A.可比性B.可加性C.可除性D.可平均2.在某个拼写测验分数分布表中,“80~90”这一组的累积百分数为76,这表示()A.80分以上的考生人数占76%B.80分以上的考生人数占24%C.89.5分以上的考生人数占76%D.89.5分以上的考生人数占24%3.当我们需要用图形按学生的家庭出身(包括工人、农民、干部及其他)及性别来描述学生情况时,最好采用()A.散点图B.线形图C.条形图D.圆形图4.画次数直方图时,要求各直方条()A.宽度相等B.高度相等C.间隔不同D.色调不同5.下列数据中,不可能...是相关系数取值的是()A.-0.85B.0.0C.0.67D.1.036.已知两列变量均为连续变量,样本容量很小,计算两个变量之间的相关系数最好采用()A.积差相关法B.等级相关法C.点双列相关法D.列联相关法7.标准分数量尺属于()A.名义量尺B.顺序量尺C.等距量尺D.比率量尺8.一个性能优良的试题,其区分度指数的取值必须()A.大于0.40B.大于0.60C.在0.6至0.8之间D.在0.8至1.0之间9.某份试卷按百分制计分,现用再测法来考察测验的信度,应计算两次测验分数的()A.积差相关B.等级相关C.点双列相关D.列联相关10.大规模使用的标准化测验,其信度系数的取值必须()A.大于0.50B.大于0.90C.等于1.0D.达到显著性水平11.当一个总体比较大且内部结构复杂,而所抽样本比较小时,应采用()A.简单随机抽样B.分层抽样C.分阶段抽样D.等距抽样12.平均数的抽样分布的平均数等于()A.原总体分布的平均数B.原总体分布平均数的一半C.原总体分布平均数的n分之一D.原总体分布平均数的n分之一13.虚无假设在统计假设检验中被当作已知条件运用,因此,虚无假设应是一个()A.相对明确的陈述B.相对模糊的陈述C.简短的陈述D.用符号表示的陈述14.在统计假设检验中,如果计算的检验统计量没有进入危机域,则说明()A.不是小概率事件B.是小概率事件C.应拒绝虚无假设D.应接受备择假设15.严格配对的两批实验对象,在不同实验上取得的两组数据属于()A.独立总体B.相关总体C.同一总体D.混合总体二、名词解释题(本大题共4小题,每小题3分,共12分)16.顺序变量17.负相关18.稳定性系数19.概率三、简答题(本大题共4小题,任选3题,每小题6分,共18分。
2008年7月江苏省高等教育自学考试27871统计基础(学生用)一、单项选择题(每小题1分,共20分)在下列每小题的四个备选答案中选出一个正确答案。
并将其字母标号填入题干的括号内。
1.一个统计总体( )P12 A.只能有一个标志 B.只能有一个指标C.可以有多个标志D.可以有多个指标2.属于数量标志的是( )P11 A.月工资 B.学历 C.健康状况 D.性别3.指标是说明总体特征的,标志是说明总体单位特征的,所以( )P10 A.标志和指标之间的关系是固定不变的 B.标志和指标之间的关系是可以变化的C.标志和指标都是可以用数值表示的 D.只有指标才可以用数值表示4.统计调查分为一次性调查和经常性调查,是根据( )P23A.是否定期进行 B.组织方式不同C.是否调查全部单位D.时间是否连续5.某市工业企业2005年生产经营成果年报呈报时间规定在2006年1月31 日,则调查期限为( )P22 A.一日B.一个月 C.一年 D.一年零一个月6.重点调查的重点单位是指( )P26 A.这些单位的单位总量占总体单位总量的比重很大B.标志值很大C.这些单位的标志总量占总体标志总量的比重很大D.在社会中的重点单位或部门7.某同学统计学考试成绩为80分,应将其计入( )P38 A.成绩为80分以下的人数中B.成绩为70分~80分的人数中C.成绩为80分~90分的人数中D.根据具体情况确定的人数中8.组距、组限和组中值之间的关系是( ) P37A组距=(上限-下限)÷2 B组中值=(上限+下限)÷2C组中值=(上限-下限)÷2 D组限-组中值÷29.对总体进行分组时,采用等距数列还是异距数列,决定于( )P38A.次数的多少 B.变量的大小 C.组数的多少D.现象的性质和研究的目的10.计算平均指标的前提条件是总体单位的( )P57 A.大量性 B.具体性 C.同质性 D.数量性11.几何平均数主要适用于计算( )P101 A.具有等差关系的数列B.变量值的连乘积等于总比率或总速度的数列C.变量值为偶数项的数列D.变量值的连乘积等于变量值之和的数列12.某地区2004年底有1000万人口,零售商店数有5万个,则商业网点密度指标为()P54A.5个/千人B.2千人/个C.200个/人D.O.2个/千人13.以1980年a。
全国2008年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6D .0.83.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e 31 B .3eC .11--eD .1311--e4.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41B .31C .3D .45.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )A .161B .163 C .41 D .836.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .17.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N8.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( ) A .np p )1(- B .np p )1(- C .)1(p np - D .)1(p np -9.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(tD .)1,1(F10.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11B .∑=--ni iXn 12)(11μC .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
