理正基坑
- 格式:pdf
- 大小:1.66 MB
- 文档页数:47
理正深基坑破解原理
深基坑是一种大型土木工程项目中常见的建筑结构,用于承载高层建筑或地下
工程的基础。
然而,深基坑在施工过程中常常遇到许多技术难题,其中之一就是深基坑地面的破解原理。
理正深基坑破解原理是指通过科学合理的设计和施工方法,解决深基坑地面的
破解问题。
这种破解现象通常出现在土壤的收缩过程中,特别是在存在高水位的地下水情况下。
首先,为了理解深基坑破解原理,我们需要了解土壤的力学特性。
通常情况下,土壤受到地表荷载的压力并逐渐沉降。
然而,在深基坑施工过程中,地下水的压力和土壤的干燥程度会导致土壤的收缩和变形,从而引起深基坑地面的破解。
为了减小深基坑地面的破解风险,工程师通常会采取如下措施:
1. 地下水控制:通过合理的排水系统,控制深基坑施工区域的地下水位,以减
小地下水压力对土壤的影响。
这可以通过井点降水、水平降水层、斜井降水等方式来实现。
2. 土体加固:采用适当的土肩支撑和立面支撑结构来限制土壤的变形。
土肩支
撑是通过在基坑侧壁设置一定的土体,以提供额外的支撑来增加土壤的稳定性。
而立面支撑结构则是使用钢支撑或混凝土支撑的固定结构,以抵抗土壤的压力。
3. 锚杆支护:在深基坑施工过程中,可以利用锚杆支持系统,将锚杆固定在土
壤中,并用孤注桩进行加固。
这样可以消除或减小地下水和土壤的作用力,从而保护深基坑地面的稳定性。
总之,理正深基坑破解原理是通过综合运用地下水控制、土体加固和锚杆支护
等措施,来保证深基坑施工中的地面稳定性,从而解决深基坑地面破解的问题。
这些技术手段的合理应用可以有效地确保工程的安全和稳定性。
理正深基坑软件应用参数说明深基坑软件是一种专业的地下工程设计和分析软件,广泛应用于建筑、地下工程、土木工程等领域。
在使用深基坑软件进行设计和分析时,需要设置一些参数来确保计算的准确性和可靠性。
以下是深基坑软件应用参数的说明:1.地质参数:地质参数是指对地下土壤和岩石的性质和特性进行描述的参数。
包括土壤的密度、强度、岩石的弹性模量、泊松比等。
这些参数通常需要通过实地勘探和实验室测试获得,然后输入到深基坑软件中,以便进行地下工程的设计和分析。
2.地下水参数:地下水参数对于深基坑设计和分析至关重要。
包括地下水位、地下水的渗流性质等。
地下水的渗流对基坑的稳定性和地下结构的工作状态有重要影响,因此在进行深基坑设计和分析时,需要准确地输入地下水参数。
3.边界条件:边界条件是指影响地下工程行为和性能的外部条件。
在进行深基坑设计和分析时,需要设置边界条件,包括应力边界、位移边界等。
边界条件能够影响到地下工程的稳定性和变形性能,因此需要根据实际项目情况合理设置。
4.荷载参数:荷载参数是指施加在地下工程上的外部荷载。
包括静荷载、动荷载、温度荷载等。
荷载参数是进行深基坑设计和分析时必须考虑的因素,设计师需要根据实际情况合理设置荷载参数。
5.材料参数:材料参数是指用于构建地下工程的材料的特性和性能参数。
包括混凝土的强度、钢筋的强度、土壤的弹性模量等。
准确地输入材料参数可以保证深基坑的稳定性和耐久性。
6.模型选择:深基坑软件一般提供多种模型选择,包括二维模型和三维模型。
设计师需要根据实际情况选择合适的模型进行设计和分析。
二维模型适用于简单的地下工程,而三维模型适用于复杂的地下工程。
7.计算方法:深基坑软件提供多种计算方法,包括有限元法、边坡法、数值方法等。
设计师需要根据实际情况选择合适的计算方法,以确保计算结果的准确性和可靠性。
8.输出结果:深基坑软件一般能够输出多种结果,包括应力分布、位移分布、变形分布等。
输出结果能够直观地反映地下工程的行为和性能,设计师可以根据输出结果进行合理的优化和调整。
1、基本信息1.1 超载信息1.2附加水平力信息2、土层信息2.1土层参数3、土压力模型及系数调整弹性法土压力模型: 经典法土压力模型:4、工况信息4.1结构计算4.1.1各工况:4.1.2内力位移包络图:4.1.3地表沉降图:4.2冠梁选筋结果4.3截面计算钢筋类型对应关系:d-HPB300,D-HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q-HRBF400,R-HRBF5004.3.1截面参数4.3.2内力取值4.4整体稳定验算计算方法:瑞典条分法应力状态:有效应力法条分法中的土条宽度: 1.00m滑裂面数据整体稳定安全系数K s = 7.984圆弧半径(m) R = 27.175圆心坐标X(m) X = 0.912圆心坐标Y(m) Y = 7.8254.5抗倾覆稳定性验算抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。
