第七章 数学中的公理化方法
- 格式:ppt
- 大小:180.50 KB
- 文档页数:34
第四章数学中的公理化方法与结构方法公理化方法在近代数学的发展中起着基本的作用,它的思想对各门现代数学理论的系统形成有着深刻的影响,而数学结构方法则是全面整理和分析数学的一种十分合理的方法,其观点曾导致一场几乎席卷世界的数学教学改革运动,即“新数学”运动。
两种方法均是用来构建数学理论体系的,一个是局部,一个是整体。
本章将概括介绍这两种思想方法,从中领略数学理论构建的一般思想方法。
§4.1公理化方法的历史概述众所周知,在长达一千多年的光辉灿烂的希腊文化中,哲学、逻辑学、几何学得到了很大的发展,特别是哲学家和逻辑学家亚里斯多德,总结了前人所发现和创立的逻辑知识,以完全三段论作为出发点,用演绎的方法推导出其余十九个不同格式的所有三段论,创立了人类历史上第一个公理化方法,即逻辑公理化方法,从而为数学公理化方法创造了条件。
数学家欧几里德以亚里斯多德演绎逻辑为工具,总结了人类长期以来所积累的大量几何知识,于公元前300年代完成了他的名著《几何原本》,《几何原本》是演绎逻辑与几何相结合的产物,因此,它的出现使演绎逻辑第一次成功地应用于数学。
反过来也推动了形式逻辑的大发展。
欧几里德《几何原本》是有史以来用公理化思想方法建立起来的第一门演绎数学,在数学史上被树为划时代的里程碑。
而且成为以后很长时期严格证明的典范,人们还把严密的逻辑推理和完善的逻辑结构看成是古典几何成熟的标志。
当然,现在看来由于受当时整个科学水平的限制,这种公理化方法还是很原始的。
所以后来称它为公理化方法的初期阶段。
在公理化方法的初期阶段,它的“严格性”也只是相对当时的情况而言的。
譬如,有些基本概念的定义不够妥当,有些证明只不过是借助于直观等等。
特别是第五公设的陈述从字面上看很不自明,所以人们从两个方面对它产生了怀疑:第一,第五公设是否正确地反映了空间的性质;其二、它本身很可能是一个定理。
对于这两个问题,人们从以下几个方面进行了探讨:一是它能否从其他公理推出;二是换一个与它等价而本身却又是很自明的公设;三是换一个与它相反的公设。
中学几何公理体系_公理化方法与中学几何公理化方法与中学几何一、公理化方法的意义和作用所谓数学公理化方法,就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一r一J数学建立成为演绎系统的一种方法。
这里所说的基本概念,是不加定义的,是真正基本的,它不能用比其更简单、更原始的概念来确定它的含义,只能用描述的方法来确定其范围,如点、线、面等等。
公理是对基本概念间的相互关系和基本性质所做的一种I }}述和规定,不是随意可以选定的。
一个良好的公理系统,设置公理应当满足三个条件:相容性、独立性和完备性。
一般认为,公理化的历史发展,大致可分为三个阶段:公理化方法的产生、公理化方法的完善和公理化方法的形式化。
从其发展史去考察,公理化方法的作用,至少概括出如下三点:①这种方法具有分析、总结数学知识的作用。
②公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创立。
③数学公理化方法在科学方法论上有示范作用。
二、中学几何中的公理化方法中学几何教材大体上是按照下面的逻辑结构、采用演绎方式展开的基于学生的认识规律和接受能力等方面的考虑,各章节教材在具体展开时增添了便于理解教材的实例。
从总体上看,教材体现出公理化方法的基本思想,其结构框图如下:(见下页) 甚本元案和甚本圈形中学几何课本中提到:y,线、面或丁古干个点、线、面组合在一起,就成为几何图中学数学教材中的公理系统中学数学知识有一定的系统,原则上应按公理化思想方法展开.特别是平面几何、立体几何内容,应明确地列出公理组.在一般的中学数学教材中,大体_n是按照下面的逻辑结构,采用演绎方法展开的: 原始概念的描述) 定义的叙述公理的叙述命题定理--一推论公式各章节教材在具体展开时,为便于学生接受,一般都增添了便于理解教材内容的实例,采用如下的块状结构: 感性材料实例、背景设置公理、定义、概念引进并证明定理、公式从逻辑结构和具体内容看,总体上体现了公理化的基本思想,但就其公理系统而论,由于考虑到中学生接受能力和教材的精简,因而对公理独立性的要求不是那么严格,而且公理系统也不完备,有时还要借助于直观.例如,平面几何教材,从它的逻辑结构和具体内容看,基本上沿用了欧氏的不完善的公理系统.首先选定一批基本元素和一批关系(包括基本关系)作为基本概念,采用扩大公理体系,然后以此为出发点,用形式逻辑方法定.义有关概念,推导一系列定理,把有关的几何知识贯穿起来.其中公理之间是相容(不矛盾)的,但所选取的公理既过剩又不足,是不独立和不完备的.20世纪末我国的平面几何教材中共引进几何公理16条,等量公理5条,不等量公理6条。