08年7月高等教育自学考试概率论与数理统计(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设随机事件A 与B 互不相容,2.0)(=A P ,4.0)(=B P ,则=)|(A B P ( A ) A .0 B .0.2 C .0.4 D .1A .0.1B .0.4C .0.9D .1A .)()()(B P A P B A P += B .)()(1)(B P A P B A P -=C .)()()(B P AP B A P =D .1)(=B A PA .0.002B .0.04C .0.08D .0.1045.已知随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤=3131321021)(x x x x F ,则==}1{X P ( A )A .61B .21C .32 D .16.已知X ,Y 的联合概率分布为),(y x F 为其联合分布函数,则=⎪⎭⎫⎝⎛31,0F ( D )A .0B .1 C .1 D .1 7.设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧>>=+-其它0,0),()(y x e y x f y x ,则=≥}{Y X P ( B )A .1 B .1 C .2 D .3A . 1-B .0C .1D .2n 21切比雪夫不等式为( B ) A .22}|{|εσεμnn X P ≥<-B .221}|{|εσεμn X P -≥<-C .221}|{|σεμn X P -≤≥-D .22}|{|σεμn X P ≤≥-10.设总体X ~),(2σμN ,2σ未知,X 为样本均值,∑=-=i i nX X n S 122)(1,∑=--=ni i X X n S 122)(11,检验假设00:μμ=H 时采用的统计量是( C ) A .nX Z /0σμ-=B .nS X T n /0μ-=C .nS X T /0μ-=D .nX T /0σμ-=11.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________________.______________.则在[]T ,0内至少有一辆汽车通过的概率为________________.16.设随机变量),(Y X 的联合分布为则=α________________.17.设随机变量),(Y X 的概率密度为⎩⎨⎧=其他),(y x f ,则X 的边缘概率密度=)(x f________________.所围成的三角形区域,则),(Y X 的概率密度=),(y x f ________________.19.设X ~)1,0(N ,Y ~⎪⎭⎫⎝⎛21,16B ,且两随机变量相互独立,则=+)2(Y X D________________.20.设随机变量X ~)1,0(U ,用切比雪夫不等式估计≤⎭⎬⎫⎩⎨⎧≥-31|21|X P ________________.21.设n X X X ,,,21 是来自总体),(2σμN 的样本,则∑⎪⎫⎛-ni X μ~________(标出参数). 量为5的简单随机样本,则λ的矩估计值为________________.23.由来自正态总体X ~)9.0,(μN 、容量为9的简单随机样本,得样本均值为5,则未知参数μ的置信度为0.95的置信区间是____________.(96.1025.0=u ,645.105.0=u )24.设总体X 服从正态分布),(1σμN ,总体Y 服从正态分布),(2σμN ,n X X X ,,,21 和m Y Y Y ,,,21 分别是来自总体X 和Y 的简单随机样本,则=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(1122m n Y Y X X E n i m i i i ________________.i i xx xy 则y 对x 的线性回归方程为________________.26.某商店有100台相同型号的冰箱待售,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的冰箱质量不同,它们的不合格率依次为0.1、0.4、0.2,现有一位顾客从这批冰箱中随机地取了一台,试求:(1)该顾客取到一台合格冰箱的概率;(2)顾客开箱测试后发现冰箱不合格,试问这台冰箱来自甲厂的概率是多大? 解:记=i A {取到第i 个厂的产品},3,2,1=i ,=B {取到合格品},则所求概率为 (1))|()()|()()|()()(332211A B P A P A B P A P A B P A P B P ++=100818.0100156.0100259.010060=⨯+⨯+⨯=; (2)1961008111.010060)()|()()|(111=-⨯==B P A B P A P B A P . 27.设随机变量X 只取非负整数值,其概率为1)1(}{++==k ka a k X P ,其中12-=a ,试求)(X E 及)(X D .解:记a ax +=1,则212-=x ,112122}{---===k k x x x k X P , ,2,1,0=k , 2)1(1112001=-='⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛=∑∑∞+=∞+=-x x x kx k k k k , 2)1(1120010012=-='⎪⎭⎫ ⎝⎛-='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛=∑∑∑∑∞+=∞+=-∞+=∞+=-x x x x x kx x kx x k k k k k k k k k , 122212212)(01-=⋅-=-=∑+∞=-k k kx X E ,122212212)(0122-=⋅-=-=∑+∞=-k k x k X E , 22)12(12)()()(222-=-+-=-=X E X E X D . 四、综合题(本大题共2小题,每小题12分,共24分)28.