M a——主动土压力对桩底的倾覆弯矩。
注意:锚固力计算依据锚杆实际锚固长度计算。
工况1:K s = 2.194 >= 1.250, 满足规范要求。
4.6抗隆起验算1) 从支护底部开始,逐层验算抗隆起稳定性,结果如下:m2m1 (tan )e tan(N tan支护底部,验算抗隆起: Ks = 15.484 ≥ 1.800,抗隆起稳定性满足。
5、嵌固深度计算5.1嵌固深度计算参数:嵌固深度计算过程:当地层不够时,软件是自动加深最后地层厚度(最多延伸100m)得到的结果。
1) 嵌固深度构造要求:依据《建筑基坑支护技术规程》 JGJ 120-2012,嵌固深度对于悬臂式支护结构l d 不宜小于0.8h 。
嵌固深度构造长度ld :4.520m 。
2) 嵌固深度满足抗倾覆要求:按《建筑基坑支护技术规程》JGJ 120-2012悬臂式支护结构计算嵌固深度l d值,规范公式如下:得到l d = 13.050m。
理正深基坑软件应用参数说明1.各种支护结构计算内容排桩、连续墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面配筋计算;⑸锚杆计算;⑹稳定计算:整体稳定、抗倾覆、抗隆起、抗管涌承压水验算。
其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。
水泥土墙单元计算包括以下内容:⑴土压力计算;⑵嵌固深度计算;⑶内力及变形计算;⑷截面承载力验算;⑸锚杆计算;⑹稳定验算:整体稳定、抗倾覆、抗滑移、抗隆起、抗管涌承压水验算。
其中内力变形计算、截面配筋计算及整体稳定计算与规范无关,其他计算按选择的规范采用相应计算方法。
土钉墙单元计算包括以下内容:⑴主动土压力计算;⑵土钉抗拉承载力计算;⑶整体稳定验算;⑷土钉选筋计算。
系统仅提供《建筑基坑支护技术规程》(JGJ 120-99)及《石家庄地区王长科法》计算方法,放坡单元计算包括以下内容:系统仅提供整体稳定验算.2.增量法和全量法?(1)全量法是4.3版本以前采用多计算方法,采用这种计算时不能任意指定工况顺序。
(注意:采用该方法会使5.0版本某些新增数据丢失。
)所谓总量法,就是在施工的各个阶段,外力是实际作用在围护结构上的有效土压力或其它荷载,在支承处应考虑设置支承前该点墙体已产生的位移。
由此就可直接求得当前施工阶段完成后围护结构的实际位移和内力。
(2)增量法:采用这种方法,可以更灵活地指定工况顺序。
所谓增量法计算,就是在各个施工阶段,对各阶段形成的结构体系施加相应的荷载增量,该增量荷载对该体系内各构件产生的内力与结构在以前各阶段中产生的内力叠加,作为构件在该施工阶段的内力,这样就能基本上真实地模拟基坑开挖的全过程。
因此,在增量法中,外力是相对于前一个施工阶段完成后的荷载增量,所求得的围护结构的位移和内力也是相对于前一个施工阶段完成后的增量,当墙体刚度不发生变化时.与前一个施工阶段完成后已产生的位移和内力叠加,可得到当前施工阶段完成后体系的实际位移和内力。
理正深基坑单元计算和整体计算深基坑是指基础工程施工过程中,当地下水位高于地面或者需要挖掘超过6米深的基坑时所采取的一种施工措施。
深基坑的相关计算包括理正深基坑单元计算和整体计算两个部分。
1.地下水的影响:深基坑内部由于存在地下水,水压会对基坑的稳定性产生影响。
因此,需要计算地下水水压力以及水压力的分布情况。
2.土体的力学特性:深基坑开挖时,土体会受到应力改变的影响。
因此需要计算土体的强度参数,包括摩尔库仑强度、内摩尔摩擦角等。
3.深基坑结构的稳定性:深基坑除了开挖所需的土方工程外,还需要设计支护结构来维持基坑的稳定。
因此,需要计算深基坑结构的稳定性,包括土体和支护结构的受力情况、变形情况等。
4.施工过程中的变形控制:在深基坑的施工过程中,土体和支护结构会发生一定的变形。
因此,需要计算变形控制指标,如挠度、沉降等。
整体计算是指对整个深基坑的力学特性和结构稳定性进行综合计算和分析。
它包括以下几个方面的计算:1.地下水压力的变化分析:深基坑附近的地下水位不断变化,因此需要计算地下水压力的变化分布情况,以及对深基坑的影响程度。