公理化方法
公理化方法简介如下:
公理化方法公理化思想任何真正的科学都始于原理,以它们为基础,并由之而导出一切结果来随着假设演绎模型法的进一步发展,经济学日益走向公理化方法。
公理化是一种数学方法。
最早出现在二千多年前的欧几里德几何学中,当时认为“公理’(如两点之问可连一直线)是一种不需要证明的自明之理,而其他所谓“定理”(如三对应边相等的陌个三角形垒等)则是需要由公理出发来证明的,18世纪德国哲学家康德认为,欧几里德几何的公理是人们生来就有的先验知识,19世纪末,德国数学家希尔伯特在他的几何基础研究中系统地挺出r数学的公理化方法。
數學中的公理化方法(下)吳開朗四、數學公理系統的美學標準美國數學家F.S.梅里特在其所著《工程中的現代數學方法》一書中曾經說過:“每一模型都是由一組公理定義的,···公理自身必須無矛盾且相互獨立”[11]。
所謂一組公理,即是一個公理系統。
關於公理系統的無矛盾性,是指借助於演算不可能在一個公理系統中推出兩個相互否定的命題。
關於公理系統的獨立性,是指在該系統中任何一條公理都不可能作為其餘各公理的邏輯推論。
如果一個公理系統具備無矛盾性(即相容性)和獨立性,那麼,這個公理系統(或者說這個理論體系)就是優美的。
因此,相容性和獨立性也就是公理系統的美學標準。
獨聯體維林金等編著的《中學數學現代基礎》一書中曾指出:“可以由給定的公理系統導出的全部不同的命題,一般說來有無窮多個。
因此,為了證明給定的公理系統的相容性,要想由這一公理系統作出全部可能的推論,並且指出其中沒有相互矛盾的命題,這是不可能的。
為了解決這個難題,曾經創造一種特殊的方法,它的名稱叫做模型法”。
[12]所謂模型法,即是欲證明某一新數學理論的無矛盾性(一致性),或者欲證明某一新數學理論與某一已知的(舊)數學理論的相容性(相對一致性),可以設法為它在古典數學中構造一個模型,並且進而證明這個新數學理論的公理系統在該模型中都能夠得以實現,這樣,即可以把這個新理論的相容性,化歸為新理論與建造它的模型(新理論的模型)時所需要的古典數學理論的相容性(相對一致性)。
因此,這種模型法,又可稱之為化歸法。
例如,我們利用龐卡萊(Poincar´e)模型和球面模型,可以把非歐幾何的相容性,化歸為歐氏幾何的相容性,再利用算術模型,又可進一步把歐氏幾何的相容性,化歸為算術理論的相容性。
[13]然而,對於一個新理論而言,並不需要如此逐步化歸,一般地說,只要是在古典數學中,能夠為其構造一個數學模型已足,因為古典數學已經過億萬群眾長期的科學實踐檢驗。
数学公理化方法在研究数学中的重要作用1数学公理化方法概述1.1数学公理化方法的内涵纯形式公理化方法的特征是具有高度的形式化和抽象化,系统的基本概念、基本关系用抽象的符号表示,命题由符号组成的公式表示,命题的证明用一个公式串表达。
一个符号化的形式系统只有在解释之后才有意义。
同时,作为一个符号化的形式系统,可以用来提供简洁精确的形式化语言;提供数量分析及计算的方法;提供逻辑推理的工具。
公理化方法的具体形态有三种:实体性公理化方法、形式公理化方法和纯形式公理化方法,用它们建构起来的理论体系分别为《几何原本》、《几何基础》和ZFC公理系统。
1.2公理化方法的基本思想数学是撇开现实世界的具体内容来研究其量性特征形式与关系的。
其结果只有经过证明才可信,而数学证明采用的是逻辑推理方法,根据逻辑推理的规则,每步推理都要有个大前提,我们不难想象到,最初的那个大前提是不可能再由另外的大前提导出的,既是说,我们的逆推过程总有个“尽头”,同样,概念需要定义,新概念由前此概念定义,必也出现这样的情况最原始的概念无法定义。
因此,我们要想建立一门科学的严格的理论体系,只能采取如下方法:让该门学科的某些概念以及与之有关的某些关系作为不加定义的原始概念与公设或公理,而以后的全部概念及其性质要求均由原始概念与公设或公理经过精确定义与逻辑推理的方法演绎出来,这种从尽可能少的一组原始概念和公设或公理出发,运用逻辑推理原则,建立科学体系的方法叫做公理化方法。
2数学公理化方法的逻辑特征2.1协调性无矛盾性要求在一个公理系统中,公理之间不能自相矛盾,由公理系推出的结果也不能矛盾,即不能同时推出命题A与其否定命题,显然,这是对公理系统的最基本的要求。
如何证明给定的公理系统的无矛盾性呢?若想通过“由这一公理系作出全部可能的推论并指出其中没有矛盾”来证明是不可能的。
2.2独立性独立性要求在一个公理系统中,被选定的公理组中任何一个公理都不能由其他公理推出。