甲在上班路上所需的时间(单位:分)X ~)100,50(N .已知上班时间为早晨8时,他每天7时出门,试求:(1)甲迟到的概率;(2)某周(以五天计)甲最多迟到一次的概率.(0.8413Φ(1)=,0.9750Φ(1.96)=,0.9938Φ(2.5)=)解:(1)所求概率为1587.08413.01)1(11050601}60{=-=Φ-=⎪⎭⎫ ⎝⎛-Φ-=>X P ;(2)用Y 表示五天中迟到的次数,则Y ~)1587.0,5(B ,所求概率为1675.0)8413.0()1587.0()8413.0()1587.0(}1{}0{}1{41155005≈+==+==≤C C Y P Y P Y P .29.2008年北京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术由下表给出.其中X 表示甲射击环数,Y 表示乙射击环数,试讨论派遣哪个射手参赛比较合理?解:94.0102.094.08)(=⨯+⨯+⨯=X E ,91.0108.091.08)(=⨯+⨯+⨯=Y E ,8.814.0102.094.08)(2222=⨯+⨯+⨯=X E ,2.811.0108.091.08)(222=⨯+⨯+⨯=Y E , 8.098.81)()()(222=-=-=X E X E X D ,2.092.81)()()(222=-=-=Y E Y E Y D .)()(Y E X E =,)()(Y D X D >,派遣射手乙参赛比较合理.五、应用题(本大题共1小题,10分)30.设某商场的日营业额为X 万元,已知在正常情况下X 服从正态分布)2.0,864.3(N ,十一黄金周的前五天营业额分别为:4.28、4.40、4.42、4.35、4.37(万元).假设标准差不变,问十一黄金周是否显著增加了商场的营业额.(取01.0=α,32.201.0=u ,58.2005.0=u ) 解:864.3:0≤μH ,864.3:1>μH .选用统计量nx u /00σμ-=.已知864.30=μ,2.02=σ,5=n ,01.0=α,32.201.0==u u α,算得364.4=x ,ασμu nx u =>=-=-=32.25.25/2.0864.3364.4/00,拒绝0H 而接受1H ,即认为营业额显著增加了.本资料由广州自考网收集整理,更多自考资料请登录下载考试必看:自考一次通过的秘诀!。
1 / 1104183概率论与数理统计〔经管类〕一、单项选择题1.若E<XY>=E<X>)(Y E ⋅,则必有< B >.A .X 与Y 不相互独立B .D<X+Y>=D<X>+D<Y>C .X 与Y 相互独立D .D<XY>=D<X>D<Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A.A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是D.A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n,p 的二项分布时,P<X=k>= < B >.A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++=CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=与2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为B.A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F =C.A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从〔 D 〕分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则B.A .21)0(=≤+Y X PB .21)1(=≤+Y X P2 / 11C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N <2,σμ>,2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量〔 C 〕. A .nx /0σμμ-=B .1/0--=n x σμμC .ns x t /0μ-=D .sx t 0μ-=11.A,B 为二事件,则=B A < >. A .B AB .ABC .ABD . B A12.设A 、B 表示三个事件,则AB 表示 < B >.A .A 、B 中有一个发生; B .A 、B 都不发生;C .A 、B 中恰好有两个发生;D . A 、B 中不多于一个发生13.设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≥=-,0,0;0,e )(5x x c x f x 则常数c 等于〔 C 〕A .-0.5B .0.5C .0.2D .-0.214.设随机变量X 的概率密度为其他10,,0)(3≤≤⎩⎨⎧=x ax x f ,则常数a= < A >.A .4B .1/2C .1/4D .315.设21)(=A P ,31)(=B P ,61)(=A B P ,则=)(AB P C.A .118B .187C .112D .4116. 随机变量F~F<n 1 ,n 2〕,则F1~ < D >.A .N<0,2>B .χ2〔2〕C .F<n 1,n 2>D .F<n 2,n 1> 17. 对任意随机变量X,若E<X>存在,则E<E<X>>等于< >. A .0B .E<X>C .<E<X>>3D .X18.设()~0,2X N ,()~0,1Y N ,且X 与Y 相互独立,则随机变量~Z X Y =-C .A .(0,1)NB .(0,2)NC .(0,3)ND .(0,4)N19.抛一枚不均匀硬币,正面朝上的概率为32,将此硬币连抛4次,则恰好3次正面朝上的概率是A.A .818B .278C .8132D .4320、设C B A ,,为三事件,则=⋃B C A )( B.3 / 11A .ABCB .BC A ⋃)( C .C B A ⋃⋃)(D .C B A ⋃⋃)(21.