2.土体变形的分析:深基坑的开挖会导致土体的变形,因此需要计算土体的变形情况,包括沉降、收敛、位移等。
3.支护结构的设计:深基坑需要设计支护结构来保证基坑的稳定。
因此,需要计算支护结构的受力情况和变形情况,以及与土体之间的相互作用。
4.施工过程中的风险评估:深基坑的施工是一个复杂且危险的过程,因此需要进行风险评估。
通过计算和分析深基坑的力学特性和结构稳定性,可以评估施工过程中的风险,并采取相应的措施进行控制。
综上所述,深基坑的计算可以分为理正深基坑单元计算和整体计算两个部分。
通过对深基坑内部力学特性和结构稳定性的计算和分析,可以指导深基坑的设计和施工过程,并确保深基坑的安全可靠。
理正深基坑60操作教程深基坑是建筑工程中的重要组成部分,它承载着建筑物的重量,并为建筑物提供坚实的基础。
在深基坑的施工过程中,正确的操作是至关重要的。
本文将为您介绍理正深基坑60的操作教程,包括施工前的准备工作、施工过程中的关键点以及施工后的处理措施。
首先,施工前的准备工作非常重要。
在开挖基坑之前,需要对施工现场进行勘察和测量,确定基坑的几何尺寸和地下水位。
在确认了基坑的尺寸后,需要先进行地下管线的避让工作,确保施工期间不会损坏到周围的管线。
同时,在施工前还需制定详细的施工方案和安全措施,确保施工过程中的安全性。
接下来是深基坑的开挖过程。
开挖深基坑时,首先需要进行测量和标定,确定开挖的起点和终点。
常用的开挖方法包括机械开挖和人工开挖。
机械开挖常使用挖掘机进行,挖掘机的操作人员需要具备一定的经验和技能,确保准确地控制挖掘机的深度和倾斜角度。
在开挖过程中,还需要进行地下水的排水工作,以确保开挖现场的干燥。
在深基坑开挖到一定深度后,需要进行基坑支护和加固工作。
基坑支护是防止土方坍塌和基坑变形的重要措施。
主要的基坑支护方法有钢支撑、混凝土护壁和地下连续墙等。
在进行基坑支护时,需要严格按照设计要求进行,确保支护结构的稳定性和承载能力。
施工结束后,还需要对基坑进行巡视和检查,确保施工质量和安全性。
同时,还需要对基坑进行填土和压实等处理,以恢复原地地貌,并确保基坑周围的地面不会发生下沉和变形。
最后,还需清理施工过程中产生的垃圾和废料,保持现场的整洁和干净。
结束语:深基坑的施工是一项复杂而重要的工作,需要严格按照操作规程进行。
本文介绍了理正深基坑60的操作教程,包括施工前的准备工作、施工过程中的关键点以及施工后的处理措施。
希望这篇文章对您有所帮助!。
1、基本信息1.1 超载信息1.2附加水平力信息2、土层信息2。
1土层参数3、土压力模型及系数调整弹性法土压力模型: 经典法土压力模型:4、工况信息4.1结构计算4。
1.1各工况:4.1.2内力位移包络图:4.1。
3地表沉降图:4.2冠梁选筋结果4.3截面计算钢筋类型对应关系:d-HPB300,D—HRB335,E-HRB400,F-RRB400,G-HRB500,P-HRBF335,Q—HRBF400,R-HRBF5004。
3。
1截面参数4.3.2内力取值4.4整体稳定验算计算方法:瑞典条分法应力状态:有效应力法条分法中的土条宽度: 1。
00m滑裂面数据整体稳定安全系数 K s = 7.984 圆弧半径(m) R = 27。
175圆心坐标X(m) X = 0。
912圆心坐标Y(m) Y = 7.8254.5抗倾覆稳定性验算抗倾覆安全系数:M p——被动土压力及支点力对桩底的抗倾覆弯矩,对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值.M a——主动土压力对桩底的倾覆弯矩。
注意:锚固力计算依据锚杆实际锚固长度计算。
工况1:K s = 2。
194 〉= 1.250, 满足规范要求。
4.6抗隆起验算1) 从支护底部开始,逐层验算抗隆起稳定性,结果如下:m2m1 (tan )2e tan(Ntan支护底部,验算抗隆起: Ks = 15。
484 ≥ 1.800,抗隆起稳定性满足。
5、嵌固深度计算5。
1嵌固深度计算参数:嵌固深度计算过程:当地层不够时,软件是自动加深最后地层厚度(最多延伸100m)得到的结果。
1) 嵌固深度构造要求:依据《建筑基坑支护技术规程》 JGJ 120-2012,嵌固深度对于悬臂式支护结构l d 不宜小于0.8h 。
嵌固深度构造长度ld :4。
520m 。
2) 嵌固深度满足抗倾覆要求:按《建筑基坑支护技术规程》 JGJ 120-2012悬臂式支护结构计算嵌固深度l d值,规范公式如下:得到l d = 13.050m。