已知)(A P =0.7,)(B P =0.6,3.0)(=-B A P ,则=)(B A P A.A .0.1B .0.2C .0.3D .0.422.设随机变量X 服从正态分布N<μ,σ2>,则随σ的增大,概率P {}σμ≤-X < A >.A .保持不变B . 单调减小C .单调增大D .不能确定23.对正态总体的数学期望μ进行假设检验,如果在0.05的显著水平下拒绝H 0:μ=μ0,那么在0.01的显著水平下,< C >.A .必接受H 0B 不接受也不拒绝H 0C .必拒绝H 0D .可能接受,也可能拒绝24.设()F x 和()f x 分别为某随机变量的分布函数和概率密度,则必有< C >A .()f x 单调不减B .()1F x dx +∞-∞=⎰C .()0F -∞=D .()()F x f x dx +∞-∞=⎰25.设X 的方差为2,则根据切比雪夫不等式有估计≤≥-)2(EX X P D. A .0.1 B .0.2C .0.4 D .0.5 26.设二维随机变量),(Y X 的联合分布律为则(1)P X Y +≤=D.A .0.2B .0.4C .0.6D .0.827.已知随机变量X 的概率密度为)(x f X ,令Y=-2X,则Y 的概率密度)(y f Y 为< C >.A .)2(y f X -B .)2(y f X -C .)2(21y f X --D .)2(21y f X - 28.设随机变量X 服从参数为λ的指数分布,且)1(+X E =3,则λ=D .A .0.2B .0.3C .0.4D .0.5 29.设二维随机变量<X,Y>的分布函数为F<x, y>,则F<x,+∞>= < A >.A .F x <x>B .F y <y>C .0D .130.设A与B互为对立事件,且P<A>>0, P<B>>0,则下列各式中正确的是< D >.A .()1PB A =B .1)(=B A PC .()1P B A =D .()0.5P AB =31.设随机变量X的分布函数是F<x>,下列结论中不一定成立的是< D >. A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 为连续函数 32.设随机变量X~U<2, 4>, 则P<3<X<4>= < A >. A .P<2.25<X<3.25> B .P<1.5<X<2.5> C .P<3.5<X<4.5>D .P<4.5<X<5.5>4 / 1133.设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,2)(x x x f ,则)32(<<-X P =A .A .1B .2C .3D .434.设X~N<-1, 2>, Y~N<1, 3>, 且X与Y相互独立,则X+Y~B . A . N<0, 14> B .N<0, 5>C .N<0, 22>D .N<0, 40>35.设随机变量X ~B 〔36,61〕,则D 〔X 〕=< D >. A .61 B .65 C .625D .5二、填空题1.100件产品,有10件次品,不放回地从中接连取两次,每次取一个产品,则第二次取到次品的概率是 0.1.2.袋中有5个黑球,2个白球,一次随机地摸出3个球,其中恰好有2个白球的概率为0.3.3.已知随机变量X 服从参数为λ的泊松分布,则)3(=X P =λλ-e !33.4.设随机变量X~N<0,1>,Y~N<0,1>,且X 与Y 相互独立,则X 2+Y 2~)2(2χ. 5.设总体X 服从正态分布()2,Nμσ,n X XX ,,,21来自总体X 的样本,X 为样本均值,则)(X D =n2σ.6.设随机变量X则(212)P X -<=1.7.设随机变量X 服从参数为λ的泊松分布,且[(1)(2)]1E X X --=,则λ=.8.设()1F x 与()2F x 分别为随机变量1X 与2X 的分布函数,为使()()()12F x aF x bF x =-是某一随机变量的分布函数,则b a ,满足a-b=1.9.设X ~N<1,4> ,则4)1(2-X ~)1(2χ.10.设n X X X ,,,21 来自正态总体()2,Nμσ〔0>σ〕的样本,则nX σμ-服从N<0,1>. 11. 已知)(A P =)(B P =1,61)(=B A P ,则=)(B A P 7/18. 12. 抛硬币5次,记其中正面向上的次数为X,则P<X ≤4>= 5/32. 13.设D<X>=1,D<Y>=4,相关系数xy ρ=0.12,则COV<X,Y>=____0.24___.5 / 1114. <X,Y>~f<x, y>=其他0,0,,0)(≥≥⎩⎨⎧+-y x Ce y x ,则C= 1 .15 若随机变量X 的方差存在,由切比雪夫不等式可得≤>-)1)((X E X P D<X>. 16总体X~N <2,σμ>,n x x x 21,为其样本,未知参数μ的矩估计为x . 17. 设随机变量X 的概率密度为⎩⎨⎧<<=其它,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则EY =3/4.18. 样本来自正态总体N<μ,σ2>,当σ2未知时,要检验H 0: μ=μ0 ,采用的统计量是nSX μ-.19.在一次考试中,某班学生数学和外语的与格率都是0.7,且这两门课是否与格相互独立.现从该班任选一名学生,则该生数学和外语只有一门与格的概率为0.42.20.设连续型随机变量X 的密度为⎩⎨⎧<<=其它,020,2)(x x x f ,则=≤≤-)1X 1(P 1/4.21.设X 服从)4,2(N ,则)2(≤X P =0.5. 22.设12,,,n X X X 是来自于总体服从参数为λ的泊松分布的样本,则λ的一无偏估计为X .19.设随机变量(1,2)i X i =的分布律为且12,X X 独立,则{}120,1P X X ==-=1/8.23.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则Y X 2+服从N<2,5>24.设X 为连续型随机变量,c 为常数,则()P X c ==.25.设随机变量记X =0.5.26.把3个不同的球随机放入3个不同的盒中,则出现2个空盒的概率为1/27.6 / 1127.设A,B 为随机事件,则=A B A )( A.28. 设A,B为随机事件,且P<A>=0.8P<B>=0.4 =)(A B P 0.25,则)(B A P =0.5. 29. 若已知)(X E =2 , )(X D =4, 则E<2X 2>= 16. 30. 设随机变量X ~N 〔1,9〕,)32(+X D = 36.31.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生但B 不发生的概率与B 发生但A 不发生的概率相等,则)(A P = 4/9.32n x x x 21,为总体X 的样本,X 服从[0,θ]上的均匀分布,θ>0是未知参数,记∑==ni i x n x 11,则θ的无偏估计是x 2.33 若E<X>=μ, D<X>=σ2>0, 由切比雪夫不等式可估计≥+<<-)33(σμσμX P 8/9.34. 设二维随机变量<X,Y>的分布函数为F<x, y>,则F<x,+∞>= F<x>. 35 随机变量F~F<n 1 ,n 2〕,则F1~F<n 2,n 1>. 三、计算题1.设X 与Y 为相互独立的随机变量,X 在[-2,2]上服从均匀分布,Y 服从参数为λ=3的指数分布,求:〔X , Y 〕的概率密度.2.设连续型随机变量X 的分布函数为求:<1>求常数a ;<2> 求随机变量X 的密度函数.3.设随机变量~(2,5)X U ,现对X 进行三次独立观测,求〔1〕(3)P X >;〔2〕至少有两次观测值大于3的概率.4.设n X X ,,1 是来自总体的一样本,求⎪⎩⎪⎨⎧≤≤=-其它,010,),(1x x x f θθθ,其中θ为未知参数,求θ的矩估计.5.已知某电子器材厂生产一种云母带的厚度服从正态分布,其均值μ=0.13<mm>,标准差σ=0.015<mm>.某日开工后检查10处厚度,算出其平均值x =0.146<mm>,若厚度的方差不变,试问该日云母带的厚度的均值与0.13<mm>有无显著差异<α=0.05,96.1025.0=u >?6. 10件产品中有4件是次品,从中随机抽取2件,求〔1〕两件都是次品的概率,〔2〕至少有一件是次品的概率.7.有朋友自远方来,他乘火车、轮船、汽车、飞机来的概率分别为:0.3,0.2,0.1,0.4,如果他乘火车、轮船、汽车来的话,迟到的概率分别为0.25,13,112,而乘飞机则不会迟到,求: <1>他迟到的概率.<2>已知迟到了,他 乘火车来的概率是多少.8. 设随机变量X 的分布律为⎪⎪⎭⎫⎝⎛1.04.02.03.02320πππ,求Y 的分布律,其中,7 / 11<1>2)2(π-=X Y ; <2>cos(2)Z X π=-.9. 正常人的脉搏平均次数为72次/分.今对10 名某种疾病患者测量脉搏,平均数为67.5次/分,样本标准差为6.3386.设患者的脉搏次数X 服从正态分布,试检验患者的脉 搏与正常人的脉搏有无差异.[ 注α=0.05,t 0.025〔9〕=2.262]10.设工厂A 和工厂B 的产品的次品率分别为100 和200,现从A 和B 的产品中分别占6000和4000的一批产品中随机抽取一件,发现是次品,试求该次品属于A 生产的概率.11.已知随机变量X 与Y 的相关系数为ρ,求1X =aX+b 与2X =CY+d 的相关系数,其中a,b,c,d 均为常数,且a ≠0 ,c ≠0.12.设n X X ,,1 是来自总体X 的一样本,求(1),01(,)0,x x f x θθθ⎧+≤≤=⎨⎩其它,其中θ为未知参数,求θ极大似然估计.13.从五副不同的手套中任取4只,求其中至少有两只手套配成一副的概率. 14试求:<1>. <X, Y >关于X 和关于Y 的边缘分布律,<2>. X 与Y 是否相互独立,为什么? 15.设X 的密度函数为其他,10,,0)1(2)(<<⎩⎨⎧-=x x x f ,求Y=X 3的期望和方差.16.设<X,Y>的概率密度为<1>求边缘概率密度)(x f X ,)(y f Y ;<2> 求)(X E 和)(X D 17.设随机变量X 的密度函数为求:〔1〕常数a 的值;〔2〕1Y X =-的密度函数()Y f y . 18.设连续型随机变量X 的分布函数为求<1>.X 的概率密度)(x f ; <2>.)8)()((X D X E X P ≤- 19.某种导线,要求其电阻的标准差不得超过0.005<Ω>.今在生产的一批导线中取样品9根,测得s=0.007<Ω>,设总体为正态分布.问在显著性水平α=0.05下能否认为这批导线的标准差显著地偏大.<20.05(8)χ=15.507,20.95(8)χ=2.733>.20.某厂生产的铁丝的折断力服从正态分布,且已知平均折断力为570公斤,标准差为8公斤.现在改变了原材料,据检验,标准差不会改变,今从新生产的铁丝中随机抽取抽取10根,测得折断力8 / 11的平均值为574.8公斤,问新产品的平均折断力是否有显著改变?<96.1,05.0025.0==μα>三、计算题〔答案〕1.由已知条件得X,Y 的概率密度分别为其他,11,,021)(≤≤-⎪⎩⎪⎨⎧=x x f X 其他,0,,02)(2Y ≥⎩⎨⎧=-y e y f y 因为X 与Y 相互独立,所以2.解:1〕由1)(=+∞F 得1=a2〕因为⎩⎨⎧<≥-=- 0,00,1)(x x e x F x ,故='=)()(x F x f ⎩⎨⎧<≥=-0,00,)(x x e x F x3.解:1> 因1,25()3,x f x ⎧≤≤⎪=⎨⎪⎩其他,故(3)P X >=53123dx =⎰ 2>P<至少有两次观测值大于3>=22333321220()()33327C C +=4解:由()110EX xf x dx dx X ∞-∞====⎰⎰,得2ˆ1X X θ⎛⎫= ⎪-⎝⎭ 5解:01:0.13;:0.13H H μμ=≠,取)1,0(~N nX U σμ-=故拒绝域为:0.025 1.96U Z ≥=,而 1.96U =>,因此拒绝0H ,认为有显著的差异.6解:〔1〕用A 表示取到两件皆次品,则A 中含有23C 个基本事件.故P<A>=15121023=C C<2> 用B 表示取到的两件中至少有一件是次品,B 〔i=0,1,2〕表示两件中有i 件次品, 则B=B 1+B 2,显然B 0,B 1,B 2互不相容,故P<B>=P<B 1>+P<B 2>=158210232101713=+C C C C C . 7.解:设1H ={乘火车};2H ={乘汽车};3H ={乘轮船};4H ={乘飞机};A ={他迟到},9 / 11则1>()()()()()()()()()11223344311111230104531012520P A P A H P H P A H P H P A H P H P A H P H =+++=⋅+⋅+⋅+⋅=2> ()()()()()()11110.30.250.5320P A H P H P H A P H A P A P A ⨯==== 8.解:因为X 的分布律为⎪⎪⎭⎫⎝⎛1.04.02.03.02320πππ,故得………………………………………………………………………………………………<2> 故<1>2)2(π-=X Y 的分布律为 (5)<2>)2cos(π-=X Z 的分布律为 (8)9.X~N 〔u,σ2〕 H 0: u =u 0由于总体方差未知,可用T 统计量. 由X =67.5 S=6.3386T=nS X /)(0μ-=<67.2-72>10/6.3386=2.394t 0.025〔9〕=2.262 T=2.3947>2.262 , T 落入拒绝域故否定原假设.认为患者的脉搏与正常人有显著差异.10.解:设A H ={A 生产的次品},B H ={B 生产的次品},C ={抽取的一件为次品}, 11.COV<X 1, X 2>=COV<aX+b,cY+d>= acCOV<X,Y> <2分 >D<X 1>=D<aX+b>=a 2D<X> <1分 > D<X 2>=D<cY+d>=c 2D<Y> <1分 >10 / 11)()(),(212121X D X D X X COV X X =ρ=)()(),(Y D X D ac Y X acCOV =00<>⎩⎨⎧-=ac ac ac acρρρ 12解:因为11()(,)(1)n ni i i i L f x x θθθθ===∏=∏+,故1ln ()(ln(1)ln )nii L x θθθ==++∑,从而由1ln ()1(ln )01n i i L x θθθ=∂=+=∂+∑得1ˆ1ln nii nxθ==--∑;13. 解:令"没有两只手套配成一副"这一事件为A,则P<A>=2184101212121245=C C C C C C 则"至少有两只手套配成一副的概率"这一事件为A ,21132181)(1)(=-=-=A P A P 14.解:关于X的边缘分布律关于Y的边缘分布律由于()144)1()0(31,0=-=•=≠=-==Y P X P Y X P 因此X 与Y 不互相独立 15.解:101)1(2)()()(10333⎰⎰=-===+∞∞-dx x x dx x f x X E Y E 036.0281)1(2)()()(106662≈=-===⎰⎰+∞∞-dx x x dx x f x X E Y E16.17.1〕由3)(112adx ax dx x f ===⎰⎰+∞∞-,得3=a 2〕()()(1)(1)Y F y P Y y P X y P X y =≤=-≤=≤+=11 / 11 22,11,8)1(1,022,11,31,0)(3)1(022)1(≤⎪⎪⎩⎪⎪⎨⎧≤≤-<=≤⎪⎪⎩⎪⎪⎨⎧≤≤<=⎰⎰--∞-y y y y y ydx x y dx x f y y , 故⎪⎩⎪⎨⎧≤≤-='=其他,021,8)1(3)()(2y y y F y f 18.〔1〕 其他80081)(')(≤≤⎪⎩⎪⎨⎧==x x F x f <2>6181)314310()32)4()8)()((314310==≤≤=≤-=≤-⎰dx X P X P X D X E X P 19.解:222201:0.005;:0.005H H σσ≤>,取)1(~)12222--=n s n χσχ(, 故拒绝域为:2220.05(1)(8)15.507n αχχχ≥-==, 而22222(1)80.00715.6815.5070.005n s χσ-⨯===>,因此拒绝0H ,认为显著地偏大. 20.570:0=μH选取统计量 n x /0σμμ-=, μ~N<0,1> 带入8.574=x ,10,8==n σ 得8974.110/85708.574=- 1.8974<1.96 即u 落在接受域内,故接受H 0 即认为平均折断力无显著改变.。
2013年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码04183)一、单选题(本大题共10小题,每小题2分,共20分) 1、若A B ⊂,2.0)(=A P ,3.0)(=B P ,则=)(A B P ( ) A.0.1 B.0.2 C.0.3 D.0.42、设随机变量A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(BA)=13、设随机变量X 的分布律为P(X=k)=k/10(k=1,2,3,4),则P(0.2<X ≤2.5)= ( ) A.0.1 B.0.3 C.0.5 D.0.64、设随机变量X 的概率密度,,10,0,10,)(2⎪⎩⎪⎨⎧≤>=x x x ax f 则常数a= ( )A.-10B. 5001-C. 5001D.10 5、随机变量(X,Y )的分布律如下表所示,当X 与Y 相互独立时,(a ,b )= ( ) A. ⎪⎭⎫ ⎝⎛92,91 B. ⎪⎭⎫ ⎝⎛181,92 C. ⎪⎭⎫ ⎝⎛181,91 D. ⎪⎭⎫ ⎝⎛91,181 6、设连续型随机变量(X,Y )服从区域G:0≤X ≤2,2≤Y ≤5上的均匀发布,则其概率密度函数=),(y x f ( )A.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,6),(B. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,61),( C.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,4),( D. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,41),(7、设随机变量X 服从参数为3的泊松分布,Y ~B )31,8(,且X,Y 相互独立,则D (X-3Y-4)= ( ) A.0.78 B.4.78 C.19 D.238、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,x 是样本均值,2s 是样本方差,则有 ( )A. 2222)(σμ-=--s xE B. 2222)(σμ+=+-s x E C.22)(σμ+=-s x E D.22)(σμ+=+s x E9、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,要使3216131x ax x ++=∧μ,是未知参数μ 的无偏估计,则常数 =a ( )A. 61B. 31C. 21D. 110、设总数X 服从正态分布,其均值未知,对于需要检验的假设202:0:σσ≤H ,则其拒绝域为 ( )A. )(1-22n x x a >B. )(1-2-12n x x a <C. )(n x x a 22>D. )(n x x a 22< 二、填空题(本大题共15小题,每小题2分,共30分)11、设p )(=A P ,q )(=B P , r )(=B A P ,则=)(B A P12、从一副扑克牌(计52张)中连续抽取2张(不放回抽取),这2张均为红色的概率是13、假设患者从某种心脏外科手术中康复的概率是0.8,现对3位患者施行这种手术,其中恰恰有2人康复的概率是14、设连续型随机变量X 的发布函数,0,00,-1)(3-⎩⎨⎧≤>=x x e x F x 其概率密度为),(x f 则=)1(f 15、设随机变量K ~U (0,5),则关于x 的一元二次方程024X 42=+++K KX 有实根的概率是16、设连续型随机变量X 服从参数为)(0>λλ的泊松分布,且{}{}2210====X P X P ,则参数=λ 17、设二维随机变量(X,Y )服从区域G:0≤X ≤3,0≤Y ≤3上的均匀发布,则概率{}=≤≤=1,1Y X P18、设二维随机变量(X,Y )的概率密度为(),,000,),(2⎩⎨⎧>>=+-其他,y x Ae y x f y x 则常数A=19、设二维随机变量(X,Y )的分布律为 则{}=-==1XY P20、设随机变量X 服从参数为λ的指数分布,已知()82==X E ,则其方差D(X)=21、设随机变量X ~B (10000,0.8),试用切比雪夫不等式计算{}≥<<82007800X P22、设总体X ~N (),(2σμ,4321,,,x x x x 为来自总体X 的样本,i 41i 41x x ∑==,则2i 41i 2)(1x x -∑=σ服从自由度为的2x 分布。
2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。
错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。
A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
更多试卷答案下载
免费试听网校课程
全国2008年7月概率论与数理统计(经管类)试卷
课程代码:04183
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A与B互不相容,P(A)=0.2,P(B)=0.4,则P(B|A)=()A.0 B.0.2
C.0.4 D.1
2.设事件A,B互不相容,已知P(A)=0.4,P(B)=0.5,则P(A B)=()A.0.1 B.0.4
C.0.9 D.1
3.已知事件A,B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是()A.P(A B)=P(A)+P(B) B.P(A B)=1-P(A)P(B)
C.P(A B)=P(A)P(B) D.P(A B)=1
4.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为()A.0.002 B.0.04
C.0.08 D.0.104
5.已知随机变量X的分布函数为()
1
2 F(x)=
⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧≥<≤<≤<313132102100x x x x ,则P }{1
X
==
A .61
B .21
C .32
D .1
6.已知X ,Y 的联合概率分布如题6表所示
题6表
F (x,y )为其联合分布函数,则F (0,31
)=( )
A .0
B .121
C .61
D .41
7.设二维随机变量(X ,Y )的联合概率密度为
f(x,y)=⎪
⎩
⎪⎨⎧>>+-其它
0,0)(y x e y x
则P (X ≥Y )=( )
3 A .41 B .21
C .32
D .43
8.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( )
A .-21
B .0
C .21
D .2
9.设X1,X2,……,Xn 是来自总体N (μ,σ2)的样本,对任意的ε>0,样本均值X 所满足的切比雪夫不等式为( )
A .P
{}ε
<μ-n X ≥
2
2
n ε
σ
B .P
{}
ε
<μ-X ≥1-2
2n εσ
C .P
{
}
ε
≥μ-X ≤1-
2
2
n ε
σ
D .P
{
}
ε
≥μ-n X ≤
2
2
n ε
σ
10.设总体X~N (μ,σ2),σ2未知,X 为样本均值,Sn2=
n
1
∑=-n
1
i i
X
X
()2,
S2=
1
n 1
-∑=-n
1
i i
X
X
()2,检验假设H0:μ=μ0时采用的统计量是( )
A .Z=
n
/X 0
σμ-
B .T=n
/S X n
μ-
C .T=
n
/S X 0μ- D .T=
n
/X 0
σμ-
二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
11.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________________.
12.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________________.
4 13.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=______________. 14.设随机变量X 服从区间[]10,0上的均匀分布,则P (X>4)=________________. 15.在[]T ,0内通过某交通路口的汽车数X 服从泊松分布,且已知P (X=4)=3P (X=3),则在[]T ,0内至少有一辆汽车通过的概率为________________.
16.设随机变量(X ,Y )的联合分布如题16表,则α=________________.
题16表
17.设随机变量(X,Y)的概率密度为f(x,y)=⎩
⎨⎧≤≤≤≤其他
2
y 0,1x 0xy
,则X 的边缘概率密度
fx(x)= ________________.
18.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度f(x,y)= ________________.
19.设X~N (0,1),Y~B (16,2
1
),且两随机变量相互独立,则D(2X+Y)=
________________.
20.设随机变量X ~U (0,1),用切比雪夫不等式估计P (|X -2
1
|≥
3
1
)≤
________________.
21.设X1,X2…,Xn 是来自总体N (μ,σ2)的样本,则∑
=σ
μ-n
1i i )
X (
2~________
(标出参数).
5 22.假设总体X 服从参数为λ的泊松分布,0.8、1.3、1.1、0.6、1.2是来自总体X 的样本容量为5的简单随机样本,则λ的矩估计值为________________.
23.由来自正态总体X ~N (μ,0.92)、容量为9的简单随机样本,得样本均值为5,则未知参数μ的置信度为0.95的置信区间是____________.(μ0.025=1.96, μ0.05=1.645)
24.设总体X 服从正态分布N (μ1,σ2),总体Y 服从正态分布N (μ2,σ2),X1,X2,…,Xn 和Y1,Y2,…Ym 分别是来自总体X 和Y 的简单随机样本,则
E
⎥⎥⎥⎥⎥
⎦
⎤
⎢⎢⎢⎢⎢⎣
⎡-+-+-∑
∑
==2
m n )Y Y ()X X (n
1
i m
1
i 2
i 2
i =________________.
25.设由一组观测数据(xi,yi )(i=1,2,…,n)计算得x =150,y =200,lxx=25,lxy=75,则y 对x 的线性回归方程为________________. 三、计算题(本大题共2小题,每小题8分,共16分)
26.某商店有100台相同型号的冰箱待售,其中60台是甲厂生产的,25台是乙厂生产的,15台是丙厂生产的,已知这三个厂生产的冰箱质量不同,它们的不合格率依次为0.1、0.4、0.2,现有一位顾客从这批冰箱中随机地取了一台,试求: (1)该顾客取到一台合格冰箱的概率;
(2)顾客开箱测试后发现冰箱不合格,试问这台冰箱来自甲厂的概率是多大?
27.设随机变量X 只取非负整数值,其概率为P }{k
X ==1k k
)a 1(a
++,其中a=
12-,
试求E (X )及D (X )。
四、综合题(本大题共2小题,每小题12分,共24分)
28.甲在上班路上所需的时间(单位:分)X~N (50,100).已知上班时间为早晨8时,他每天7时出门,试求: (1)甲迟到的概率;
(2)某周(以五天计)甲最多迟到一次的概率.
(Φ(1)=0.8413,Φ(1.96)=0.9750,Φ(2.5)=0.9938)
29.2008年北京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术可用题29表给出。
其中X表示甲射击环数,Y表示乙射击环数,试讨论派遣哪个射手参赛比较合理?
题29表
五、应用题(本大题共1小题,10分)
30.设某商场的日营业额为X万元,已知在正常情况下X服从正态分布N(3.864,0.2十一黄金周的前五天营业额分别为:4.28、4.40、4.42、4.35、4.37(万元)
假设标准差不变,问十一黄金周是否显著增加了商场的营业额.(取α=0.01,
μ0.01=2.32,μ0.005=2.58)
6。